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Abstract

Shelah and Spencer [1] proved that the zero-one law holds for the
first order sentences on random graphs G(n,n %) whenever « is a
fixed positive irrational. This raises the question what zero-one valued
functions on the positive irrationals arise as the limit probability of
a first order sentence on these graphs. Here we prove two necessary
conditions on these functions, a number-theoretic and a complexity
condition. We hope to prove in a subsequent paper that these condi-
tions together with two simpler and previously proved conditions are
also sufficient and thus they constitute a characterization.

1 Introduction, results

In this paper we consider the limit probabilities of first order sentences on
random graphs. Recall that the variables of the first order statements on a
simple undirected graph G range over the vertices of G. The statements are
built from the atomic formulae z = y or z ~ y (the latter interpreted as “z
is adjacent to y”) using logical connectives A, V, = and the quantifiers 3z
and Vz.

Consider the random graph G(n,p) on n vertices with each edge present
independently with probability p. Let us set p = n™%, a a fixed positive
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irrational real. Let A be any first order sentence. Saharon Shelah and the
first author of the present paper showed [1] that lim,_, Pr[G(n,p) | A]
always exists and is equal to zero or one. Here we take a more evolutionary
view, fixing A and considering how this limit varies as « changes. Formally,
we let I denote the positive irrationals throughout and define f4 : I — {0,1}
by

fa(a) = lim Pr[G(n,n" %) = 4] (1)

n—o0

In this work we give a sequence of conditions that all functions f = f4 must
satisfy. We further believe that these conditions are sufficient—that for any
function f satisfying the conditions given below there is a first order sentence
A with f = f4. That is, we believe that we have a complete characterization
of the functions f4. We hope to return to this in a second part of this paper.

In [3] the almost sure theory T, for G(n,n~*) was given a combinatorial

axiomatization (cf. Lemma 10, and the axioms preceeding it). For a € I
we have f,(A) = 1 if and only if A € T,. We employ this axiomatization
with the ironic consequence that our current work, outside of motivating
comments and examples, is devoid of probabilistic calculation.
Examples. A = “G contains a triangle”. It is well known that n~! is the
threshold function for A so that f4(a) = 0 for a > 1 and fa(a) = 1 for
a < 1. Note the value at « = 1 is not considered. Let B be the property
w(G) = 3. As n=?/3 is the threshold function for containing a 4-clique fp(c)
is zero from oo to 1, then one from 1 to 2/3 and zero from 2/3 to 0. Observe
that with the parameterization p = n~% the evolution of the random graph
goes “backwards”. We may think of a starting at 2 (for & > 2 there are no
edges) and getting smaller. From o = 2 to o = 1 is the very sparse region
described below. As « gets smaller and smaller (but still positive) the graph
gets denser and denser. Close to zero we have the very dense region.

In this section we give the conditions on f4 without proof. Two regions
of the domain are particularly simple.

Very Sparse Condition: f4 is constant on each interval (1 + i%, 1+ %)
and on (2,00). Further there exists k = k(A) such that f4 is constant on
(L1+4)

Very Dense Condition: There exists a positive integer k& = k(A) such that
fa is constant on (0, 7).

Of course, the statement that f4 is constant on an interval really means
it is constant on the irrationals of the interval, as that is where it is defined.
We naturally say that fa is continuous at a positive c¢ if there is an € > 0
such that f4 is constant on (¢ — €,c¢ + €). This is defined for both rational



and irrational c¢. As it was proved in [1] f4 is continuous at each irrational
c. When f,4 is not continuous at ¢ we call ¢ a point of discontinuity. With
this notion we can rephrase the Very Sparse Condition as saying there are
only a finite number of points of discontinuity (“ups and downs”) in (1, 00)
and they are all of the form 1+ % with ¢ a positive integer. The Very Dense
Condition can be expressed by saying that zero is not an accumulation point
of the points of discontinuity.

Our core interest will be in the behavior of f4 on (1,1). Here the situa-
tion is considerably more complicated and more interesting. As in the Very
Sparse situation the points of discontinuity are all rational numbers. But
unlike the Very Sparse situation it is possible for f4 to have an infinite num-
ber of points of discontinuity. To describe the behavior we make a detour
into elementary number theory that seems intriguing in its own right.

For 0 < 8 < « real (though our interest is only in 0 < o < 1) we define

(o) =supfh <o FoL < ) &)

where the k£ > 0, [ > 0 must be integers. We clearly have 7(o, @) = a. As
we shall see (Lemma 2) for § < « the value 7(a, 3) is a rational from the
interval (3, ). We consider 7(c, 3) the next rational approximation of the
real « following 6. We define an approximation sequence for each o > 0 by
setting 79(«) = 0 and inductively defining

Tit1(a) = 7(a, 1i(a)). (3)

This defines an infinite sequence of increasing rational approximations to «
if v is irrational, but for rational o the sequence stabilizes in a finite number
of steps when « is reached (Lemma 3). We define the first index 7 for which
7i(a) = a as the length of the rational a.

Discontinuity Condition: There exists a positive integer k = k(A) such
that all points of discontinuity of f4 are rationals of length at most k.

We devote Section 2 to some observations related to the sequence 7;(«)
and our notion of length of rational numbers. We introduce there several
alternative notions of length and study if they are equivalent with respect
to the Discontinuity Condition.

