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Abstrat

Shelah and Spener [1℄ proved that the zero-one law holds for the

�rst order sentenes on random graphs G(n; n

��

) whenever � is a

�xed positive irrational. This raises the question what zero-one valued

funtions on the positive irrationals arise as the limit probability of

a �rst order sentene on these graphs. Here we prove two neessary

onditions on these funtions, a number-theoreti and a omplexity

ondition. We hope to prove in a subsequent paper that these ondi-

tions together with two simpler and previously proved onditions are

also suÆient and thus they onstitute a haraterization.

1 Introdution, results

In this paper we onsider the limit probabilities of �rst order sentenes on

random graphs. Reall that the variables of the �rst order statements on a

simple undireted graph G range over the verties of G. The statements are

built from the atomi formulae x = y or x � y (the latter interpreted as \x

is adjaent to y") using logial onnetives ^, _, : and the quanti�ers 9x

and 8x.

Consider the random graph G(n; p) on n verties with eah edge present

independently with probability p. Let us set p = n

��

, � a �xed positive

�
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irrational real. Let A be any �rst order sentene. Saharon Shelah and the

�rst author of the present paper showed [1℄ that lim

n!1

Pr[G(n; p) j= A℄

always exists and is equal to zero or one. Here we take a more evolutionary

view, �xing A and onsidering how this limit varies as � hanges. Formally,

we let I denote the positive irrationals throughout and de�ne f

A

: I ! f0; 1g

by

f

A

(�) = lim

n!1

Pr[G(n; n

��

) j= A℄ (1)

In this work we give a sequene of onditions that all funtions f = f

A

must

satisfy. We further believe that these onditions are suÆient|that for any

funtion f satisfying the onditions given below there is a �rst order sentene

A with f = f

A

. That is, we believe that we have a omplete haraterization

of the funtions f

A

. We hope to return to this in a seond part of this paper.

In [3℄ the almost sure theory T

�

for G(n; n

��

) was given a ombinatorial

axiomatization (f. Lemma 10, and the axioms preeeding it). For � 2 I

we have f

�

(A) = 1 if and only if A 2 T

�

. We employ this axiomatization

with the ironi onsequene that our urrent work, outside of motivating

omments and examples, is devoid of probabilisti alulation.

Examples. A = \G ontains a triangle". It is well known that n

�1

is the

threshold funtion for A so that f

A

(�) = 0 for � > 1 and f

A

(�) = 1 for

� < 1. Note the value at � = 1 is not onsidered. Let B be the property

!(G) = 3. As n

�2=3

is the threshold funtion for ontaining a 4-lique f

B

(�)

is zero from1 to 1, then one from 1 to 2=3 and zero from 2=3 to 0. Observe

that with the parameterization p = n

��

the evolution of the random graph

goes \bakwards". We may think of � starting at 2 (for � > 2 there are no

edges) and getting smaller. From � = 2 to � = 1 is the very sparse region

desribed below. As � gets smaller and smaller (but still positive) the graph

gets denser and denser. Close to zero we have the very dense region.

In this setion we give the onditions on f

A

without proof. Two regions

of the domain are partiularly simple.

Very Sparse Condition: f

A

is onstant on eah interval (1 +

1

i+1

; 1 +

1

i

)

and on (2;1). Further there exists k = k(A) suh that f

A

is onstant on

(1; 1 +

1

k

)

Very Dense Condition: There exists a positive integer k = k(A) suh that

f

A

is onstant on (0;

1

k

).

Of ourse, the statement that f

A

is onstant on an interval really means

it is onstant on the irrationals of the interval, as that is where it is de�ned.

We naturally say that f

A

is ontinuous at a positive  if there is an � > 0

suh that f

A

is onstant on ( � �;  + �). This is de�ned for both rational
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and irrational . As it was proved in [1℄ f

A

is ontinuous at eah irrational

. When f

A

is not ontinuous at  we all  a point of disontinuity. With

this notion we an rephrase the Very Sparse Condition as saying there are

only a �nite number of points of disontinuity (\ups and downs") in (1;1)

and they are all of the form 1+

1

i

with i a positive integer. The Very Dense

Condition an be expressed by saying that zero is not an aumulation point

of the points of disontinuity.

Our ore interest will be in the behavior of f

A

on (

1

k

; 1). Here the situa-

tion is onsiderably more ompliated and more interesting. As in the Very

Sparse situation the points of disontinuity are all rational numbers. But

unlike the Very Sparse situation it is possible for f

A

to have an in�nite num-

ber of points of disontinuity. To desribe the behavior we make a detour

into elementary number theory that seems intriguing in its own right.

For 0 � � � � real (though our interest is only in 0 < � � 1) we de�ne

�(�; �) = supf

k

l

� � j

k � 1

l

� �g (2)

where the k � 0, l > 0 must be integers. We learly have �(�; �) = �. As

we shall see (Lemma 2) for � < � the value �(�; �) is a rational from the

interval (�; �℄. We onsider �(�; �) the next rational approximation of the

real � following �. We de�ne an approximation sequene for eah � � 0 by

setting �

0

(�) = 0 and indutively de�ning

�

i+1

(�) = �(�; �

i

(�)): (3)

This de�nes an in�nite sequene of inreasing rational approximations to �

if � is irrational, but for rational � the sequene stabilizes in a �nite number

of steps when � is reahed (Lemma 3). We de�ne the �rst index i for whih

�

i

(�) = � as the length of the rational �.

Disontinuity Condition: There exists a positive integer k = k(A) suh

that all points of disontinuity of f

A

are rationals of length at most k.

We devote Setion 2 to some observations related to the sequene �

i

(�)

and our notion of length of rational numbers. We introdue there several

alternative notions of length and study if they are equivalent with respet

to the Disontinuity Condition.

