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Abstra
t

Shelah and Spen
er [1℄ proved that the zero-one law holds for the

�rst order senten
es on random graphs G(n; n

��

) whenever � is a

�xed positive irrational. This raises the question what zero-one valued

fun
tions on the positive irrationals arise as the limit probability of

a �rst order senten
e on these graphs. Here we prove two ne
essary


onditions on these fun
tions, a number-theoreti
 and a 
omplexity


ondition. We hope to prove in a subsequent paper that these 
ondi-

tions together with two simpler and previously proved 
onditions are

also suÆ
ient and thus they 
onstitute a 
hara
terization.

1 Introdu
tion, results

In this paper we 
onsider the limit probabilities of �rst order senten
es on

random graphs. Re
all that the variables of the �rst order statements on a

simple undire
ted graph G range over the verti
es of G. The statements are

built from the atomi
 formulae x = y or x � y (the latter interpreted as \x

is adja
ent to y") using logi
al 
onne
tives ^, _, : and the quanti�ers 9x

and 8x.

Consider the random graph G(n; p) on n verti
es with ea
h edge present

independently with probability p. Let us set p = n

��

, � a �xed positive

�
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irrational real. Let A be any �rst order senten
e. Saharon Shelah and the

�rst author of the present paper showed [1℄ that lim

n!1

Pr[G(n; p) j= A℄

always exists and is equal to zero or one. Here we take a more evolutionary

view, �xing A and 
onsidering how this limit varies as � 
hanges. Formally,

we let I denote the positive irrationals throughout and de�ne f

A

: I ! f0; 1g

by

f

A

(�) = lim

n!1

Pr[G(n; n

��

) j= A℄ (1)

In this work we give a sequen
e of 
onditions that all fun
tions f = f

A

must

satisfy. We further believe that these 
onditions are suÆ
ient|that for any

fun
tion f satisfying the 
onditions given below there is a �rst order senten
e

A with f = f

A

. That is, we believe that we have a 
omplete 
hara
terization

of the fun
tions f

A

. We hope to return to this in a se
ond part of this paper.

In [3℄ the almost sure theory T

�

for G(n; n

��

) was given a 
ombinatorial

axiomatization (
f. Lemma 10, and the axioms pre
eeding it). For � 2 I

we have f

�

(A) = 1 if and only if A 2 T

�

. We employ this axiomatization

with the ironi
 
onsequen
e that our 
urrent work, outside of motivating


omments and examples, is devoid of probabilisti
 
al
ulation.

Examples. A = \G 
ontains a triangle". It is well known that n

�1

is the

threshold fun
tion for A so that f

A

(�) = 0 for � > 1 and f

A

(�) = 1 for

� < 1. Note the value at � = 1 is not 
onsidered. Let B be the property

!(G) = 3. As n

�2=3

is the threshold fun
tion for 
ontaining a 4-
lique f

B

(�)

is zero from1 to 1, then one from 1 to 2=3 and zero from 2=3 to 0. Observe

that with the parameterization p = n

��

the evolution of the random graph

goes \ba
kwards". We may think of � starting at 2 (for � > 2 there are no

edges) and getting smaller. From � = 2 to � = 1 is the very sparse region

des
ribed below. As � gets smaller and smaller (but still positive) the graph

gets denser and denser. Close to zero we have the very dense region.

In this se
tion we give the 
onditions on f

A

without proof. Two regions

of the domain are parti
ularly simple.

Very Sparse Condition: f

A

is 
onstant on ea
h interval (1 +

1

i+1

; 1 +

1

i

)

and on (2;1). Further there exists k = k(A) su
h that f

A

is 
onstant on

(1; 1 +

1

k

)

Very Dense Condition: There exists a positive integer k = k(A) su
h that

f

A

is 
onstant on (0;

1

k

).

Of 
ourse, the statement that f

A

is 
onstant on an interval really means

it is 
onstant on the irrationals of the interval, as that is where it is de�ned.

We naturally say that f

A

is 
ontinuous at a positive 
 if there is an � > 0

su
h that f

A

is 
onstant on (
 � �; 
 + �). This is de�ned for both rational

2



and irrational 
. As it was proved in [1℄ f

A

is 
ontinuous at ea
h irrational


. When f

A

is not 
ontinuous at 
 we 
all 
 a point of dis
ontinuity. With

this notion we 
an rephrase the Very Sparse Condition as saying there are

only a �nite number of points of dis
ontinuity (\ups and downs") in (1;1)

and they are all of the form 1+

1

i

with i a positive integer. The Very Dense

Condition 
an be expressed by saying that zero is not an a

umulation point

of the points of dis
ontinuity.

Our 
ore interest will be in the behavior of f

A

on (

1

k

; 1). Here the situa-

tion is 
onsiderably more 
ompli
ated and more interesting. As in the Very

Sparse situation the points of dis
ontinuity are all rational numbers. But

unlike the Very Sparse situation it is possible for f

A

to have an in�nite num-

ber of points of dis
ontinuity. To des
ribe the behavior we make a detour

into elementary number theory that seems intriguing in its own right.

For 0 � � � � real (though our interest is only in 0 < � � 1) we de�ne

�(�; �) = supf

k

l

� � j

k � 1

l

� �g (2)

where the k � 0, l > 0 must be integers. We 
learly have �(�; �) = �. As

we shall see (Lemma 2) for � < � the value �(�; �) is a rational from the

interval (�; �℄. We 
onsider �(�; �) the next rational approximation of the

real � following �. We de�ne an approximation sequen
e for ea
h � � 0 by

setting �

0

(�) = 0 and indu
tively de�ning

�

i+1

(�) = �(�; �

i

(�)): (3)

This de�nes an in�nite sequen
e of in
reasing rational approximations to �

if � is irrational, but for rational � the sequen
e stabilizes in a �nite number

of steps when � is rea
hed (Lemma 3). We de�ne the �rst index i for whi
h

�

i

(�) = � as the length of the rational �.

Dis
ontinuity Condition: There exists a positive integer k = k(A) su
h

that all points of dis
ontinuity of f

A

are rationals of length at most k.

We devote Se
tion 2 to some observations related to the sequen
e �

i

(�)

and our notion of length of rational numbers. We introdu
e there several

alternative notions of length and study if they are equivalent with respe
t

to the Dis
ontinuity Condition.