Let us define LEN (k) to be those @ > 0 of length at most k. As we
shall see in Lemma 5, LEN (k) is closed and well-ordered under >. Thus for
a € LEN (k) we can define o~ as the maximal element of LEN (k) strictly
smaller than a. (Note that o~ depends on k. We use v («) for o~ in Section
2.)



We can now rephrase the Discontinuity Condition as follows: There
exists a positive integer k = k(A) such that for all « € LEN (k) the function
fa is constant on (o, ).

To prepare for our last condition for f: I — {0,1} and a > 0 we define

f7(@) = lim f(ar—e¢) (4)
e—0t
That is, if f~(«) exists, then it is the constant d € {0,1} so that f = d in
the interval (a — €, a) for € appropriately small.

From the Discontinuity Condition f, is well defined for all & > 0. When
a € LEN (k) (with the value k as in the Discontinuity Condition) the value
f4 (a) is the constant value of f4 on (o™, ). As these intervals partition
(0,1) the function f4 on (0, 1] is determined by the function f; on LEN (k).
Not all such functions are viable—for one thing there are only countably
many A and LEN (k) is infinite. Our final condition limits the appropriately
defined complexity of f;.

Consider f, as a function from the rational numbers o > 0 to {0,1}.
Regard each a = £ as the bit string 0"1°. (That is, write o in unary.) Then
f4 becomes a function from bit strings (of a specified form) to {0,1}.
Complexity Condition: When considered as above the function f) lies in
the polynomial time hierarchy PH.

To be self contained we recall the definition of the polynomial time hierar-
chy. The functions from strings to {0, 1} are called predicates and 0 is identi-
fied with the logical value “false”, while 1 is identified with “true” in this con-
text. The complexity class P is the set of predicates computable by a Turing
machine in polynomial time. The complexity class S (k a positive integer)
consists of the predicates A given by A(z) = 3x1Vxs ... Qe B(x, z1,. .., Tk),
where () is the existential quantifier 3 if k£ is odd, the universal quantifier V
otherwise, and B is a polynomial time predicate (B € P) satisfying that in
case B(z,z1,...,z) holds then |z;| < |z|® for i = 1,...,k with a constant ¢
depending only on B. The complexity class Hkp is defined analogously with
the role of the existential and universal quantifiers reversed. The polynomial
time hierarchy PH is the union of the complexity classes Ekp for k > 1.

The containments P C X' NI and ©P u Il C Ekpﬂ N HkPJrl are self
evident.

The class ©F is better known as NP. Note that the famous question
whether P = NP is not settled yet. If the answer is yes then all the above
classes collapse to P and we have PH = P. We remark that in the Com-
plexity Condition we deal with unary languages only, and the assumption



that all such functions in PH are contained in P is weaker than the P = NP
hypothesis.
The Main Theorem of our paper is the following:

Theorem 1 For every first order sentence A on graphs the function fa
satisfies the Very Sparse Condition, the Very Dense Condition, the Discon-
tinuity Condition and the Complexity Condition as described above.

Note that the validity of the first two conditions were established in [1],
thus the contribution of this paper is establishing the last two conditions as
stated in Theorem 16.

As mentioned at the onset, it is our belief that the converse of the Main
Theorem is true. That is, if f satisfies the four conditions above then there
is a first order sentence A with f = f4. This we hope to return to in a
sequel.

2 Rational approximations

In this section we prove elementary facts about the rational approximations
7(a, B) and 7;(«) and the length of rationals as defined in the preceding
section. While a few of these facts are used in the proof of the Main Theorem
most of these observations are redundant: our motivation for this section is
to better understand the statement of the Discontinuity Condition and to
study our notion of length that we consider interesting on its own right.

Recall that for & > 3 > 0 we defined 7(«, ) = sup{k/l < a | (k—1)/1 <
B}, where k > 0 and [ > 0 must be integers.

Lemma 2 7(o,) = a. For a > 3 > 0 the value 7(c, B) is a rational in
the interval (3, a.

Proof: The first statement is trivial. For the second statement choose
lo > 1/(a — (), and set kg > 0 to the unique value with ko/ly > @ and
(ko — 1)/lp < B. The value vy = ko/lp < « is in the set defining 7(a, 3).
For any value £/l in the set £/l < 41/l and thus it is enough to consider
rationals &/l with [ < 1/(vp — ) when computing the supremum 7(c, 3).
Hence it is the maximum of a finite set of rationals. O

Recall the recursive definition for 7;(a) for a > 0. We set 79(a) = 0 and
Tit1(a) = 7(a, 7 (). We defined the length of a rational @ > 0 to be the
first index i with 7(a) = a.



Lemma 3 The value 7;(ct) is monotone in both i and «. For « irrational
the sequence 1;() is a strictly increasing and tends to . The same sequence
stabilizes if « is rational, thus the length of a rational is finite.

Proof: By the definition 7(a, 3) is monotone in both a and  and we
have 7(«, ) > 8 from Lemma 2. The monotonicity of 7;(a) follows.

For the rational o = k/I it is easy to see 7;(a) > i/l for 0 < i < k. Hence
the sequence 7;(«) stabilizes and the length of £/I is at most k.

For irrational o Lemma 2 implies that 7;(«v) is a strictly increasing se-
quence of rationals. By the monotonicity for every rational 0 < 8 < a we
have 7;(a) > 7;(B8) = B for the length | = [(5). Thus the sequence 7;(«)
must tend to a. O

For a > 3 > 0 let us consider v(«, 5) = sup{k/l | k/l < a, (k—1)/1 < B}
where £ > 0 and I > 0 must be integers. For o > 0 we further define
recursively vp(a) = 0 and v;41(a) = v(a, vi(a)).