Let us de�ne LEN(k) to be those � � 0 of length at most k. As we

shall see in Lemma 5, LEN(k) is losed and well-ordered under >. Thus for

� 2 LEN(k) we an de�ne �

�

as the maximal element of LEN(k) stritly

smaller than �. (Note that �

�

depends on k. We use �

k

(�) for �

�

in Setion

2.)
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We an now rephrase the Disontinuity Condition as follows: There

exists a positive integer k = k(A) suh that for all � 2 LEN(k) the funtion

f

A

is onstant on (�

�

; �).

To prepare for our last ondition for f : I ! f0; 1g and � > 0 we de�ne

f

�

(�) = lim

�!0

+

f(�� �) (4)

That is, if f

�

(�) exists, then it is the onstant Æ 2 f0; 1g so that f = Æ in

the interval (�� �; �) for � appropriately small.

From the Disontinuity Condition f

�

A

is well de�ned for all � > 0. When

� 2 LEN(k) (with the value k as in the Disontinuity Condition) the value

f

�

A

(�) is the onstant value of f

A

on (�

�

; �). As these intervals partition

(0; 1) the funtion f

A

on (0; 1℄ is determined by the funtion f

�

A

on LEN(k).

Not all suh funtions are viable|for one thing there are only ountably

many A and LEN(k) is in�nite. Our �nal ondition limits the appropriately

de�ned omplexity of f

�

A

.

Consider f

�

A

as a funtion from the rational numbers � > 0 to f0; 1g.

Regard eah � =

r

s

as the bit string 0

r

1

s

. (That is, write � in unary.) Then

f

�

A

beomes a funtion from bit strings (of a spei�ed form) to f0; 1g.

Complexity Condition: When onsidered as above the funtion f

�

A

lies in

the polynomial time hierarhy PH.

To be self ontained we reall the de�nition of the polynomial time hierar-

hy. The funtions from strings to f0; 1g are alled prediates and 0 is identi-

�ed with the logial value \false", while 1 is identi�ed with \true" in this on-

text. The omplexity lass P is the set of prediates omputable by a Turing

mahine in polynomial time. The omplexity lass �

P

k

(k a positive integer)

onsists of the prediates A given by A(x) = 9x

1

8x

2

: : : Qx

k

B(x; x

1

; : : : ; x

k

),

where Q is the existential quanti�er 9 if k is odd, the universal quanti�er 8

otherwise, and B is a polynomial time prediate (B 2 P ) satisfying that in

ase B(x; x

1

; : : : ; x

k

) holds then jx

i

j < jxj



for i = 1; : : : ; k with a onstant 

depending only on B. The omplexity lass �

P

k

is de�ned analogously with

the role of the existential and universal quanti�ers reversed. The polynomial

time hierarhy PH is the union of the omplexity lasses �

P

k

for k � 1.

The ontainments P � �

P

1

\ �

P

1

and �

P

k

[ �

P

k

� �

P

k+1

\ �

P

k+1

are self

evident.

The lass �

P

1

is better known as NP . Note that the famous question

whether P = NP is not settled yet. If the answer is yes then all the above

lasses ollapse to P and we have PH = P . We remark that in the Com-

plexity Condition we deal with unary languages only, and the assumption
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that all suh funtions in PH are ontained in P is weaker than the P = NP

hypothesis.

The Main Theorem of our paper is the following:

Theorem 1 For every �rst order sentene A on graphs the funtion f

A

satis�es the Very Sparse Condition, the Very Dense Condition, the Dison-

tinuity Condition and the Complexity Condition as desribed above.

Note that the validity of the �rst two onditions were established in [1℄,

thus the ontribution of this paper is establishing the last two onditions as

stated in Theorem 16.

As mentioned at the onset, it is our belief that the onverse of the Main

Theorem is true. That is, if f satis�es the four onditions above then there

is a �rst order sentene A with f = f

A

. This we hope to return to in a

sequel.

2 Rational approximations

In this setion we prove elementary fats about the rational approximations

�(�; �) and �

i

(�) and the length of rationals as de�ned in the preeding

setion. While a few of these fats are used in the proof of the Main Theorem

most of these observations are redundant: our motivation for this setion is

to better understand the statement of the Disontinuity Condition and to

study our notion of length that we onsider interesting on its own right.

Reall that for � � � � 0 we de�ned �(�; �) = supfk=l � � j (k�1)=l �

�g, where k � 0 and l > 0 must be integers.

Lemma 2 �(�; �) = �. For � > � � 0 the value �(�; �) is a rational in

the interval (�; �℄.

Proof: The �rst statement is trivial. For the seond statement hoose

l

0

> 1=(� � �), and set k

0

> 0 to the unique value with k

0

=l

0

> � and

(k

0

� 1)=l

0

� �. The value v

0

= k

0

=l

0

� � is in the set de�ning �(�; �).

For any value k=l in the set k=l � � + 1=l and thus it is enough to onsider

rationals k=l with l � 1=(v

0

� �) when omputing the supremum �(�; �).

Hene it is the maximum of a �nite set of rationals. 2

Reall the reursive de�nition for �

i

(�) for � � 0. We set �

0

(�) = 0 and

�

i+1

(�) = �(�; �

i

(�)). We de�ned the length of a rational � � 0 to be the

�rst index i with �

i

(�) = �.
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Lemma 3 The value �

i

(�) is monotone in both i and �. For � irrational

the sequene �

i

(�) is a stritly inreasing and tends to �. The same sequene

stabilizes if � is rational, thus the length of a rational is �nite.

Proof: By the de�nition �(�; �) is monotone in both � and � and we

have �(�; �) � � from Lemma 2. The monotoniity of �

i

(�) follows.

For the rational � = k=l it is easy to see �

i

(�) � i=l for 0 � i � k. Hene

the sequene �

i

(�) stabilizes and the length of k=l is at most k.

For irrational � Lemma 2 implies that �

i

(�) is a stritly inreasing se-

quene of rationals. By the monotoniity for every rational 0 � � < � we

have �

l

(�) � �

l

(�) = � for the length l = l(�). Thus the sequene �

i

(�)

must tend to �. 2

For � > � � 0 let us onsider �(�; �) = supfk=l j k=l < �; (k�1)=l � �g

where k � 0 and l > 0 must be integers. For � > 0 we further de�ne

reursively �

0

(�) = 0 and �

i+1

(�) = �(�; �

i

(�)).