Let us de�ne LEN(k) to be those � � 0 of length at most k. As we

shall see in Lemma 5, LEN(k) is 
losed and well-ordered under >. Thus for

� 2 LEN(k) we 
an de�ne �

�

as the maximal element of LEN(k) stri
tly

smaller than �. (Note that �

�

depends on k. We use �

k

(�) for �

�

in Se
tion

2.)
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We 
an now rephrase the Dis
ontinuity Condition as follows: There

exists a positive integer k = k(A) su
h that for all � 2 LEN(k) the fun
tion

f

A

is 
onstant on (�

�

; �).

To prepare for our last 
ondition for f : I ! f0; 1g and � > 0 we de�ne

f

�

(�) = lim

�!0

+

f(�� �) (4)

That is, if f

�

(�) exists, then it is the 
onstant Æ 2 f0; 1g so that f = Æ in

the interval (�� �; �) for � appropriately small.

From the Dis
ontinuity Condition f

�

A

is well de�ned for all � > 0. When

� 2 LEN(k) (with the value k as in the Dis
ontinuity Condition) the value

f

�

A

(�) is the 
onstant value of f

A

on (�

�

; �). As these intervals partition

(0; 1) the fun
tion f

A

on (0; 1℄ is determined by the fun
tion f

�

A

on LEN(k).

Not all su
h fun
tions are viable|for one thing there are only 
ountably

many A and LEN(k) is in�nite. Our �nal 
ondition limits the appropriately

de�ned 
omplexity of f

�

A

.

Consider f

�

A

as a fun
tion from the rational numbers � > 0 to f0; 1g.

Regard ea
h � =

r

s

as the bit string 0

r

1

s

. (That is, write � in unary.) Then

f

�

A

be
omes a fun
tion from bit strings (of a spe
i�ed form) to f0; 1g.

Complexity Condition: When 
onsidered as above the fun
tion f

�

A

lies in

the polynomial time hierar
hy PH.

To be self 
ontained we re
all the de�nition of the polynomial time hierar-


hy. The fun
tions from strings to f0; 1g are 
alled predi
ates and 0 is identi-

�ed with the logi
al value \false", while 1 is identi�ed with \true" in this 
on-

text. The 
omplexity 
lass P is the set of predi
ates 
omputable by a Turing

ma
hine in polynomial time. The 
omplexity 
lass �

P

k

(k a positive integer)


onsists of the predi
ates A given by A(x) = 9x

1

8x

2

: : : Qx

k

B(x; x

1

; : : : ; x

k

),

where Q is the existential quanti�er 9 if k is odd, the universal quanti�er 8

otherwise, and B is a polynomial time predi
ate (B 2 P ) satisfying that in


ase B(x; x

1

; : : : ; x

k

) holds then jx

i

j < jxj




for i = 1; : : : ; k with a 
onstant 


depending only on B. The 
omplexity 
lass �

P

k

is de�ned analogously with

the role of the existential and universal quanti�ers reversed. The polynomial

time hierar
hy PH is the union of the 
omplexity 
lasses �

P

k

for k � 1.

The 
ontainments P � �

P

1

\ �

P

1

and �

P

k

[ �

P

k

� �

P

k+1

\ �

P

k+1

are self

evident.

The 
lass �

P

1

is better known as NP . Note that the famous question

whether P = NP is not settled yet. If the answer is yes then all the above


lasses 
ollapse to P and we have PH = P . We remark that in the Com-

plexity Condition we deal with unary languages only, and the assumption
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that all su
h fun
tions in PH are 
ontained in P is weaker than the P = NP

hypothesis.

The Main Theorem of our paper is the following:

Theorem 1 For every �rst order senten
e A on graphs the fun
tion f

A

satis�es the Very Sparse Condition, the Very Dense Condition, the Dis
on-

tinuity Condition and the Complexity Condition as des
ribed above.

Note that the validity of the �rst two 
onditions were established in [1℄,

thus the 
ontribution of this paper is establishing the last two 
onditions as

stated in Theorem 16.

As mentioned at the onset, it is our belief that the 
onverse of the Main

Theorem is true. That is, if f satis�es the four 
onditions above then there

is a �rst order senten
e A with f = f

A

. This we hope to return to in a

sequel.

2 Rational approximations

In this se
tion we prove elementary fa
ts about the rational approximations

�(�; �) and �

i

(�) and the length of rationals as de�ned in the pre
eding

se
tion. While a few of these fa
ts are used in the proof of the Main Theorem

most of these observations are redundant: our motivation for this se
tion is

to better understand the statement of the Dis
ontinuity Condition and to

study our notion of length that we 
onsider interesting on its own right.

Re
all that for � � � � 0 we de�ned �(�; �) = supfk=l � � j (k�1)=l �

�g, where k � 0 and l > 0 must be integers.

Lemma 2 �(�; �) = �. For � > � � 0 the value �(�; �) is a rational in

the interval (�; �℄.

Proof: The �rst statement is trivial. For the se
ond statement 
hoose

l

0

> 1=(� � �), and set k

0

> 0 to the unique value with k

0

=l

0

> � and

(k

0

� 1)=l

0

� �. The value v

0

= k

0

=l

0

� � is in the set de�ning �(�; �).

For any value k=l in the set k=l � � + 1=l and thus it is enough to 
onsider

rationals k=l with l � 1=(v

0

� �) when 
omputing the supremum �(�; �).

Hen
e it is the maximum of a �nite set of rationals. 2

Re
all the re
ursive de�nition for �

i

(�) for � � 0. We set �

0

(�) = 0 and

�

i+1

(�) = �(�; �

i

(�)). We de�ned the length of a rational � � 0 to be the

�rst index i with �

i

(�) = �.
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Lemma 3 The value �

i

(�) is monotone in both i and �. For � irrational

the sequen
e �

i

(�) is a stri
tly in
reasing and tends to �. The same sequen
e

stabilizes if � is rational, thus the length of a rational is �nite.

Proof: By the de�nition �(�; �) is monotone in both � and � and we

have �(�; �) � � from Lemma 2. The monotoni
ity of �

i

(�) follows.

For the rational � = k=l it is easy to see �

i

(�) � i=l for 0 � i � k. Hen
e

the sequen
e �

i

(�) stabilizes and the length of k=l is at most k.