Lemma 4 For a > (8 > 0 we have

1. The value v(a, B) is a rational in the interval (3, ).

2. The sequence v;(c) is strictly increasing and tends to c.
We have vi(a) = 7;(cx) unless « is a rational of length at most i.
For any v € [vi(a),a) one has 1;(7) = vi(a).

ri(a) = 7i(7j(a)) for 0 <i < j.

SR S

For fized i > 0 both 1;(«t) and vi(a) are computable from o in polyno-
mial time (input and output are in unary).

Proof:  The first two statements is proved analogously to Lemmas 2 and
3.

For 3 notice that by definition v(«, 8) = 7(«, 3) unless the latter is equal
to a.

For 4 notice that for 0 < 8 < v < « the set defining 7(vy, 3) consist of the
elements of the set defining v(«, 5) that are at most . Thus if v > v(a, ()
we have 7(v, 8) = v(a, 3). The lemma follows from the recursive use of this
observation.

5 follows from 3 and 4.

For 6 notice that in case @ = a/b, § = ¢/d then the proof of Lemma
2 gives that the denominator of 7(a,3) is bounded by bd. Similarly the



denominator of v(a, 3) is bounded by bd + d. One can compute 7(a, 3) or
v(a, B) by considering all the denominators under these bounds one by one
(notice that the input is in unary). Computing 7;(c) and v;(«) is by the
recursive definition. O

Let us remark here that using the theory of the continued fraction ex-
pansion it is not hard to compute the set T, = {7(a,3) | 0 < 8 < a} from
the continued fraction expansion of o > 0. T, consists of the “best rational
approximations of a from below”, their continued fraction expansion are of
the form ao—i—alJr . a%fﬁ 5 where the expansion of « is ao—l—alJr . a2i+ et
and 0 < b < agg. The set Ty, also includes the integers 0 < b < ag. The set

Ny ={v(a, 8) | 0 < B < a} is equal to Ty, if « is irrational, otherwise if the

continued fraction expansion of « is ap + —— lk then one can obtain N,
from Ty, by removing « from the set and adding the rationals with continued
fraction expansion ag + —— @ + L b’ where b is arbitrary positive integer.

Using the observations above 7(a, B) and v(«, B) are computable in poly-
nomial time even if the rationals « and (3 are given in binary. Similarly 7;(«)
and v;(«) can be computed in polynomial time from « in binary. Here ¢ must
be fixed or given in unary. (Not even this restriction on i is needed when
computing 7;(«) as the length of « is bounded by |«a] plus the length of
the binary representation of a.) These observation strengthen the results in
Lemma 4/6. Why we still use unary representation is explained in the proof
of Lemma, 14.

Recall from Section 1 that LEN (k) stands for the set of non-negative
rationals of length at most k.

Lemma 5 The set LEN(k) is closed and well ordered under >. The set of
limit points of LEN (k + 1) is LEN (k). The largest value of LEN (k) less
than « is vg(a).

Proof:  The set LEN(k) consists of the values a > 0 with () = .
The last statement follows from Lemma 4/4.

LEN (k) is well ordered under > since it is bounded by k and it has a
largest element below any threshold.

Let a € LEN(k). For any integer j > 0 we can choose a unique i
with /7 > a > (i —1)/j. We have 74(i/j) > 1x(a) = « > (i — 1)/j thus
Tk+1(i/j) = i/j. Soi/j € LEN(k + 1). The limit of these values i/j is «
thus every point of LEN (k) is a limit of points in LEN (k + 1).

It remains to prove that all limit points of LEN (k + 1) are in LEN (k)
and thus LEN (k + 1) is closed. We do it by induction. LEN(0) = {0} has



no limit points. Suppose the distinct points a; € LEN(k + 1) tend to .
We have 74 () < oy = 711(;) < () +1/j; where j; is the denominator
of a; in reduced terms. As j; tends to infinity we have that 74 (c;) tend to
a. As 7(o;) € LEN (k) by Lemma 4/5 and LEN (k) is closed by induction
a € LEN(k). O
Examples The only number of length zero is 0. The length one numbers
are of the form 1/k with & > 0 integer. The structure of LEN (2) is already
nontrivial. It contains, for example all rationals a/b with b > a?. Or let us
look near % Clearly % € LEN(2) as it has length one, its approximation
sequence being 0, % For r > 3 (to avoid trivialities) the values ’"3—J;1, g:ﬁ all
have length two, their approximation sequences being 0, %, followed by the
number itself. These are the only elements of LEN(2) near 3. The largest
a € LEN(2) with a < % is % with approximation sequence 0, i, 6

As in Section 1 for @« € LEN(2) we write a~ for v3(«), the maxi-
mal element of LEN(2) strictly smaller than «. As examples, we have
(101/300)~ = 34/101, (34/101)~ = 103/306, (103/306)~ = 69/205, and
(1/3)~ =5/16.

In the rest of this section we compare our notion of length or rational
numbers with related notions. None of these statements are used in the
proof of the main Theorem. Our purpose here is to study the new concept

of length inherent in the behaviour of first order statements on random

graphs.
Let [(c) stand for the length of the rational a > 0.