Lemma 4 For � > � � 0 we have

1. The value �(�; �) is a rational in the interval (�; �).

2. The sequene �

i

(�) is stritly inreasing and tends to �.

3. We have �

i

(�) = �

i

(�) unless � is a rational of length at most i.

4. For any  2 [�

i

(�); �) one has �

i

() = �

i

(�).

5. �

i

(�) = �

i

(�

j

(�)) for 0 � i � j.

6. For �xed i > 0 both �

i

(�) and �

i

(�) are omputable from � in polyno-

mial time (input and output are in unary).

Proof: The �rst two statements is proved analogously to Lemmas 2 and

3.

For 3 notie that by de�nition �(�; �) = �(�; �) unless the latter is equal

to �.

For 4 notie that for 0 � � �  < � the set de�ning �(; �) onsist of the

elements of the set de�ning �(�; �) that are at most . Thus if  � �(�; �)

we have �(; �) = �(�; �). The lemma follows from the reursive use of this

observation.

5 follows from 3 and 4.

For 6 notie that in ase � = a=b, � = =d then the proof of Lemma

2 gives that the denominator of �(�; �) is bounded by bd. Similarly the
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denominator of �(�; �) is bounded by bd + d. One an ompute �(�; �) or

�(�; �) by onsidering all the denominators under these bounds one by one

(notie that the input is in unary). Computing �

i

(�) and �

i

(�) is by the

reursive de�nition. 2

Let us remark here that using the theory of the ontinued fration ex-

pansion it is not hard to ompute the set T

�

= f�(�; �) j 0 � � < �g from

the ontinued fration expansion of � > 0. T

�

onsists of the \best rational

approximations of � from below", their ontinued fration expansion are of

the form a

0

+

1

a

1

+

: : :

1

a

2k�1

+

1

b

, where the expansion of � is a

0

+

1

a

1

+

: : :

1

a

2k

+

: : :

and 0 < b � a

2k

. The set T

�

also inludes the integers 0 < b � a

0

. The set

N

�

= f�(�; �) j 0 � � < �g is equal to T

�

if � is irrational, otherwise if the

ontinued fration expansion of � is a

0

+

1

a

1

+

: : :

1

a

2k

then one an obtain N

�

from T

�

by removing � from the set and adding the rationals with ontinued

fration expansion a

0

+

1

a

1

+

: : :

1

a

2k

+

1

b

, where b is arbitrary positive integer.

Using the observations above �(�; �) and �(�; �) are omputable in poly-

nomial time even if the rationals � and � are given in binary. Similarly �

i

(�)

and �

i

(�) an be omputed in polynomial time from � in binary. Here imust

be �xed or given in unary. (Not even this restrition on i is needed when

omputing �

i

(�) as the length of � is bounded by b� plus the length of

the binary representation of �.) These observation strengthen the results in

Lemma 4/6. Why we still use unary representation is explained in the proof

of Lemma 14.

Reall from Setion 1 that LEN(k) stands for the set of non-negative

rationals of length at most k.

Lemma 5 The set LEN(k) is losed and well ordered under >. The set of

limit points of LEN(k + 1) is LEN(k). The largest value of LEN(k) less

than � is �

k

(�).

Proof: The set LEN(k) onsists of the values � � 0 with �

k

(�) = �.

The last statement follows from Lemma 4/4.

LEN(k) is well ordered under > sine it is bounded by k and it has a

largest element below any threshold.

Let � 2 LEN(k). For any integer j > 0 we an hoose a unique i

with i=j > � � (i � 1)=j. We have �

k

(i=j) � �

k

(�) = � � (i � 1)=j thus

�

k+1

(i=j) = i=j. So i=j 2 LEN(k + 1). The limit of these values i=j is �

thus every point of LEN(k) is a limit of points in LEN(k + 1).

It remains to prove that all limit points of LEN(k + 1) are in LEN(k)

and thus LEN(k + 1) is losed. We do it by indution. LEN(0) = f0g has

7



no limit points. Suppose the distint points �

i

2 LEN(k + 1) tend to �.

We have �

k

(�

i

) � �

i

= �

k+1

(�

i

) � �

k

(�

i

)+1=j

i

where j

i

is the denominator

of �

i

in redued terms. As j

i

tends to in�nity we have that �

k

(�

i

) tend to

�. As �

k

(�

i

) 2 LEN(k) by Lemma 4/5 and LEN(k) is losed by indution

� 2 LEN(k). 2

Examples The only number of length zero is 0. The length one numbers

are of the form 1=k with k > 0 integer. The struture of LEN(2) is already

nontrivial. It ontains, for example all rationals a=b with b � a

2

. Or let us

look near

1

3

. Clearly

1

3

2 LEN(2) as it has length one, its approximation

sequene being 0;

1

3

. For r � 3 (to avoid trivialities) the values

r+1

3r

,

2r+1

6r+1

all

have length two, their approximation sequenes being 0;

1

3

, followed by the

number itself. These are the only elements of LEN(2) near

1

3

. The largest

� 2 LEN(2) with � <

1

3

is

5

16

with approximation sequene 0;

1

4

;

5

16

.

As in Setion 1 for � 2 LEN(2) we write �

�

for �

2

(�), the maxi-

mal element of LEN(2) stritly smaller than �. As examples, we have

(101=300)

�

= 34=101, (34=101)

�

= 103=306, (103=306)

�

= 69=205, and

(1=3)

�

= 5=16.

In the rest of this setion we ompare our notion of length or rational

numbers with related notions. None of these statements are used in the

proof of the main Theorem. Our purpose here is to study the new onept

of length inherent in the behaviour of �rst order statements on random

graphs.

Let l(�) stand for the length of the rational � � 0.

Lemma 6 Let � > 0 and �

i

= �

i

(�) = a

i

=b

i

in smallest terms for i � 0.