For irrational � Lemma 2 implies that �

i

(�) is a stri
tly in
reasing se-

quen
e of rationals. By the monotoni
ity for every rational 0 � � < � we

have �

l

(�) � �

l

(�) = � for the length l = l(�). Thus the sequen
e �

i

(�)

must tend to �. 2

For � > � � 0 let us 
onsider �(�; �) = supfk=l j k=l < �; (k�1)=l � �g

where k � 0 and l > 0 must be integers. For � > 0 we further de�ne

re
ursively �

0

(�) = 0 and �

i+1

(�) = �(�; �

i

(�)).

Lemma 4 For � > � � 0 we have

1. The value �(�; �) is a rational in the interval (�; �).

2. The sequen
e �

i

(�) is stri
tly in
reasing and tends to �.

3. We have �

i

(�) = �

i

(�) unless � is a rational of length at most i.

4. For any 
 2 [�

i

(�); �) one has �

i

(
) = �

i

(�).

5. �

i

(�) = �

i

(�

j

(�)) for 0 � i � j.

6. For �xed i > 0 both �

i

(�) and �

i

(�) are 
omputable from � in polyno-

mial time (input and output are in unary).

Proof: The �rst two statements is proved analogously to Lemmas 2 and

3.

For 3 noti
e that by de�nition �(�; �) = �(�; �) unless the latter is equal

to �.

For 4 noti
e that for 0 � � � 
 < � the set de�ning �(
; �) 
onsist of the

elements of the set de�ning �(�; �) that are at most 
. Thus if 
 � �(�; �)

we have �(
; �) = �(�; �). The lemma follows from the re
ursive use of this

observation.

5 follows from 3 and 4.

For 6 noti
e that in 
ase � = a=b, � = 
=d then the proof of Lemma

2 gives that the denominator of �(�; �) is bounded by bd. Similarly the
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denominator of �(�; �) is bounded by bd + d. One 
an 
ompute �(�; �) or

�(�; �) by 
onsidering all the denominators under these bounds one by one

(noti
e that the input is in unary). Computing �

i

(�) and �

i

(�) is by the

re
ursive de�nition. 2

Let us remark here that using the theory of the 
ontinued fra
tion ex-

pansion it is not hard to 
ompute the set T

�

= f�(�; �) j 0 � � < �g from

the 
ontinued fra
tion expansion of � > 0. T

�


onsists of the \best rational

approximations of � from below", their 
ontinued fra
tion expansion are of

the form a

0

+

1

a

1

+

: : :

1

a

2k�1

+

1

b

, where the expansion of � is a

0

+

1

a

1

+

: : :

1

a

2k

+

: : :

and 0 < b � a

2k

. The set T

�

also in
ludes the integers 0 < b � a

0

. The set

N

�

= f�(�; �) j 0 � � < �g is equal to T

�

if � is irrational, otherwise if the


ontinued fra
tion expansion of � is a

0

+

1

a

1

+

: : :

1

a

2k

then one 
an obtain N

�

from T

�

by removing � from the set and adding the rationals with 
ontinued

fra
tion expansion a

0

+

1

a

1

+

: : :

1

a

2k

+

1

b

, where b is arbitrary positive integer.

Using the observations above �(�; �) and �(�; �) are 
omputable in poly-

nomial time even if the rationals � and � are given in binary. Similarly �

i

(�)

and �

i

(�) 
an be 
omputed in polynomial time from � in binary. Here imust

be �xed or given in unary. (Not even this restri
tion on i is needed when


omputing �

i

(�) as the length of � is bounded by b�
 plus the length of

the binary representation of �.) These observation strengthen the results in

Lemma 4/6. Why we still use unary representation is explained in the proof

of Lemma 14.

Re
all from Se
tion 1 that LEN(k) stands for the set of non-negative

rationals of length at most k.

Lemma 5 The set LEN(k) is 
losed and well ordered under >. The set of

limit points of LEN(k + 1) is LEN(k). The largest value of LEN(k) less

than � is �

k

(�).

Proof: The set LEN(k) 
onsists of the values � � 0 with �

k

(�) = �.

The last statement follows from Lemma 4/4.

LEN(k) is well ordered under > sin
e it is bounded by k and it has a

largest element below any threshold.

Let � 2 LEN(k). For any integer j > 0 we 
an 
hoose a unique i

with i=j > � � (i � 1)=j. We have �

k

(i=j) � �

k

(�) = � � (i � 1)=j thus

�

k+1

(i=j) = i=j. So i=j 2 LEN(k + 1). The limit of these values i=j is �

thus every point of LEN(k) is a limit of points in LEN(k + 1).

It remains to prove that all limit points of LEN(k + 1) are in LEN(k)

and thus LEN(k + 1) is 
losed. We do it by indu
tion. LEN(0) = f0g has

7



no limit points. Suppose the distin
t points �

i

2 LEN(k + 1) tend to �.

We have �

k

(�

i

) � �

i

= �

k+1

(�

i

) � �

k

(�

i

)+1=j

i

where j

i

is the denominator

of �

i

in redu
ed terms. As j

i

tends to in�nity we have that �

k

(�

i

) tend to

�. As �

k

(�

i

) 2 LEN(k) by Lemma 4/5 and LEN(k) is 
losed by indu
tion

� 2 LEN(k). 2

Examples The only number of length zero is 0. The length one numbers

are of the form 1=k with k > 0 integer. The stru
ture of LEN(2) is already

nontrivial. It 
ontains, for example all rationals a=b with b � a

2

. Or let us

look near

1

3

. Clearly

1

3

2 LEN(2) as it has length one, its approximation

sequen
e being 0;

1

3

. For r � 3 (to avoid trivialities) the values

r+1

3r

,

2r+1

6r+1

all

have length two, their approximation sequen
es being 0;

1

3

, followed by the

number itself. These are the only elements of LEN(2) near

1

3

. The largest

� 2 LEN(2) with � <

1

3

is

5

16

with approximation sequen
e 0;

1

4

;

5

16

.

As in Se
tion 1 for � 2 LEN(2) we write �

�

for �

2

(�), the maxi-

mal element of LEN(2) stri
tly smaller than �. As examples, we have

(101=300)

�

= 34=101, (34=101)

�

= 103=306, (103=306)

�

= 69=205, and

(1=3)

�

= 5=16.

In the rest of this se
tion we 
ompare our notion of length or rational

numbers with related notions. None of these statements are used in the

proof of the main Theorem. Our purpose here is to study the new 
on
ept

of length inherent in the behaviour of �rst order statements on random

graphs.

Let l(�) stand for the length of the rational � � 0.

Lemma 6 Let � > 0 and �

i

= �

i

(�) = a

i

=b

i

in smallest terms for i � 0.