Lemma 6 Let o > 0 and 7; = 1;(a) = a;/b; in smallest terms for i > 0.
For i <l(a) we have bi11 < b+ 1/(a — 73).

Proof:  First we claim that the sequence z; = b;a—a; is strictly decreasing
until it reaches 0 at ¢ = [(«). Indeed, if ;11 < b; then ;11 = bj1q(a—T7i11) <
bi(e« — ;) = z;. Equality holds only if 7,1 = 7;. In the opposite case
bi+1 > b; we have 7,41 > 7; and we consider ¢t = (a;+1 — a;)/(bj+1 — b;). We
have t > 7;41 thus ¢ cannot be in the set of which 7;,1 is defined to be the
maximum. As (aj1+1 —a; — 1)/(biy1 — b;) < 7; this must be because t > «a.
We thus have Tit1 —Tj = (bi—l—l — bi)Ol — (ai_H — ai) = (bi-i-l — bz)(a — t) <0
as claimed.

We have (ai_H — 1)/bi+1 S Tis hence Qi1 — bz’+17'i S 1. Adding Ti4+1 < x;
to this inequality one gets b;11(a — 7;) < x; + 1 and the statement of the
lemma follows. O



One may find it more natural to define an approximation sequence in
terms of best (one-sided) approximations with bounded denominator. We
will present alternative (almost) equivalent such definitions for length.

Let us define o; = a;/b; (in smallest terms) for a real « > 0 with oy = ||
and o;41 being the maximal rational not greater than a subject to a bound
on b;;1. For a rational a > 0 the length of this sequence is the first index 4
with a = a;.

Lemma 6 motivates the bj11 < b;+1/(a—a;) bound. Let I'(«) the length
of this sequence. One may find the b; 11 < 2/(a—«;) condition more natural,
let I”(c) be the length of this sequence. Finally consider the relaxed bound
bir1 < 2/(a — ;)? and let I"(a) be the length of this last approximation
sequence.

Our next lemma states that all the above notions of length are close
to each other, the same bounded sets of rationals have bounded length
using any of the four variants. This shows the robustness of this notion.
In particular the Discontinuity Condition can be equivalently phrased using
any one of our variants. We remark however, that none of the newly definied
approximation sequences have all the nice properties of the 7;(«) sequence,
e.g., that 7;(a) is monotone in «a.

Lemma 7 For a > 0 rational we have
1 () >1'(a) > 1"(a) > 1"(a)
2. (o) < la) + 2" («)

3. 1"(a) <2-5"(@

Proof:  The first inequality of 1 is clear from Lemma 6, the second and
third inequality follows from the fact a — o; < 1.

For 2 notice that 74| (o) = [a] is the starting value of the approximation
sequence defining [”(«) and thereafter two steps of the 7;(«) sequence gets
at least as high as one step of the sequence defining " («). To see this latter
claim let § < « and suppose a/b < « satisfies 0 < b < 2/(a — 3). As
(a—2)/b < pand (a—1)/b < o we have (a —1)/b < 7(a, §). From this and
a/b < « follows that a/b < 7(a, 7(a, 8)) as claimed.

Now we turn to 3. Let us fix «, let o; = a;/b; be the approximation
sequence defining I”(a) and let ¢, = « — ;. Recall that for i > 0 we
defined a;/b; to be the largest rational not greater than o with denominator
at most 2/¢;_;. Consider analogously the smallest rational ¢;/d; greater



than « with d; < 2/¢;_1. Note that b; is strictly increasing and we have
b; < 2/(a — aj—1) < bjp1. The sequence d; is also increasing, but not
necessarily strictly.

First we claim that b; < (4d;)*. The proof is by induction on 4, the base
case is trivial. Suppose the claim is true for ¢ and consider ¢;y1/d;+1. The
largest acceptable value for d; 11 is [2/€;], hence ¢;11/d;i1 —a < 1/|2/€] <
€;. Thus 1/(bidi+1) < Ci+1/di+1 — ai/bi < 262') and bi-i—l < 2/62' < 4bidi+1 <
4d; 11 (4d;)t < (4d;q1)™t! as claimed.

As a;/b; and ¢;/d; are two consecutive elements in the set of rationals
with denominator below a certain bound we have ¢;/d; — a;/b; = 1/(b;d;).
Thus ¢; < 1/(bld1) < Ei_g/(2di) for 1 > 2.

Now consider the approximation sequence o/ defining I"'(«). We claim
that o) < ag5i_o. Here we use oy = « for i > ["(«). The proof is an
induction on 0 < ¢ <" (7). The base case is trivial. Given o} < a; < «
it is enough to show that oj ; < asjy7. We have bjo > 2/e; if j+2 <
I"(c). From the bound in the preceeding paragraph we get that esjis <
€j/((2dj42)(2dj14) - .. (2d5516)) < €7/(2dj12)>* < 2€;/(4dj42)772 < 2€/bjin <
e?. The value o417 is defined to be the largest rational not exceeding o with
denominator at most 2/esj46 > 2/€F (or v if 55 +7 > 1"(c)). As afy, is
defined to be the largest rational not exceeding o with denominator at most
2/(a —al)? < 2/6? we have o | < asj47 as claimed.

Applying the last claim to ¢ = ["’(«) proves statement 3 of the lemma.
O

We remark that the gap between " (a) and "' («) is indeed exponential.
It is easy to see that I"(a—1/n) = O(logn), while "' (a—1/n) = ©(loglogn)
for any fixed rational o > 0.