For i < l(�) we have b

i+1

< b

i

+ 1=(� � �

i

).

Proof: First we laim that the sequene x

i

= b

i

��a

i

is stritly dereasing

until it reahes 0 at i = l(�). Indeed, if b

i+1

� b

i

then x

i+1

= b

i+1

(���

i+1

) �

b

i

(� � �

i

) = x

i

. Equality holds only if �

i+1

= �

i

. In the opposite ase

b

i+1

> b

i

we have �

i+1

> �

i

and we onsider t = (a

i+1

� a

i

)=(b

i+1

� b

i

). We

have t > �

i+1

thus t annot be in the set of whih �

i+1

is de�ned to be the

maximum. As (a

i+1

� a

i

� 1)=(b

i+1

� b

i

) � �

i

this must be beause t > �.

We thus have x

i+1

� x

i

= (b

i+1

� b

i

)�� (a

i+1

� a

i

) = (b

i+1

� b

i

)(�� t) < 0

as laimed.

We have (a

i+1

� 1)=b

i+1

� �

i

, hene a

i+1

� b

i+1

�

i

� 1. Adding x

i+1

< x

i

to this inequality one gets b

i+1

(� � �

i

) < x

i

+ 1 and the statement of the

lemma follows. 2
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One may �nd it more natural to de�ne an approximation sequene in

terms of best (one-sided) approximations with bounded denominator. We

will present alternative (almost) equivalent suh de�nitions for length.

Let us de�ne �

i

= a

i

=b

i

(in smallest terms) for a real � > 0 with �

0

= b�

and �

i+1

being the maximal rational not greater than � subjet to a bound

on b

i+1

. For a rational � � 0 the length of this sequene is the �rst index i

with � = �

i

.

Lemma 6 motivates the b

i+1

< b

i

+1=(���

i

) bound. Let l

0

(�) the length

of this sequene. One may �nd the b

i+1

� 2=(���

i

) ondition more natural,

let l

00

(�) be the length of this sequene. Finally onsider the relaxed bound

b

i+1

� 2=(� � �

i

)

2

and let l

000

(�) be the length of this last approximation

sequene.

Our next lemma states that all the above notions of length are lose

to eah other, the same bounded sets of rationals have bounded length

using any of the four variants. This shows the robustness of this notion.

In partiular the Disontinuity Condition an be equivalently phrased using

any one of our variants. We remark however, that none of the newly de�nied

approximation sequenes have all the nie properties of the �

i

(�) sequene,

e.g., that �

i

(�) is monotone in �.

Lemma 7 For � � 0 rational we have

1. l(�) � l

0

(�) � l

00

(�) � l

000

(�)

2. l(�) � b�+ 2l

00

(�)

3. l

00

(�) � 2 � 5

l

000

(�)

Proof: The �rst inequality of 1 is lear from Lemma 6, the seond and

third inequality follows from the fat �� �

i

< 1.

For 2 notie that �

b�

(�) = b� is the starting value of the approximation

sequene de�ning l

00

(�) and thereafter two steps of the �

i

(�) sequene gets

at least as high as one step of the sequene de�ning l

00

(�). To see this latter

laim let � < � and suppose a=b � � satis�es 0 < b < 2=(� � �). As

(a� 2)=b � � and (a� 1)=b < � we have (a� 1)=b � �(�; �). From this and

a=b � � follows that a=b � �(�; �(�; �)) as laimed.

Now we turn to 3. Let us �x �, let �

i

= a

i

=b

i

be the approximation

sequene de�ning l

00

(�) and let �

i

= � � �

i

. Reall that for i > 0 we

de�ned a

i

=b

i

to be the largest rational not greater than � with denominator

at most 2=�

i�1

. Consider analogously the smallest rational 

i

=d

i

greater

9



than � with d

i

� 2=�

i�1

. Note that b

i

is stritly inreasing and we have

b

i

� 2=(� � �

i�1

) < b

i+1

. The sequene d

i

is also inreasing, but not

neessarily stritly.

First we laim that b

i

< (4d

i

)

i

. The proof is by indution on i, the base

ase is trivial. Suppose the laim is true for i and onsider 

i+1

=d

i+1

. The

largest aeptable value for d

i+1

is b2=�

i

, hene 

i+1

=d

i+1

�� � 1=b2=�

i

 <

�

i

. Thus 1=(b

i

d

i+1

) � 

i+1

=d

i+1

� a

i

=b

i

< 2�

i

) and b

i+1

� 2=�

i

< 4b

i

d

i+1

<

4d

i+1

(4d

i

)

i

� (4d

i+1

)

i+1

as laimed.

As a

i

=b

i

and 

i

=d

i

are two onseutive elements in the set of rationals

with denominator below a ertain bound we have 

i

=d

i

� a

i

=b

i

= 1=(b

i

d

i

).

Thus �

i

< 1=(b

i

d

i

) < �

i�2

=(2d

i

) for i � 2.

Now onsider the approximation sequene �

0

i

de�ning l

000

(�). We laim

that �

0

i

� �

2�5

i

�2

. Here we use �

i

= � for i � l

00

(�). The proof is an

indution on 0 � i � l

000

(i). The base ase is trivial. Given �

0

i

� �

j

< �

it is enough to show that �

0

i+1

� �

5j+7

. We have b

j+2

> 2=�

j

if j + 2 �

l

00

(�). From the bound in the preeeding paragraph we get that �

5j+6

<

�

j

=((2d

j+2

)(2d

j+4

) : : : (2d

5j+6

)) � �

j

=(2d

j+2

)

2j+3

� 2�

j

=(4d

j+2

)

j+2

< 2�

j

=b

j+2

<

�

2

j

. The value �

5j+7

is de�ned to be the largest rational not exeeding � with

denominator at most 2=�

5j+6

> 2=�

2

j

(or � if 5j + 7 > l

00

(�)). As �

0

i+1

is

de�ned to be the largest rational not exeeding � with denominator at most

2=(� � �

0

i

)

2

� 2=�

2

j

we have �

0

i+1

� �

5j+7

as laimed.