For i < l(�) we have b

i+1

< b

i

+ 1=(� � �

i

).

Proof: First we 
laim that the sequen
e x

i

= b

i

��a

i

is stri
tly de
reasing

until it rea
hes 0 at i = l(�). Indeed, if b

i+1

� b

i

then x

i+1

= b

i+1

(���

i+1

) �

b

i

(� � �

i

) = x

i

. Equality holds only if �

i+1

= �

i

. In the opposite 
ase

b

i+1

> b

i

we have �

i+1

> �

i

and we 
onsider t = (a

i+1

� a

i

)=(b

i+1

� b

i

). We

have t > �

i+1

thus t 
annot be in the set of whi
h �

i+1

is de�ned to be the

maximum. As (a

i+1

� a

i

� 1)=(b

i+1

� b

i

) � �

i

this must be be
ause t > �.

We thus have x

i+1

� x

i

= (b

i+1

� b

i

)�� (a

i+1

� a

i

) = (b

i+1

� b

i

)(�� t) < 0

as 
laimed.

We have (a

i+1

� 1)=b

i+1

� �

i

, hen
e a

i+1

� b

i+1

�

i

� 1. Adding x

i+1

< x

i

to this inequality one gets b

i+1

(� � �

i

) < x

i

+ 1 and the statement of the

lemma follows. 2
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One may �nd it more natural to de�ne an approximation sequen
e in

terms of best (one-sided) approximations with bounded denominator. We

will present alternative (almost) equivalent su
h de�nitions for length.

Let us de�ne �

i

= a

i

=b

i

(in smallest terms) for a real � > 0 with �

0

= b�


and �

i+1

being the maximal rational not greater than � subje
t to a bound

on b

i+1

. For a rational � � 0 the length of this sequen
e is the �rst index i

with � = �

i

.

Lemma 6 motivates the b

i+1

< b

i

+1=(���

i

) bound. Let l

0

(�) the length

of this sequen
e. One may �nd the b

i+1

� 2=(���

i

) 
ondition more natural,

let l

00

(�) be the length of this sequen
e. Finally 
onsider the relaxed bound

b

i+1

� 2=(� � �

i

)

2

and let l

000

(�) be the length of this last approximation

sequen
e.

Our next lemma states that all the above notions of length are 
lose

to ea
h other, the same bounded sets of rationals have bounded length

using any of the four variants. This shows the robustness of this notion.

In parti
ular the Dis
ontinuity Condition 
an be equivalently phrased using

any one of our variants. We remark however, that none of the newly de�nied

approximation sequen
es have all the ni
e properties of the �

i

(�) sequen
e,

e.g., that �

i

(�) is monotone in �.

Lemma 7 For � � 0 rational we have

1. l(�) � l

0

(�) � l

00

(�) � l

000

(�)

2. l(�) � b�
+ 2l

00

(�)

3. l

00

(�) � 2 � 5

l

000

(�)

Proof: The �rst inequality of 1 is 
lear from Lemma 6, the se
ond and

third inequality follows from the fa
t �� �

i

< 1.

For 2 noti
e that �

b�


(�) = b�
 is the starting value of the approximation

sequen
e de�ning l

00

(�) and thereafter two steps of the �

i

(�) sequen
e gets

at least as high as one step of the sequen
e de�ning l

00

(�). To see this latter


laim let � < � and suppose a=b � � satis�es 0 < b < 2=(� � �). As

(a� 2)=b � � and (a� 1)=b < � we have (a� 1)=b � �(�; �). From this and

a=b � � follows that a=b � �(�; �(�; �)) as 
laimed.

Now we turn to 3. Let us �x �, let �

i

= a

i

=b

i

be the approximation

sequen
e de�ning l

00

(�) and let �

i

= � � �

i

. Re
all that for i > 0 we

de�ned a

i

=b

i

to be the largest rational not greater than � with denominator

at most 2=�

i�1

. Consider analogously the smallest rational 


i

=d

i

greater

9



than � with d

i

� 2=�

i�1

. Note that b

i

is stri
tly in
reasing and we have

b

i

� 2=(� � �

i�1

) < b

i+1

. The sequen
e d

i

is also in
reasing, but not

ne
essarily stri
tly.

First we 
laim that b

i

< (4d

i

)

i

. The proof is by indu
tion on i, the base


ase is trivial. Suppose the 
laim is true for i and 
onsider 


i+1

=d

i+1

. The

largest a

eptable value for d

i+1

is b2=�

i


, hen
e 


i+1

=d

i+1

�� � 1=b2=�

i


 <

�

i

. Thus 1=(b

i

d

i+1

) � 


i+1

=d

i+1

� a

i

=b

i

< 2�

i

) and b

i+1

� 2=�

i

< 4b

i

d

i+1

<

4d

i+1

(4d

i

)

i

� (4d

i+1

)

i+1

as 
laimed.

As a

i

=b

i

and 


i

=d

i

are two 
onse
utive elements in the set of rationals

with denominator below a 
ertain bound we have 


i

=d

i

� a

i

=b

i

= 1=(b

i

d

i

).

Thus �

i

< 1=(b

i

d

i

) < �

i�2

=(2d

i

) for i � 2.

Now 
onsider the approximation sequen
e �

0

i

de�ning l

000

(�). We 
laim

that �

0

i

� �

2�5

i

�2

. Here we use �

i

= � for i � l

00

(�). The proof is an

indu
tion on 0 � i � l

000

(i). The base 
ase is trivial. Given �

0

i

� �

j

< �

it is enough to show that �

0

i+1

� �

5j+7

. We have b

j+2

> 2=�

j

if j + 2 �

l

00

(�). From the bound in the pre
eeding paragraph we get that �

5j+6

<

�

j

=((2d

j+2

)(2d

j+4

) : : : (2d

5j+6

)) � �

j

=(2d

j+2

)

2j+3

� 2�

j

=(4d

j+2

)

j+2

< 2�

j

=b

j+2

<

�

2

j

. The value �

5j+7

is de�ned to be the largest rational not ex
eeding � with

denominator at most 2=�

5j+6

> 2=�

2

j

(or � if 5j + 7 > l

00

(�)). As �

0

i+1

is

de�ned to be the largest rational not ex
eeding � with denominator at most

2=(� � �

0

i

)

2

� 2=�

2

j

we have �

0

i+1

� �

5j+7

as 
laimed.