Lemma 8 The length [(« + () is bounded in terms of [(c) and I((3).

Proof: = We prove the statement inductively on I(«) 4+ I(5). Let a = a/b
and § = ¢/d in smallest terms and suppose without loss of generality that
b < d. TIf 8 =0 then the statement is trivial so we can consider 3 =
Ty8)—1(B). Since 7(B,8") = B we have (c —1)/d < f'. By the inductive
hypothesis [ = [(a+ ') is bounded in terms of [(«) and [(8') = [(3) —1. We
claim that "' (a+0) is bounded by [+ 1. Indeed, the approximating sequence
defining I"'(a + 3) is above the 7;(a+ ) sequence, thus if I"'(a+ ) > [ then
the I*" element 7 of the former sequence satisfies v > 7(a+0) > 7(a+3') =
a + 3. Thus the next element of that sequence is « + 3 as its denominator
bd is below the threshold 2/(a + 3 — v)%2 > 2/(8 — )2 > 2d?. Applying
Lemma 7 finishes the inductive proof. O

10



Let I*(«) be the minimum number of reciprocals of positive integers that
add up to the rational o. Notice the analogies: the same numbers have [ and
[* length zero or one, the set {a | I*(a) < k} is closed and well ordered by
>, the limit points of this set are the rationals with [* length at most k£ — 1.
The analogous statements for [ are stated in Lemma 5. By Lemma 8 we also
know that the length [(«) is bounded in terms of [*(a)). However we believe
that the converse is not true as the numbers a/b with b > a? (all in LEN(2))
or the numbers 1/2 + a/b with b > 4a? (all in LEN(3)) have unbounded [*
length. This would imply that the [* analog of the Discontinuity Condition
would be stronger and thus—assuming the converse of the Main Theorem—
false. Notice that assuming the converse of the Main Theorem there exists
a first order statement A such that f4 is not continuous at any point of
LEN(3)N[1/2,1].

Let us finally compare our notion of length and the well known continued
fraction expansion. The remark after the proof of Lemma 4 establishes a
close link between the two. In particular it shows that the sum of the even
indexed terms of the continued fraction expansion of a rational « is an upper
bound on /(). Unfortunately this does not characterize the sets of bounded
length rationals. To see this, notice that for any sequence as,...,ar and
large enough a; the rational of continued fraction expansion all - a: i i
is in LEN(2) since it is of the form a/b with b > a?. Thus rationals of
length two can have arbitrarily long continued fraction expansion. On the
other hand the rationals 1 — 1/k have short continued fraction expansions
and unbounded lengths. On the positive side we remark that if a bounded
set of rationals have bounded length continued fraction expansions and each
even indexed term of those expansions are bounded by a polynomial of the
preceding terms then the set has bounded length.

3 The a-closure

We start with definitions. Most of our notations is borrowed from or inspired
by [1]. Let us recall that we consider simple undirected graphs only. The
size of a finite graph G is (v,e) where v is the number of vertices and e
is the number of edges in G. We call a pair (H,G) of a (possibly infinite)
graph G and its finite subgraph H a graph-eztension. We allow here H to
have no vertices (and thus no edges) as a special case. We call H the base.
We call the extension trivial if G = H, otherwise it is non-trivial. We call
H' an intermediate graph of this extension if it is a finite subgraph of G

11



containing H. We call the extension finite in case G is finite. The size of a
finite extension (H, G) is the difference between the sizes of G and H, i.e. it
is (v, e) where v is the number of vertices of G not in H and e is the number
of edges of G not in H.

Let a > 0 be fixed. We call a non-trivial finite extension (H,G) sparse
if its size (v, e) satisfies v > ae. We call the same extension dense if it is not
sparse. For technical reasons we consider the trivial extensions both sparse
and dense. We call a finite extension (H,G) rigid if the extension (H',G)
is dense for any intermediate graph H' of (H,G). We call an extension
(H,G) safe if the extension (H,H') is sparse for any intermediate graph
H' of (H,G). If « is not clear from the context we call these extensions
a-sparse, a-dense, a-rigid, or a-safe.

When considering subgraphs of a common underlying graph we interpret
union (respectively intersection) of graphs the standard way: taking the
union (intersection) of the vertex sets and the edge sets. We can analogously
define the difference H \ H' but we must use it with more care as this
operation does not yield a graph in most cases. The union of all intermediate
graphs H' of an extension (H,G) such that (H, H') is a-rigid is called the
a-closure c§ (H) of H. We suppress G in this notation if it is clear from the
context. We call the subgraph H of G «-closed in G if ¢S (H) = H.

The following lemma contains simple observations.

Lemma 9 Let H, H', H" be finite subgraphs of a graph G. Then the fol-
lowing holds.

a. If (H,H') is rigid then so is (HU H" , H' U H").

b. If (H,H') and (H',H") are rigid then so is (H, H").

c. If (H,H'") and (H,H") are rigid then so is (H, H U H").

d. If ¢§(H) is finite then it is a-closed in G and (H,co(H)) is rigid.
e. If H is a-closed in G then (H,QG) is safe.