Applying the last laim to i = l

000

(�) proves statement 3 of the lemma.

2

We remark that the gap between l

00

(�) and l

000

(�) is indeed exponential.

It is easy to see that l

00

(��1=n) = �(log n), while l

000

(��1=n) = �(log logn)

for any �xed rational � > 0.

Lemma 8 The length l(�+ �) is bounded in terms of l(�) and l(�).

Proof: We prove the statement indutively on l(�) + l(�). Let � = a=b

and � = =d in smallest terms and suppose without loss of generality that

b � d. If � = 0 then the statement is trivial so we an onsider �

0

=

�

l(�)�1

(�). Sine �(�; �

0

) = � we have ( � 1)=d � �

0

. By the indutive

hypothesis l = l(�+�

0

) is bounded in terms of l(�) and l(�

0

) = l(�)�1. We

laim that l

000

(�+�) is bounded by l+1. Indeed, the approximating sequene

de�ning l

000

(�+�) is above the �

i

(�+�) sequene, thus if l

000

(�+�) > l then

the l

th

element  of the former sequene satis�es  � �

l

(�+�) � �

l

(�+�

0

) =

�+ �

0

. Thus the next element of that sequene is �+ � as its denominator

bd is below the threshold 2=(� + � � )

2

� 2=(� � �

0

)

2

� 2d

2

. Applying

Lemma 7 �nishes the indutive proof. 2

10



Let l

�

(�) be the minimum number of reiproals of positive integers that

add up to the rational �. Notie the analogies: the same numbers have l and

l

�

length zero or one, the set f� j l

�

(�) � kg is losed and well ordered by

>, the limit points of this set are the rationals with l

�

length at most k� 1.

The analogous statements for l are stated in Lemma 5. By Lemma 8 we also

know that the length l(�) is bounded in terms of l

�

(�). However we believe

that the onverse is not true as the numbers a=b with b > a

2

(all in LEN(2))

or the numbers 1=2 + a=b with b > 4a

2

(all in LEN(3)) have unbounded l

�

length. This would imply that the l

�

analog of the Disontinuity Condition

would be stronger and thus|assuming the onverse of the Main Theorem|

false. Notie that assuming the onverse of the Main Theorem there exists

a �rst order statement A suh that f

A

is not ontinuous at any point of

LEN(3) \ [1=2; 1℄.

Let us �nally ompare our notion of length and the well known ontinued

fration expansion. The remark after the proof of Lemma 4 establishes a

lose link between the two. In partiular it shows that the sum of the even

indexed terms of the ontinued fration expansion of a rational � is an upper

bound on l(�). Unfortunately this does not haraterize the sets of bounded

length rationals. To see this, notie that for any sequene a

2

; : : : ; a

k

and

large enough a

1

the rational of ontinued fration expansion

1

a

1

+

1

a

2

+

: : :

1

a

k

is in LEN(2) sine it is of the form a=b with b > a

2

. Thus rationals of

length two an have arbitrarily long ontinued fration expansion. On the

other hand the rationals 1 � 1=k have short ontinued fration expansions

and unbounded lengths. On the positive side we remark that if a bounded

set of rationals have bounded length ontinued fration expansions and eah

even indexed term of those expansions are bounded by a polynomial of the

preeding terms then the set has bounded length.

3 The �-losure

We start with de�nitions. Most of our notations is borrowed from or inspired

by [1℄. Let us reall that we onsider simple undireted graphs only. The

size of a �nite graph G is (v; e) where v is the number of verties and e

is the number of edges in G. We all a pair (H;G) of a (possibly in�nite)

graph G and its �nite subgraph H a graph-extension. We allow here H to

have no verties (and thus no edges) as a speial ase. We all H the base.

We all the extension trivial if G = H, otherwise it is non-trivial. We all

H

0

an intermediate graph of this extension if it is a �nite subgraph of G

11



ontaining H. We all the extension �nite in ase G is �nite. The size of a

�nite extension (H;G) is the di�erene between the sizes of G and H, i.e. it

is (v; e) where v is the number of verties of G not in H and e is the number

of edges of G not in H.

Let � � 0 be �xed. We all a non-trivial �nite extension (H;G) sparse

if its size (v; e) satis�es v > �e. We all the same extension dense if it is not

sparse. For tehnial reasons we onsider the trivial extensions both sparse

and dense. We all a �nite extension (H;G) rigid if the extension (H

0

; G)

is dense for any intermediate graph H

0

of (H;G). We all an extension

(H;G) safe if the extension (H;H

0

) is sparse for any intermediate graph

H

0

of (H;G). If � is not lear from the ontext we all these extensions

�-sparse, �-dense, �-rigid, or �-safe.

When onsidering subgraphs of a ommon underlying graph we interpret

union (respetively intersetion) of graphs the standard way: taking the

union (intersetion) of the vertex sets and the edge sets. We an analogously

de�ne the di�erene H n H

0

but we must use it with more are as this

operation does not yield a graph in most ases. The union of all intermediate

graphs H

0

of an extension (H;G) suh that (H;H

0

) is �-rigid is alled the

�-losure 

G

�

(H) of H. We suppress G in this notation if it is lear from the

ontext. We all the subgraph H of G �-losed in G if 

G

�

(H) = H.

The following lemma ontains simple observations.

Lemma 9 Let H, H

0

, H

00

be �nite subgraphs of a graph G. Then the fol-

lowing holds.

a. If (H;H

0

) is rigid then so is (H [H

00

;H

0

[H

00

).

b. If (H;H

0

) and (H

0

;H

00

) are rigid then so is (H;H

00

).

. If (H;H

0

) and (H;H

00

) are rigid then so is (H;H

0

[H

00

).

d. If 

G

�

(H) is �nite then it is �-losed in G and (H; 

�

(H)) is rigid.

e. If H is �-losed in G then (H;G) is safe.