Applying the last 
laim to i = l

000

(�) proves statement 3 of the lemma.

2

We remark that the gap between l

00

(�) and l

000

(�) is indeed exponential.

It is easy to see that l

00

(��1=n) = �(log n), while l

000

(��1=n) = �(log logn)

for any �xed rational � > 0.

Lemma 8 The length l(�+ �) is bounded in terms of l(�) and l(�).

Proof: We prove the statement indu
tively on l(�) + l(�). Let � = a=b

and � = 
=d in smallest terms and suppose without loss of generality that

b � d. If � = 0 then the statement is trivial so we 
an 
onsider �

0

=

�

l(�)�1

(�). Sin
e �(�; �

0

) = � we have (
 � 1)=d � �

0

. By the indu
tive

hypothesis l = l(�+�

0

) is bounded in terms of l(�) and l(�

0

) = l(�)�1. We


laim that l

000

(�+�) is bounded by l+1. Indeed, the approximating sequen
e

de�ning l

000

(�+�) is above the �

i

(�+�) sequen
e, thus if l

000

(�+�) > l then

the l

th

element 
 of the former sequen
e satis�es 
 � �

l

(�+�) � �

l

(�+�

0

) =

�+ �

0

. Thus the next element of that sequen
e is �+ � as its denominator

bd is below the threshold 2=(� + � � 
)

2

� 2=(� � �

0

)

2

� 2d

2

. Applying

Lemma 7 �nishes the indu
tive proof. 2
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Let l

�

(�) be the minimum number of re
ipro
als of positive integers that

add up to the rational �. Noti
e the analogies: the same numbers have l and

l

�

length zero or one, the set f� j l

�

(�) � kg is 
losed and well ordered by

>, the limit points of this set are the rationals with l

�

length at most k� 1.

The analogous statements for l are stated in Lemma 5. By Lemma 8 we also

know that the length l(�) is bounded in terms of l

�

(�). However we believe

that the 
onverse is not true as the numbers a=b with b > a

2

(all in LEN(2))

or the numbers 1=2 + a=b with b > 4a

2

(all in LEN(3)) have unbounded l

�

length. This would imply that the l

�

analog of the Dis
ontinuity Condition

would be stronger and thus|assuming the 
onverse of the Main Theorem|

false. Noti
e that assuming the 
onverse of the Main Theorem there exists

a �rst order statement A su
h that f

A

is not 
ontinuous at any point of

LEN(3) \ [1=2; 1℄.

Let us �nally 
ompare our notion of length and the well known 
ontinued

fra
tion expansion. The remark after the proof of Lemma 4 establishes a


lose link between the two. In parti
ular it shows that the sum of the even

indexed terms of the 
ontinued fra
tion expansion of a rational � is an upper

bound on l(�). Unfortunately this does not 
hara
terize the sets of bounded

length rationals. To see this, noti
e that for any sequen
e a

2

; : : : ; a

k

and

large enough a

1

the rational of 
ontinued fra
tion expansion

1

a

1

+

1

a

2

+

: : :

1

a

k

is in LEN(2) sin
e it is of the form a=b with b > a

2

. Thus rationals of

length two 
an have arbitrarily long 
ontinued fra
tion expansion. On the

other hand the rationals 1 � 1=k have short 
ontinued fra
tion expansions

and unbounded lengths. On the positive side we remark that if a bounded

set of rationals have bounded length 
ontinued fra
tion expansions and ea
h

even indexed term of those expansions are bounded by a polynomial of the

pre
eding terms then the set has bounded length.

3 The �-
losure

We start with de�nitions. Most of our notations is borrowed from or inspired

by [1℄. Let us re
all that we 
onsider simple undire
ted graphs only. The

size of a �nite graph G is (v; e) where v is the number of verti
es and e

is the number of edges in G. We 
all a pair (H;G) of a (possibly in�nite)

graph G and its �nite subgraph H a graph-extension. We allow here H to

have no verti
es (and thus no edges) as a spe
ial 
ase. We 
all H the base.

We 
all the extension trivial if G = H, otherwise it is non-trivial. We 
all

H

0

an intermediate graph of this extension if it is a �nite subgraph of G

11




ontaining H. We 
all the extension �nite in 
ase G is �nite. The size of a

�nite extension (H;G) is the di�eren
e between the sizes of G and H, i.e. it

is (v; e) where v is the number of verti
es of G not in H and e is the number

of edges of G not in H.

Let � � 0 be �xed. We 
all a non-trivial �nite extension (H;G) sparse

if its size (v; e) satis�es v > �e. We 
all the same extension dense if it is not

sparse. For te
hni
al reasons we 
onsider the trivial extensions both sparse

and dense. We 
all a �nite extension (H;G) rigid if the extension (H

0

; G)

is dense for any intermediate graph H

0

of (H;G). We 
all an extension

(H;G) safe if the extension (H;H

0

) is sparse for any intermediate graph

H

0

of (H;G). If � is not 
lear from the 
ontext we 
all these extensions

�-sparse, �-dense, �-rigid, or �-safe.

When 
onsidering subgraphs of a 
ommon underlying graph we interpret

union (respe
tively interse
tion) of graphs the standard way: taking the

union (interse
tion) of the vertex sets and the edge sets. We 
an analogously

de�ne the di�eren
e H n H

0

but we must use it with more 
are as this

operation does not yield a graph in most 
ases. The union of all intermediate

graphs H

0

of an extension (H;G) su
h that (H;H

0

) is �-rigid is 
alled the

�-
losure 


G

�

(H) of H. We suppress G in this notation if it is 
lear from the


ontext. We 
all the subgraph H of G �-
losed in G if 


G

�

(H) = H.

The following lemma 
ontains simple observations.

Lemma 9 Let H, H

0

, H

00

be �nite subgraphs of a graph G. Then the fol-

lowing holds.

a. If (H;H

0

) is rigid then so is (H [H

00

;H

0

[H

00

).

b. If (H;H

0

) and (H

0

;H

00

) are rigid then so is (H;H

00

).


. If (H;H

0

) and (H;H

00

) are rigid then so is (H;H

0

[H

00

).

d. If 


G

�

(H) is �nite then it is �-
losed in G and (H; 


�

(H)) is rigid.

e. If H is �-
losed in G then (H;G) is safe.