Proof: a. Let H; be an intermediate graph in (HUH", H'UH") and let
H, = Hy N H'. Notice that the sizes of (Hy, H' U H") and (Hs, H') are the
same. The latter extension is dense as H» is an intermediate graph in the
rigid extension (H, H'). Thus the former extension is also dense as needed.

b. Let H; be an intermediate graph in (H, H"). Since the graph
H, = Hy; U H' is an intermediate graph in the rigid extension (H', H"),
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the extension (Hg, H") is dense. Using item a and that (H, H') is rigid we
get that so is (Hy, Hz), so in particular it is dense. The size of (Hy, H") is
the sum of the sizes of (Hy, Hy) and (Ho, H") thus it is also dense as needed.

c. The rigidity of (H"”, H' U H") follows from item a, and then the claim
follows from item b.

d. The second statement follows from item c. The first statement follows
from the second and item b.

e. Suppose that the extension (H, G) is not safe and let H' be a minimal
intermediate graph with (H, H') not sparse. Notice that H' # H. For
any intermediate graph H" of (H, H') either H' = H" or (H, H") is sparse
from the minimality of H'. In either case (H”, H') is dense thus the non-
trivial extension (H, H') is rigid. Hence H is not a-closed in G, giving the
contrapositive of our statement. O

Suppose a > 0 is irrational. The following statements were already
identified in [3] as axioms for the almost sure theory of G(n,n™%). Here we
only use that these first order statements hold almost surely in G(n,n~%).

Ap (sparsity axiom, H is a finite graph of size (v,e), v/e < a) G does not
contain a subgraph isomorphic to H.

BY .. (safe extension axiom, (H, H') is a finite safe extension, k > 0 is an
’ integer) Every isomorphism from H to a subgraph Hj of G can be
extended to an isomorphism of H' to a subgraph H; of G such that if

for the subgraph Hy of G the extension (Hy, Hs) is rigid of size (v, e)

with v < k then no edge of (H3\ Hy) is incident to a vertex of (H;\ Hy).

The sparsity axioms claim that there is no “dense” subgraph in G. The
safe extension axioms claim that any finite base in G has every possible
safe extension in GG, moreover these extensions can be chosen not to have
small rigid extensions except those of the base. In the scenario of the safe
extension axiom we clearly have that (Hy\ H;)U Hy forms a rigid extension
of the base Hy. Recall that we allow that the base H in the safe extension
(H,H') contains no vertices. This special case of the safe extension axiom
claims that a copy of any “sparse” graph appears in G that does not have a
small rigid extension.

Lemma 10 [3] The random graph G = G(n,n" %) almost surely satisfies
the sparsity and safe extension azioms.

When using first order logic to derive consequences of the above axioms
one gets the first order almost sure theory of the random graphs with edge
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probability n™%. Most of our lemmas are not first order though. One has to
be careful when applying these axioms because no finite graph satisfies all of
them. To make our reasoning simpler we deal with infinite graphs instead.

We call a graph G an a-graph if it simultaneously satisfies all the axioms
above. It is clear from compactness and the Godel completeness theorem
that a-graphs exist. Due to the safe extension axion for each k& > 0 each a-
graph contains an empty subgraph on k vertices, so each a-graph is infinite.
Note that by Lemma 10 any first order statement that holds for a-graphs
holds almost always for the random graph G(n,n~%).

The structure of a-graphs has been studied in [2] and it was shown,
for example, that for & > 1 there is a unique countable a-graph up to
isomorphism but for @ < 1 there are continuum non-isomorphic countable
a-graphs. This difference is not relevant for the purposes of this paper.

While it is possible that the a-closure of a finite subgraph of an a-graph
is infinite, the following lemma claims the contrary for S-closures if 8 < a.

Lemma 11 The (3-closure cg(H) of a finite subgraph H of size (v,e) of an
a-graph G is finite if § < a. It contains at most v/(1 — B/a) vertices.

Proof: Let H' be an intermediate graph of size (v',€’) in (H, G) such that
(H,H') is B-rigid. The size of this extension is (v —v,e’ —e) thus v/ —v <
B(e' —e). But the sparsity axiom gives v'/e/ > «. The two inequalities
together imply o' < v/(1 — 8/a). Using Lemma 9/c the statement of our
lemma follows. O

We remark that the statements of Lemma 11 is not first order. For
0 < B < a < 1 the B-closure of the empty set in the random graph G(n,n™%)
is almost always the entire graph, so any statement bounding the size of this
closure fails almost always.

We need the following equivalent form of the safe extension axiom for
a-graphs.

Lemma 12 Let o > 3 > 0 and let G be an a-graph. Let (H,H') be an
«a-safe extension and let f be an isomorphism from H to a subgraph Hy of

G. Then f can be extended to an isomorphism from H' to a subgraph Hy of
G. If Hy is B-closed in G then Hy can also be chosen (3-closed.

Proof: = We use the safe-extension axiom for (H,H') and k = [v/(1 —

B/a)| where v is the number of vertices in H'. We get an extension of f
mapping H' to a subgraph H; of G as claimed. By Lemma 11 any (-rigid
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extension Hy of Hy in G must contain at most k vertices. As (Hg, Hy) is
also a-rigid no edge of (Hs \ Hy) is incident to vertex of (Hy \ Hp). This
implies that the sizes of the extensions (Hy, Hy) and (Hy, (Hs \ H1) U Hy)
are equal, thus the latter extension is also B-dense. If Hj is (3-closed the
extensions must be trivial (Lemma 9/e), hence H; is S-closed. O

4 The proof

Recall the approximation 7(a, ) for 0 < 8 < « reals as defined by Equation
2. Recall that by Lemma 2 for 8 < a the value 7(«, ) is a rational in the
interval (3, a.