Proof: a. Let H

1

be an intermediate graph in (H [H

00

;H

0

[H

00

) and let

H

2

= H

1

\H

0

. Notie that the sizes of (H

1

;H

0

[H

00

) and (H

2

;H

0

) are the

same. The latter extension is dense as H

2

is an intermediate graph in the

rigid extension (H;H

0

). Thus the former extension is also dense as needed.

b. Let H

1

be an intermediate graph in (H;H

00

). Sine the graph

H

2

= H

1

[ H

0

is an intermediate graph in the rigid extension (H

0

;H

00

),

12



the extension (H

2

;H

00

) is dense. Using item a and that (H;H

0

) is rigid we

get that so is (H

1

;H

2

), so in partiular it is dense. The size of (H

1

;H

00

) is

the sum of the sizes of (H

1

;H

2

) and (H

2

;H

00

) thus it is also dense as needed.

. The rigidity of (H

00

;H

0

[H

00

) follows from item a, and then the laim

follows from item b.

d. The seond statement follows from item . The �rst statement follows

from the seond and item b.

e. Suppose that the extension (H;G) is not safe and let H

0

be a minimal

intermediate graph with (H;H

0

) not sparse. Notie that H

0

6= H. For

any intermediate graph H

00

of (H;H

0

) either H

0

= H

00

or (H;H

00

) is sparse

from the minimality of H

0

. In either ase (H

00

;H

0

) is dense thus the non-

trivial extension (H;H

0

) is rigid. Hene H is not �-losed in G, giving the

ontrapositive of our statement. 2

Suppose � > 0 is irrational. The following statements were already

identi�ed in [3℄ as axioms for the almost sure theory of G(n; n

��

). Here we

only use that these �rst order statements hold almost surely in G(n; n

��

).

A

H

(sparsity axiom, H is a �nite graph of size (v; e), v=e < �) G does not

ontain a subgraph isomorphi to H.

B

k

H;H

0

(safe extension axiom, (H;H

0

) is a �nite safe extension, k > 0 is an

integer) Every isomorphism from H to a subgraph H

0

of G an be

extended to an isomorphism of H

0

to a subgraph H

1

of G suh that if

for the subgraph H

2

of G the extension (H

1

;H

2

) is rigid of size (v; e)

with v � k then no edge of (H

2

nH

1

) is inident to a vertex of (H

1

nH

0

).

The sparsity axioms laim that there is no \dense" subgraph in G. The

safe extension axioms laim that any �nite base in G has every possible

safe extension in G, moreover these extensions an be hosen not to have

small rigid extensions exept those of the base. In the senario of the safe

extension axiom we learly have that (H

2

nH

1

)[H

0

forms a rigid extension

of the base H

0

. Reall that we allow that the base H in the safe extension

(H;H

0

) ontains no verties. This speial ase of the safe extension axiom

laims that a opy of any \sparse" graph appears in G that does not have a

small rigid extension.

Lemma 10 [3℄ The random graph G = G(n; n

��

) almost surely satis�es

the sparsity and safe extension axioms.

When using �rst order logi to derive onsequenes of the above axioms

one gets the �rst order almost sure theory of the random graphs with edge

13



probability n

��

. Most of our lemmas are not �rst order though. One has to

be areful when applying these axioms beause no �nite graph satis�es all of

them. To make our reasoning simpler we deal with in�nite graphs instead.

We all a graph G an �-graph if it simultaneously satis�es all the axioms

above. It is lear from ompatness and the G�odel ompleteness theorem

that �-graphs exist. Due to the safe extension axion for eah k > 0 eah �-

graph ontains an empty subgraph on k verties, so eah �-graph is in�nite.

Note that by Lemma 10 any �rst order statement that holds for �-graphs

holds almost always for the random graph G(n; n

��

).

The struture of �-graphs has been studied in [2℄ and it was shown,

for example, that for � > 1 there is a unique ountable �-graph up to

isomorphism but for � < 1 there are ontinuum non-isomorphi ountable

�-graphs. This di�erene is not relevant for the purposes of this paper.

While it is possible that the �-losure of a �nite subgraph of an �-graph

is in�nite, the following lemma laims the ontrary for �-losures if � < �.

Lemma 11 The �-losure 

�

(H) of a �nite subgraph H of size (v; e) of an

�-graph G is �nite if � < �. It ontains at most v=(1� �=�) verties.

Proof: Let H

0

be an intermediate graph of size (v

0

; e

0

) in (H;G) suh that

(H;H

0

) is �-rigid. The size of this extension is (v

0

� v; e

0

� e) thus v

0

� v �

�(e

0

� e). But the sparsity axiom gives v

0

=e

0

� �. The two inequalities

together imply v

0

� v=(1 � �=�). Using Lemma 9/ the statement of our

lemma follows. 2

We remark that the statements of Lemma 11 is not �rst order. For

0 < � < � < 1 the �-losure of the empty set in the random graph G(n; n

��

)

is almost always the entire graph, so any statement bounding the size of this

losure fails almost always.

We need the following equivalent form of the safe extension axiom for

�-graphs.

Lemma 12 Let � > � > 0 and let G be an �-graph. Let (H;H

0

) be an

�-safe extension and let f be an isomorphism from H to a subgraph H

0

of

G. Then f an be extended to an isomorphism from H

0

to a subgraph H

1

of

G. If H

0

is �-losed in G then H

1

an also be hosen �-losed.

Proof: We use the safe-extension axiom for (H;H

0

) and k = bv=(1 �

�=�) where v is the number of verties in H

0

. We get an extension of f

mapping H

0

to a subgraph H

1

of G as laimed. By Lemma 11 any �-rigid

14



extension H

2

of H

1

in G must ontain at most k verties. As (H

2

;H

1

) is

also �-rigid no edge of (H

2

n H

1

) is inident to vertex of (H

1

n H

0

). This

implies that the sizes of the extensions (H

1

;H

2

) and (H

0

; (H

2

n H

1

) [ H

0

)

are equal, thus the latter extension is also �-dense. If H

0

is �-losed the

extensions must be trivial (Lemma 9/e), hene H

1

is �-losed. 2

4 The proof

Reall the approximation �(�; �) for 0 � � � � reals as de�ned by Equation

2. Reall that by Lemma 2 for � < � the value �(�; �) is a rational in the

interval (�; �℄.