Proof: a. Let H

1

be an intermediate graph in (H [H

00

;H

0

[H

00

) and let

H

2

= H

1

\H

0

. Noti
e that the sizes of (H

1

;H

0

[H

00

) and (H

2

;H

0

) are the

same. The latter extension is dense as H

2

is an intermediate graph in the

rigid extension (H;H

0

). Thus the former extension is also dense as needed.

b. Let H

1

be an intermediate graph in (H;H

00

). Sin
e the graph

H

2

= H

1

[ H

0

is an intermediate graph in the rigid extension (H

0

;H

00

),

12



the extension (H

2

;H

00

) is dense. Using item a and that (H;H

0

) is rigid we

get that so is (H

1

;H

2

), so in parti
ular it is dense. The size of (H

1

;H

00

) is

the sum of the sizes of (H

1

;H

2

) and (H

2

;H

00

) thus it is also dense as needed.


. The rigidity of (H

00

;H

0

[H

00

) follows from item a, and then the 
laim

follows from item b.

d. The se
ond statement follows from item 
. The �rst statement follows

from the se
ond and item b.

e. Suppose that the extension (H;G) is not safe and let H

0

be a minimal

intermediate graph with (H;H

0

) not sparse. Noti
e that H

0

6= H. For

any intermediate graph H

00

of (H;H

0

) either H

0

= H

00

or (H;H

00

) is sparse

from the minimality of H

0

. In either 
ase (H

00

;H

0

) is dense thus the non-

trivial extension (H;H

0

) is rigid. Hen
e H is not �-
losed in G, giving the


ontrapositive of our statement. 2

Suppose � > 0 is irrational. The following statements were already

identi�ed in [3℄ as axioms for the almost sure theory of G(n; n

��

). Here we

only use that these �rst order statements hold almost surely in G(n; n

��

).

A

H

(sparsity axiom, H is a �nite graph of size (v; e), v=e < �) G does not


ontain a subgraph isomorphi
 to H.

B

k

H;H

0

(safe extension axiom, (H;H

0

) is a �nite safe extension, k > 0 is an

integer) Every isomorphism from H to a subgraph H

0

of G 
an be

extended to an isomorphism of H

0

to a subgraph H

1

of G su
h that if

for the subgraph H

2

of G the extension (H

1

;H

2

) is rigid of size (v; e)

with v � k then no edge of (H

2

nH

1

) is in
ident to a vertex of (H

1

nH

0

).

The sparsity axioms 
laim that there is no \dense" subgraph in G. The

safe extension axioms 
laim that any �nite base in G has every possible

safe extension in G, moreover these extensions 
an be 
hosen not to have

small rigid extensions ex
ept those of the base. In the s
enario of the safe

extension axiom we 
learly have that (H

2

nH

1

)[H

0

forms a rigid extension

of the base H

0

. Re
all that we allow that the base H in the safe extension

(H;H

0

) 
ontains no verti
es. This spe
ial 
ase of the safe extension axiom


laims that a 
opy of any \sparse" graph appears in G that does not have a

small rigid extension.

Lemma 10 [3℄ The random graph G = G(n; n

��

) almost surely satis�es

the sparsity and safe extension axioms.

When using �rst order logi
 to derive 
onsequen
es of the above axioms

one gets the �rst order almost sure theory of the random graphs with edge
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probability n

��

. Most of our lemmas are not �rst order though. One has to

be 
areful when applying these axioms be
ause no �nite graph satis�es all of

them. To make our reasoning simpler we deal with in�nite graphs instead.

We 
all a graph G an �-graph if it simultaneously satis�es all the axioms

above. It is 
lear from 
ompa
tness and the G�odel 
ompleteness theorem

that �-graphs exist. Due to the safe extension axion for ea
h k > 0 ea
h �-

graph 
ontains an empty subgraph on k verti
es, so ea
h �-graph is in�nite.

Note that by Lemma 10 any �rst order statement that holds for �-graphs

holds almost always for the random graph G(n; n

��

).

The stru
ture of �-graphs has been studied in [2℄ and it was shown,

for example, that for � > 1 there is a unique 
ountable �-graph up to

isomorphism but for � < 1 there are 
ontinuum non-isomorphi
 
ountable

�-graphs. This di�eren
e is not relevant for the purposes of this paper.

While it is possible that the �-
losure of a �nite subgraph of an �-graph

is in�nite, the following lemma 
laims the 
ontrary for �-
losures if � < �.

Lemma 11 The �-
losure 


�

(H) of a �nite subgraph H of size (v; e) of an

�-graph G is �nite if � < �. It 
ontains at most v=(1� �=�) verti
es.

Proof: Let H

0

be an intermediate graph of size (v

0

; e

0

) in (H;G) su
h that

(H;H

0

) is �-rigid. The size of this extension is (v

0

� v; e

0

� e) thus v

0

� v �

�(e

0

� e). But the sparsity axiom gives v

0

=e

0

� �. The two inequalities

together imply v

0

� v=(1 � �=�). Using Lemma 9/
 the statement of our

lemma follows. 2

We remark that the statements of Lemma 11 is not �rst order. For

0 < � < � < 1 the �-
losure of the empty set in the random graph G(n; n

��

)

is almost always the entire graph, so any statement bounding the size of this


losure fails almost always.

We need the following equivalent form of the safe extension axiom for

�-graphs.

Lemma 12 Let � > � > 0 and let G be an �-graph. Let (H;H

0

) be an

�-safe extension and let f be an isomorphism from H to a subgraph H

0

of

G. Then f 
an be extended to an isomorphism from H

0

to a subgraph H

1

of

G. If H

0

is �-
losed in G then H

1


an also be 
hosen �-
losed.

Proof: We use the safe-extension axiom for (H;H

0

) and k = bv=(1 �

�=�)
 where v is the number of verti
es in H

0

. We get an extension of f

mapping H

0

to a subgraph H

1

of G as 
laimed. By Lemma 11 any �-rigid

14



extension H

2

of H

1

in G must 
ontain at most k verti
es. As (H

2

;H

1

) is

also �-rigid no edge of (H

2

n H

1

) is in
ident to vertex of (H

1

n H

0

). This

implies that the sizes of the extensions (H

1

;H

2

) and (H

0

; (H

2

n H

1

) [ H

0

)

are equal, thus the latter extension is also �-dense. If H

0

is �-
losed the

extensions must be trivial (Lemma 9/e), hen
e H

1

is �-
losed. 2

4 The proof

Re
all the approximation �(�; �) for 0 � � � � reals as de�ned by Equation

2. Re
all that by Lemma 2 for � < � the value �(�; �) is a rational in the

interval (�; �℄.