For notational convenience, if a graph has no edges we identify it with
its set of vertices.

Lemma 13 Let > 0 be a rational, let o > 3, and let v = 7(«, 8). Let G
be an a-graph, let (H, H') be a finite extension, let f be an isomorphism from
H to a subgraph Hy of G, and let z be a designated vertex in H'. Whether
there exists an isomorphism f' from H' to Cg(Ho U {f'(z)}) extending f
is determined by 3, v, (H,H'), z, c,?(HO), and f. If v < « then whether
such an isomorphism exists can be decided in the second level ¥5 of the
polynomial time hierarchy from the above inputs.

Proof:  We prove the lemma by identifying necessary and sufficient con-
ditions for the existence of the map f’. We claim that f’ exists if and only
if the following two conditions are met:

1. The extension (H U {z}, H') is (-rigid and

2. c,Iy{ '(H) has an isomorphism to a 3-closed subgraph of ¢, (Hp) extending

1.

Let us start with the necessity of the conditions. Condition 1 is clearly
necessary by Lemma 9/d as (HU{z}, H') is isomorphic to (HoU{ f'(z)}, ¢ (HoU
{f'(=)}) by f'. Notice that the restriction of f’ to c,(H) satisfies condition
2. Indeed, as (H,c,(H)) is y-rigid, so is (Hy, Hy) for H; = f'(c,(H)), thus
H, C ¢y(Hp). If for an intermediate graph Hy of (Hi,G) the extension
(Hi, H») is (-rigid, then, as H; is contained in the image cg(Ho U {f'(z)})
of the isomorphism f’ so is Hy. In this case the inverse image H” = f'~'(H,)
in H' satisfies that (c,(H), H") is -rigid hence H" = ¢, (H), since ¢, (H) is
v-closed and v > 8. Thus Hy = H; proving that H; is #-closed.
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For the sufficiency of the two conditions we consider the extension (¢, (H), H')

of size (v,e). By Lemma 9/d and 9/e it is y-safe. We claim the stronger
property, that it is a-safe. First we prove that it is a-sparse. We may
assume e > 0, so we have v/e > 7 since the extension is 7y-sparse. No-
tice that the extension (cy(H) U {z}, H') is B-dense and its size is either
(v —1,e) or (v,e), hence (v — 1)/e < (. These inequalities together with
the definition of v = 7(«, ) implies v/e > « as claimed. Notice also that
lJe=v/e—(v—1)/e >a—p.

To prove that (cy(H), H') is a-safe consider an intermediate graph H"”

and let (v', ') be the size of (cy(H), H"). We need to prove that this latter
extension is a-sparse, so we may assume that ¢/ > 0. From the ~y-safe
property of (¢, (H),H') we have v'/e’ > ~. In case (v' —1)/e’ < 3 we can
again use the definition of v = 7(«, 3) to derive that v'/e’ > «. In the
opposite case we have v'/e/ = (v/ — 1)/’ +1/¢/ > B+ 1/e > a. Thus
(cy(H),H") is a-sparse in both cases as claimed.

Let f” be the isomorphism claimed in condition 2 and let H; be its image

in ¢y(Hp). By assumption H; is B-closed in ¢, (Hy), so by Lemma 9/d it is
B-closed in G. We apply Lemma 12 for the a-safe extension (cy(H), H') and
the isomorphism f”. By the lemma f” can be extended to an isomorphism f’
of H' to a [-closed subgraph Hs of G. Here (HyU{f'(z)}, Hz) is isomorphic
to (H U{z}, H'), hence §-rigid by condition 1. Thus Hy C cg(Ho U{f'(z)}.
Since Hs is (-closed we have equality in the last formula proving the suffi-
ciency of our two conditions.

Note that the two conditions are formulated in terms of our inputs only.

To prove the claim of the lemma about computability notice that by Lemma
11 ¢y(Hy) is finite. Condition 1 can be checked in I} as we only have
to check that (H", H') is B-dense for all intermediate graphs H” of (H U
{z}, H"). To check condition 2 we have to guess ¢, (H) and the isomorphism
to a subgraph of ¢,(Hp) and check if its image is 3-closed. We also have
to verify that c,(H) is guessed correctly by checking if it is y-closed and
extends H in a y-rigid way. All this can be done in ¥¥. O

Although immaterial in the present proof it would be nice to strengthen

the above lemma, by replacing X1 by NP. Checking the second condition
is closely related to the subgraph isomorphism problem indicating perhaps
that the our problem is also N P-hard.

Let us recall that the variables of first order statements on a graph range

over the vertices of the graph. First order formulae are built from the atomic
formulae of the form z = y or z ~ y with the use of logical connectives A,
V and — and quantifiers 3z and Vz. The (open) formulae without quanti-

16



fiers are called propositional formulae. A prenex formula is a propositional
formula prefixed with a sequence of quantifiers for distinct variables. The
variables in the quantifiers are the closed variables, the remaining variables
in the formula are the open variables. A formula with no open variables
is called a closed formula or a statement. Recall that every statement is
equivalent with a prenex statement.

Recall the approximating sequence 7;(«) as defined in the first section
by 79(a) = 0 and by the recursion given in Equation 3. By the unary
representation of the rational 7 > 0 we mean a bit string 01! with &/l = r.