For notational onveniene, if a graph has no edges we identify it with

its set of verties.

Lemma 13 Let � � 0 be a rational, let � > �, and let  = �(�; �). Let G

be an �-graph, let (H;H

0

) be a �nite extension, let f be an isomorphism from

H to a subgraph H

0

of G, and let x be a designated vertex in H

0

. Whether

there exists an isomorphism f

0

from H

0

to 

G

�

(H

0

[ ff

0

(x)g) extending f

is determined by �, , (H;H

0

), x, 

G



(H

0

), and f . If  < � then whether

suh an isomorphism exists an be deided in the seond level �

P

2

of the

polynomial time hierarhy from the above inputs.

Proof: We prove the lemma by identifying neessary and suÆient on-

ditions for the existene of the map f

0

. We laim that f

0

exists if and only

if the following two onditions are met:

1. The extension (H [ fxg;H

0

) is �-rigid and

2. 

H

0



(H) has an isomorphism to a �-losed subgraph of 



(H

0

) extending

f .

Let us start with the neessity of the onditions. Condition 1 is learly

neessary by Lemma 9/d as (H[fxg;H

0

) is isomorphi to (H

0

[ff

0

(x)g; 

�

(H

0

[

ff

0

(x)g) by f

0

. Notie that the restrition of f

0

to 



(H) satis�es ondition

2. Indeed, as (H; 



(H)) is -rigid, so is (H

1

;H

0

) for H

1

= f

0

(



(H)), thus

H

1

� 



(H

0

). If for an intermediate graph H

2

of (H

1

; G) the extension

(H

1

;H

2

) is �-rigid, then, as H

1

is ontained in the image 

�

(H

0

[ ff

0

(x)g)

of the isomorphism f

0

so isH

2

. In this ase the inverse image H

00

= f

0�1

(H

2

)

in H

0

satis�es that (



(H);H

00

) is �-rigid hene H

00

= 



(H), sine 



(H) is

-losed and  > �. Thus H

2

= H

1

proving that H

1

is �-losed.
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For the suÆieny of the two onditions we onsider the extension (



(H);H

0

)

of size (v; e). By Lemma 9/d and 9/e it is -safe. We laim the stronger

property, that it is �-safe. First we prove that it is �-sparse. We may

assume e > 0, so we have v=e >  sine the extension is -sparse. No-

tie that the extension (



(H) [ fxg;H

0

) is �-dense and its size is either

(v � 1; e) or (v; e), hene (v � 1)=e � �. These inequalities together with

the de�nition of  = �(�; �) implies v=e > � as laimed. Notie also that

1=e = v=e� (v � 1)=e > �� �.

To prove that (



(H);H

0

) is �-safe onsider an intermediate graph H

00

and let (v

0

; e

0

) be the size of (



(H);H

00

). We need to prove that this latter

extension is �-sparse, so we may assume that e

0

> 0. From the -safe

property of (



(H);H

0

) we have v

0

=e

0

> . In ase (v

0

� 1)=e

0

� � we an

again use the de�nition of  = �(�; �) to derive that v

0

=e

0

> �. In the

opposite ase we have v

0

=e

0

= (v

0

� 1)=e

0

+ 1=e

0

> � + 1=e > �. Thus

(



(H);H

00

) is �-sparse in both ases as laimed.

Let f

00

be the isomorphism laimed in ondition 2 and letH

1

be its image

in 



(H

0

). By assumption H

1

is �-losed in 



(H

0

), so by Lemma 9/d it is

�-losed in G. We apply Lemma 12 for the �-safe extension (



(H);H

0

) and

the isomorphism f

00

. By the lemma f

00

an be extended to an isomorphism f

0

of H

0

to a �-losed subgraph H

2

of G. Here (H

0

[ff

0

(x)g;H

2

) is isomorphi

to (H [ fxg;H

0

), hene �-rigid by ondition 1. Thus H

2

� 

�

(H

0

[ ff

0

(x)g.

Sine H

2

is �-losed we have equality in the last formula proving the suÆ-

ieny of our two onditions.

Note that the two onditions are formulated in terms of our inputs only.

To prove the laim of the lemma about omputability notie that by Lemma

11 



(H

0

) is �nite. Condition 1 an be heked in �

P

1

as we only have

to hek that (H

00

;H

0

) is �-dense for all intermediate graphs H

00

of (H [

fxg;H

0

). To hek ondition 2 we have to guess 



(H) and the isomorphism

to a subgraph of 



(H

0

) and hek if its image is �-losed. We also have

to verify that 



(H) is guessed orretly by heking if it is -losed and

extends H in a -rigid way. All this an be done in �

P

2

. 2

Although immaterial in the present proof it would be nie to strengthen

the above lemma by replaing �

P

2

by NP . Cheking the seond ondition

is losely related to the subgraph isomorphism problem indiating perhaps

that the our problem is also NP -hard.

Let us reall that the variables of �rst order statements on a graph range

over the verties of the graph. First order formulae are built from the atomi

formulae of the form x = y or x � y with the use of logial onnetives ^,

_ and : and quanti�ers 9x and 8x. The (open) formulae without quanti-

16



�ers are alled propositional formulae. A prenex formula is a propositional

formula pre�xed with a sequene of quanti�ers for distint variables. The

variables in the quanti�ers are the losed variables, the remaining variables

in the formula are the open variables. A formula with no open variables

is alled a losed formula or a statement. Reall that every statement is

equivalent with a prenex statement.

Reall the approximating sequene �

i

(�) as de�ned in the �rst setion

by �

0

(�) = 0 and by the reursion given in Equation 3. By the unary

representation of the rational r � 0 we mean a bit string 0

k

1

l

with k=l = r.