For notational 
onvenien
e, if a graph has no edges we identify it with

its set of verti
es.

Lemma 13 Let � � 0 be a rational, let � > �, and let 
 = �(�; �). Let G

be an �-graph, let (H;H

0

) be a �nite extension, let f be an isomorphism from

H to a subgraph H

0

of G, and let x be a designated vertex in H

0

. Whether

there exists an isomorphism f

0

from H

0

to 


G

�

(H

0

[ ff

0

(x)g) extending f

is determined by �, 
, (H;H

0

), x, 


G




(H

0

), and f . If 
 < � then whether

su
h an isomorphism exists 
an be de
ided in the se
ond level �

P

2

of the

polynomial time hierar
hy from the above inputs.

Proof: We prove the lemma by identifying ne
essary and suÆ
ient 
on-

ditions for the existen
e of the map f

0

. We 
laim that f

0

exists if and only

if the following two 
onditions are met:

1. The extension (H [ fxg;H

0

) is �-rigid and

2. 


H

0




(H) has an isomorphism to a �-
losed subgraph of 





(H

0

) extending

f .

Let us start with the ne
essity of the 
onditions. Condition 1 is 
learly

ne
essary by Lemma 9/d as (H[fxg;H

0

) is isomorphi
 to (H

0

[ff

0

(x)g; 


�

(H

0

[

ff

0

(x)g) by f

0

. Noti
e that the restri
tion of f

0

to 





(H) satis�es 
ondition

2. Indeed, as (H; 





(H)) is 
-rigid, so is (H

1

;H

0

) for H

1

= f

0

(





(H)), thus

H

1

� 





(H

0

). If for an intermediate graph H

2

of (H

1

; G) the extension

(H

1

;H

2

) is �-rigid, then, as H

1

is 
ontained in the image 


�

(H

0

[ ff

0

(x)g)

of the isomorphism f

0

so isH

2

. In this 
ase the inverse image H

00

= f

0�1

(H

2

)

in H

0

satis�es that (





(H);H

00

) is �-rigid hen
e H

00

= 





(H), sin
e 





(H) is


-
losed and 
 > �. Thus H

2

= H

1

proving that H

1

is �-
losed.
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For the suÆ
ien
y of the two 
onditions we 
onsider the extension (





(H);H

0

)

of size (v; e). By Lemma 9/d and 9/e it is 
-safe. We 
laim the stronger

property, that it is �-safe. First we prove that it is �-sparse. We may

assume e > 0, so we have v=e > 
 sin
e the extension is 
-sparse. No-

ti
e that the extension (





(H) [ fxg;H

0

) is �-dense and its size is either

(v � 1; e) or (v; e), hen
e (v � 1)=e � �. These inequalities together with

the de�nition of 
 = �(�; �) implies v=e > � as 
laimed. Noti
e also that

1=e = v=e� (v � 1)=e > �� �.

To prove that (





(H);H

0

) is �-safe 
onsider an intermediate graph H

00

and let (v

0

; e

0

) be the size of (





(H);H

00

). We need to prove that this latter

extension is �-sparse, so we may assume that e

0

> 0. From the 
-safe

property of (





(H);H

0

) we have v

0

=e

0

> 
. In 
ase (v

0

� 1)=e

0

� � we 
an

again use the de�nition of 
 = �(�; �) to derive that v

0

=e

0

> �. In the

opposite 
ase we have v

0

=e

0

= (v

0

� 1)=e

0

+ 1=e

0

> � + 1=e > �. Thus

(





(H);H

00

) is �-sparse in both 
ases as 
laimed.

Let f

00

be the isomorphism 
laimed in 
ondition 2 and letH

1

be its image

in 





(H

0

). By assumption H

1

is �-
losed in 





(H

0

), so by Lemma 9/d it is

�-
losed in G. We apply Lemma 12 for the �-safe extension (





(H);H

0

) and

the isomorphism f

00

. By the lemma f

00


an be extended to an isomorphism f

0

of H

0

to a �-
losed subgraph H

2

of G. Here (H

0

[ff

0

(x)g;H

2

) is isomorphi


to (H [ fxg;H

0

), hen
e �-rigid by 
ondition 1. Thus H

2

� 


�

(H

0

[ ff

0

(x)g.

Sin
e H

2

is �-
losed we have equality in the last formula proving the suÆ-


ien
y of our two 
onditions.

Note that the two 
onditions are formulated in terms of our inputs only.

To prove the 
laim of the lemma about 
omputability noti
e that by Lemma

11 





(H

0

) is �nite. Condition 1 
an be 
he
ked in �

P

1

as we only have

to 
he
k that (H

00

;H

0

) is �-dense for all intermediate graphs H

00

of (H [

fxg;H

0

). To 
he
k 
ondition 2 we have to guess 





(H) and the isomorphism

to a subgraph of 





(H

0

) and 
he
k if its image is �-
losed. We also have

to verify that 





(H) is guessed 
orre
tly by 
he
king if it is 
-
losed and

extends H in a 
-rigid way. All this 
an be done in �

P

2

. 2

Although immaterial in the present proof it would be ni
e to strengthen

the above lemma by repla
ing �

P

2

by NP . Che
king the se
ond 
ondition

is 
losely related to the subgraph isomorphism problem indi
ating perhaps

that the our problem is also NP -hard.

Let us re
all that the variables of �rst order statements on a graph range

over the verti
es of the graph. First order formulae are built from the atomi


formulae of the form x = y or x � y with the use of logi
al 
onne
tives ^,

_ and : and quanti�ers 9x and 8x. The (open) formulae without quanti-
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�ers are 
alled propositional formulae. A prenex formula is a propositional

formula pre�xed with a sequen
e of quanti�ers for distin
t variables. The

variables in the quanti�ers are the 
losed variables, the remaining variables

in the formula are the open variables. A formula with no open variables

is 
alled a 
losed formula or a statement. Re
all that every statement is

equivalent with a prenex statement.

Re
all the approximating sequen
e �

i

(�) as de�ned in the �rst se
tion

by �

0

(�) = 0 and by the re
ursion given in Equation 3. By the unary

representation of the rational r � 0 we mean a bit string 0

k

1

l

with k=l = r.