Lemma 14 Let A be a fized prenex formula with © closed and j open vari-
ables. Suppose o > 0 satisfies 7;(a) < . Whether A holds in the a-graph G
for the vertices X1, ..., X; is determined by A, the graph c,,o)({X1,..., X;})
and its vertices Xy,...,X; and by the number 7;(o). Deciding from these
inputs if a fizved formula A holds lies within the (i + 1)3t level ©F 1 or IF
of the polynomial time hierarchy if the rational T;() is given in unary.

Proof: The proof is by induction on 7. For ¢ = 0 we have a proposi-
tional statement, this is clearly determined by the subgraph of G spanned
by X1i,..., X; which is exactly ¢o({X1,..., X;}). The decision is in constant
time.

If i >0 A has the form dzB or VxB. By the De Morgan law we can
write the negation of the formula of the second type as a formula of the
first type, thus it is enough to consider the case A = dxB. Here B is a
prenex formula of i — 1 closed and j + 1 open variables. (We suppose z
appears in B.) By the inductive hypothesis, whether B holds in G for the
vertices X1,..., X; and an extra vertex X for the variable z is determined by
the 7;_1 () closure of these vertices and the approximation 7;,_1(«). Notice
here that 7,_1(a) = 7;_1(7()), thus the previous approximation of « is
computable from the next in polynomial time (Lemma 4).

We can thus determine if A holds in G for Xy,...,X; by guessing the
graph c;,_ (o)({X1, ..., X;, X}) up to an isomorphism fixing X1, ..., Xj;, and
X, and checking if i) with this closure B holds and ii) there exists a vertex X
in G for which the closure is guessed correctly. Item i can be checked within
the ith level of the polynomial time hierarchy by induction, while item ii
can be checked within = by Lemma 13. To finish the proof it remains to
bound the size of the 7;,_1(«) closure to be guessed in the beginning. By
Lemma 11 it has at most (5 +1)/(a — 1i—1(a)) < ( + 1) /(73(0) — 1i—1())
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vertices. We assumed that the approximations of a are given in unary to
ensure that this is polynomial in the input size. O

Theorem 15 For any first order statement A and any irrational o > 0
either A holds for all a-graphs or it holds from none. There exists an integer
1> 0 for A such that whether A holds for an a-graph can be decided within
the polynomial time hierarchy PH from 1;(ct) given in unary.

Proof:  First write A in prenex form of some 7 closed variables, then apply
Lemma 14. By the sparsity axiom the 7;(«) closure in an a-graph of the
empty set is empty since 7;(«) < a. Thus by Lemma 14 whether A holds is
independent of the graph since it can be computed in the polynomial time
hierarchy PH solely based on 7;(«). O

We remark here that the integer ¢ found by the proof is the number of
variables in a prenex formula equivalent to A. We used prenex formulae for
convenience only, a more careful analysis shows that ¢ can be chosen to be
the quantifier depth of A i.e., the length of the longest nested sequence of
quantifiers in A.

Theorem 15 establishes the 0-1 law for the first order sentences on the
random graphs G(n,n~%) for any irrational @ > 0. This has already been
proven in [1]. Our result gives more in telling how the validity of the state-
ment depends on « as claimed in the next theorem.

Recall that for a first order statement A on graphs we defined the func-
tion f4 on the positive irrationals by Equation 1. We identified four con-
ditions on this function in the Section 1, among them the Discontinuity
Condition and the Complexity Condition.

Theorem 16 For a first order statement A on graphs the function f4 is a 0-
1 valued function satisfying the Discontinuity Condition and the Complezity
Condition.

Proof: By Theorem 15 f4 is 0-1 valued and one can find an integer
i > 0 such that fa(a) = fa(c/) if 7i(«) = 7i() (here @ and ' are positive
irrationals). As the value of 7;(a/) is constant in a small interval around any
positive o unless 7;(a) = a (Lemma 4) the Discontinuity Condition follows.

Recall the definition f~ as given in Equation 4. By Lemma 4/4 we have
7;(a) = vi(a) for @« > 0 and &' € [v;(«), ). Thus by Lemma 15 the limit
[ 4 (@) exists and it is computable in PH from v;(«) given in unary. Thus
by Lemma 4/6 f (o) can be computed in the polynomial time hierarchy
from the rational o > 0 given in unary. O

18



This last Theorem establishes the Main Theorem as the Very Sparse
Condition and the Very Dense Condition have already been established in
[1].

We remark here that even assuming that the four conditions in the Main
Theorem characterize the functions f4 a subtle issue with respect to the
spectrum of first order sentences remain unsolved. The spectrum Spec(A)
of a first order statement A is defined in [1] as the set of values a > 0 for
which there is no value € > 0 and ¢ € {0, 1} such that Pr[G(n,p) = A] tends
to 0 as n goes to infinity with n=% ¢ < p < n~ 2", While all the points
of discontinuity of the function f4 are among the spectrum Spec(A) the
converse is false. Consider the first order statement that G has a unique 4-
clique. The function f4 is constant zero as G(n,n~) has no 4-cliques for a >
2/3 and it has many 4-cliques for o < 2/3. The probability Pr[G/(n,n %/?) =
A] tends to a positive limit less than one, thus 2/3 € Spec(A) but this is
not noticeable from the function f4. The techniques of this paper give the
following stronger version of the Discontinuity Condition:

The spectrum Spec(A) of a first order statement A of quantifier depth 4
consists of rationals of length at most s.

We do not know what modification of the Complexity Condition one
needs to characterize the spectrum of first order sentences.
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