Lemma 14 Let A be a �xed prenex formula with i losed and j open vari-

ables. Suppose � > 0 satis�es �

i

(�) < �. Whether A holds in the �-graph G

for the verties X

1

; : : : ;X

j

is determined by A, the graph 

�

i

(�)

(fX

1

; : : : ;X

j

g)

and its verties X

1

; : : : ;X

j

and by the number �

i

(�). Deiding from these

inputs if a �xed formula A holds lies within the (i+ 1)

st

level �

P

i+1

or �

P

i+1

of the polynomial time hierarhy if the rational �

i

(�) is given in unary.

Proof: The proof is by indution on i. For i = 0 we have a proposi-

tional statement, this is learly determined by the subgraph of G spanned

by X

1

; : : : ;X

j

whih is exatly 

0

(fX

1

; : : : ;X

j

g). The deision is in onstant

time.

If i > 0 A has the form 9xB or 8xB. By the De Morgan law we an

write the negation of the formula of the seond type as a formula of the

�rst type, thus it is enough to onsider the ase A = 9xB. Here B is a

prenex formula of i � 1 losed and j + 1 open variables. (We suppose x

appears in B.) By the indutive hypothesis, whether B holds in G for the

verties X

1

; : : : ;X

j

and an extra vertex X for the variable x is determined by

the �

i�1

(�) losure of these verties and the approximation �

i�1

(�). Notie

here that �

i�1

(�) = �

i�1

(�

i

(�)), thus the previous approximation of � is

omputable from the next in polynomial time (Lemma 4).

We an thus determine if A holds in G for X

1

; : : : ;X

j

by guessing the

graph 

�

i�1

(�)

(fX

1

; : : : ;X

j

;Xg) up to an isomorphism �xingX

1

; : : : ;X

j

, and

X, and heking if i) with this losure B holds and ii) there exists a vertex X

in G for whih the losure is guessed orretly. Item i an be heked within

the i

th

level of the polynomial time hierarhy by indution, while item ii

an be heked within �

P

2

by Lemma 13. To �nish the proof it remains to

bound the size of the �

i�1

(�) losure to be guessed in the beginning. By

Lemma 11 it has at most (j + 1)=(� � �

i�1

(�)) < (j + 1)=(�

i

(�) � �

i�1

(�))
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verties. We assumed that the approximations of � are given in unary to

ensure that this is polynomial in the input size. 2

Theorem 15 For any �rst order statement A and any irrational � > 0

either A holds for all �-graphs or it holds from none. There exists an integer

i > 0 for A suh that whether A holds for an �-graph an be deided within

the polynomial time hierarhy PH from �

i

(�) given in unary.

Proof: First write A in prenex form of some i losed variables, then apply

Lemma 14. By the sparsity axiom the �

i

(�) losure in an �-graph of the

empty set is empty sine �

i

(�) < �. Thus by Lemma 14 whether A holds is

independent of the graph sine it an be omputed in the polynomial time

hierarhy PH solely based on �

i

(�). 2

We remark here that the integer i found by the proof is the number of

variables in a prenex formula equivalent to A. We used prenex formulae for

onveniene only, a more areful analysis shows that i an be hosen to be

the quanti�er depth of A i.e., the length of the longest nested sequene of

quanti�ers in A.

Theorem 15 establishes the 0-1 law for the �rst order sentenes on the

random graphs G(n; n

��

) for any irrational � > 0. This has already been

proven in [1℄. Our result gives more in telling how the validity of the state-

ment depends on � as laimed in the next theorem.

Reall that for a �rst order statement A on graphs we de�ned the fun-

tion f

A

on the positive irrationals by Equation 1. We identi�ed four on-

ditions on this funtion in the Setion 1, among them the Disontinuity

Condition and the Complexity Condition.

Theorem 16 For a �rst order statement A on graphs the funtion f

A

is a 0-

1 valued funtion satisfying the Disontinuity Condition and the Complexity

Condition.

Proof: By Theorem 15 f

A

is 0-1 valued and one an �nd an integer

i > 0 suh that f

A

(�) = f

A

(�

0

) if �

i

(�) = �

i

(�

0

) (here � and �

0

are positive

irrationals). As the value of �

i

(�

0

) is onstant in a small interval around any

positive � unless �

i

(�) = � (Lemma 4) the Disontinuity Condition follows.

Reall the de�nition f

�

as given in Equation 4. By Lemma 4/4 we have

�

i

(�

0

) = �

i

(�) for � > 0 and �

0

2 [�

i

(�); �). Thus by Lemma 15 the limit

f

�

A

(�) exists and it is omputable in PH from �

i

(�) given in unary. Thus

by Lemma 4/6 f

�

A

(�) an be omputed in the polynomial time hierarhy

from the rational � > 0 given in unary. 2
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This last Theorem establishes the Main Theorem as the Very Sparse

Condition and the Very Dense Condition have already been established in

[1℄.

We remark here that even assuming that the four onditions in the Main

Theorem haraterize the funtions f

A

a subtle issue with respet to the

spetrum of �rst order sentenes remain unsolved. The spetrum Spe(A)

of a �rst order statement A is de�ned in [1℄ as the set of values a > 0 for

whih there is no value � > 0 and Æ 2 f0; 1g suh that Pr[G(n; p) j= A℄ tends

to Æ as n goes to in�nity with n

�a��

< p < n

�a+�

. While all the points

of disontinuity of the funtion f

A

are among the spetrum Spe(A) the

onverse is false. Consider the �rst order statement that G has a unique 4-

lique. The funtion f

A

is onstant zero asG(n; n

��

) has no 4-liques for � >

2=3 and it has many 4-liques for � < 2=3. The probability Pr[G(n; n

�2=3

) j=

A℄ tends to a positive limit less than one, thus 2=3 2 Spe(A) but this is

not notieable from the funtion f

A

. The tehniques of this paper give the

following stronger version of the Disontinuity Condition:

The spetrum Spe(A) of a �rst order statement A of quanti�er depth i

onsists of rationals of length at most i.

We do not know what modi�ation of the Complexity Condition one

needs to haraterize the spetrum of �rst order sentenes.
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