Lemma 14 Let A be a �xed prenex formula with i 
losed and j open vari-

ables. Suppose � > 0 satis�es �

i

(�) < �. Whether A holds in the �-graph G

for the verti
es X

1

; : : : ;X

j

is determined by A, the graph 


�

i

(�)

(fX

1

; : : : ;X

j

g)

and its verti
es X

1

; : : : ;X

j

and by the number �

i

(�). De
iding from these

inputs if a �xed formula A holds lies within the (i+ 1)

st

level �

P

i+1

or �

P

i+1

of the polynomial time hierar
hy if the rational �

i

(�) is given in unary.

Proof: The proof is by indu
tion on i. For i = 0 we have a proposi-

tional statement, this is 
learly determined by the subgraph of G spanned

by X

1

; : : : ;X

j

whi
h is exa
tly 


0

(fX

1

; : : : ;X

j

g). The de
ision is in 
onstant

time.

If i > 0 A has the form 9xB or 8xB. By the De Morgan law we 
an

write the negation of the formula of the se
ond type as a formula of the

�rst type, thus it is enough to 
onsider the 
ase A = 9xB. Here B is a

prenex formula of i � 1 
losed and j + 1 open variables. (We suppose x

appears in B.) By the indu
tive hypothesis, whether B holds in G for the

verti
es X

1

; : : : ;X

j

and an extra vertex X for the variable x is determined by

the �

i�1

(�) 
losure of these verti
es and the approximation �

i�1

(�). Noti
e

here that �

i�1

(�) = �

i�1

(�

i

(�)), thus the previous approximation of � is


omputable from the next in polynomial time (Lemma 4).

We 
an thus determine if A holds in G for X

1

; : : : ;X

j

by guessing the

graph 


�

i�1

(�)

(fX

1

; : : : ;X

j

;Xg) up to an isomorphism �xingX

1

; : : : ;X

j

, and

X, and 
he
king if i) with this 
losure B holds and ii) there exists a vertex X

in G for whi
h the 
losure is guessed 
orre
tly. Item i 
an be 
he
ked within

the i

th

level of the polynomial time hierar
hy by indu
tion, while item ii


an be 
he
ked within �

P

2

by Lemma 13. To �nish the proof it remains to

bound the size of the �

i�1

(�) 
losure to be guessed in the beginning. By

Lemma 11 it has at most (j + 1)=(� � �

i�1

(�)) < (j + 1)=(�

i

(�) � �

i�1

(�))
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verti
es. We assumed that the approximations of � are given in unary to

ensure that this is polynomial in the input size. 2

Theorem 15 For any �rst order statement A and any irrational � > 0

either A holds for all �-graphs or it holds from none. There exists an integer

i > 0 for A su
h that whether A holds for an �-graph 
an be de
ided within

the polynomial time hierar
hy PH from �

i

(�) given in unary.

Proof: First write A in prenex form of some i 
losed variables, then apply

Lemma 14. By the sparsity axiom the �

i

(�) 
losure in an �-graph of the

empty set is empty sin
e �

i

(�) < �. Thus by Lemma 14 whether A holds is

independent of the graph sin
e it 
an be 
omputed in the polynomial time

hierar
hy PH solely based on �

i

(�). 2

We remark here that the integer i found by the proof is the number of

variables in a prenex formula equivalent to A. We used prenex formulae for


onvenien
e only, a more 
areful analysis shows that i 
an be 
hosen to be

the quanti�er depth of A i.e., the length of the longest nested sequen
e of

quanti�ers in A.

Theorem 15 establishes the 0-1 law for the �rst order senten
es on the

random graphs G(n; n

��

) for any irrational � > 0. This has already been

proven in [1℄. Our result gives more in telling how the validity of the state-

ment depends on � as 
laimed in the next theorem.

Re
all that for a �rst order statement A on graphs we de�ned the fun
-

tion f

A

on the positive irrationals by Equation 1. We identi�ed four 
on-

ditions on this fun
tion in the Se
tion 1, among them the Dis
ontinuity

Condition and the Complexity Condition.

Theorem 16 For a �rst order statement A on graphs the fun
tion f

A

is a 0-

1 valued fun
tion satisfying the Dis
ontinuity Condition and the Complexity

Condition.

Proof: By Theorem 15 f

A

is 0-1 valued and one 
an �nd an integer

i > 0 su
h that f

A

(�) = f

A

(�

0

) if �

i

(�) = �

i

(�

0

) (here � and �

0

are positive

irrationals). As the value of �

i

(�

0

) is 
onstant in a small interval around any

positive � unless �

i

(�) = � (Lemma 4) the Dis
ontinuity Condition follows.

Re
all the de�nition f

�

as given in Equation 4. By Lemma 4/4 we have

�

i

(�

0

) = �

i

(�) for � > 0 and �

0

2 [�

i

(�); �). Thus by Lemma 15 the limit

f

�

A

(�) exists and it is 
omputable in PH from �

i

(�) given in unary. Thus

by Lemma 4/6 f

�

A

(�) 
an be 
omputed in the polynomial time hierar
hy

from the rational � > 0 given in unary. 2
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This last Theorem establishes the Main Theorem as the Very Sparse

Condition and the Very Dense Condition have already been established in

[1℄.

We remark here that even assuming that the four 
onditions in the Main

Theorem 
hara
terize the fun
tions f

A

a subtle issue with respe
t to the

spe
trum of �rst order senten
es remain unsolved. The spe
trum Spe
(A)

of a �rst order statement A is de�ned in [1℄ as the set of values a > 0 for

whi
h there is no value � > 0 and Æ 2 f0; 1g su
h that Pr[G(n; p) j= A℄ tends

to Æ as n goes to in�nity with n

�a��

< p < n

�a+�

. While all the points

of dis
ontinuity of the fun
tion f

A

are among the spe
trum Spe
(A) the


onverse is false. Consider the �rst order statement that G has a unique 4-


lique. The fun
tion f

A

is 
onstant zero asG(n; n

��

) has no 4-
liques for � >

2=3 and it has many 4-
liques for � < 2=3. The probability Pr[G(n; n

�2=3

) j=

A℄ tends to a positive limit less than one, thus 2=3 2 Spe
(A) but this is

not noti
eable from the fun
tion f

A

. The te
hniques of this paper give the

following stronger version of the Dis
ontinuity Condition:

The spe
trum Spe
(A) of a �rst order statement A of quanti�er depth i


onsists of rationals of length at most i.

We do not know what modi�
ation of the Complexity Condition one

needs to 
hara
terize the spe
trum of �rst order senten
es.
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