
Probabilistially Chekable Proofs with Zero Knowledge

Joe Kilian

�

Erez Petrank

y

G�abor Tardos

z

Abstrat

We onstrut PCPs with strong zero-knowledge prop-

erties. First, we onstrut polynomially bounded (in

size) PCP's for NP whih an be heked using poly-

logarithmi queries, with polynomially low error, yet

are statistial zero-knowledge against an adversary that

makes U arbitrary queries, where U an be set to any

polynomial. Seond, we onstrut PCPs for NEXPTIME

that an be heked using polynomially many queries,

yet are statistially zero-knowledge against any polyno-

mially bounded adversary. These PCPs are exponential

in size and have exponentially low error. Previously, it

was only known how to onstrut zero-knowledge PCPs

with a onstant error probability.

In the ourse of onstruting these PCP's we abstrat

a tool we all loking systems. We provide the de�nition

and also a loking system with very eÆient parameters.

This mehanism may be useful in other settings as well.

1 Introdution

1.1 Robust PCPs

There are quite natural parallels and expliit transfor-

mations between multi-prover interative proof systems

(MIPs) and probabilistially hekable proofs (PCPs).

However, zero-knowledge does not seem to be onserved

�

NEC Researh Institute. E-mail: joe�researh.nj.ne.om

y

DIMACS Center, P.O.Box 1179, Pisataway, NJ 08855.

Email: erez�dimas.rutgers.edu. Part of this work was done while

the author was at Toronto University and while the author was

visiting the NEC Researh Institute.

z

Mathematial Institute of the Hungarian Aademy of Sienes,

Pf. 127, Budapest, H-1364 Hungary and Institute for Advaned

Study, Prineton, NJ 08540. Supported by NSF grants CCR-95-

03254 and DMS-9304580, a grant from Fuji Bank and the grant

OTKA-F014919. E-mail: tardos�s.elte.hu.

0

under these transformations, and indeed the very de�-

nition of zero-knowledge for PCPs requires some are.

In the MIP framework, a prover an for example simply

refuse to answer a question that would not have been

asked by the honest veri�er. However, PCPs are for-

mally viewed as sequenes of bits; there is no entity in

plae to judge a question's legitimay. Consequently, the

theorem that everything provable in MIP is provable in

zero-knowledge [2, 7℄ does not translate over automati-

ally.

Dwork et al. [3℄ introdue the notion of zero-

knowledge or \robust" PCP's. A robust PCP (
; V )

is a distribution 
 on PCPs along with a probabilisti

polynomial-time veri�er V . The prover samples a PCP

from the given distribution, writes this sample down,

and the veri�er heks the sample as it would any PCP.

(
; V ) has two new parameters, L and U , with L � U : V

an hek 
 by querying L bits, but one an simulate in

probabilisti polynomial time the view of any adversary

^

V who adaptively reads up to U arbitrary bits. As with

other models, the quality of the simulation determines

the type of zero-knowledge obtained.

For L � 3 and U essentially arbitrary, Dwork at al.

exhibit a robust PCP (
; V ) for NP. However, the error

obtained by these protools (the probability that V will

aept a false statement) is as big as 1��(1=U

3

). Thus,

the onstrution of [3℄ left open the following question:

Question: Does there exist a robust PCP with error

less than

1

3

?

Indeed, the best previous PCPs had error 1 �  for

some small onstant . Note that the standard error-

redution tehniques do not work here, sine they require

the veri�er to query more bits than before, yet leave U

unhanged. As a result, L beomes greater than U .

Robust PCPs and the hardness of approximation

Our motivation for this investigation is primarily philo-

sophial. However, it is worth noting that onstrutions

for robust PCPs, or variants thereof have been used to

prove results on the hardness of approximation. Kilian

and Naor [8℄ diretly use robust PCPs to establish the

strongest known hardness of approximation results for

ertain problems in statistial inferene. Feige and Kil-

ian [4℄ use PCPs inspired by robust PCPs, though with



slightly weaker properties, to show the strongest known

results for approximating the hromati number.

1.2 The results in this paper

We exhibit new onstrutions for robust PCPs. The

properties of our �rst onstrution is embodied in The-

orem 1, below. In a nutshell, Theorem 1 says that there

exists robust PCPs in whih the number of queries U

needed to break the statistial zero-knowledge property

is nearly exponential in the number of queries L needed

to hek the proof. For a reasonable setting of the pa-

rameters in Theorem 1 and for proofs of NP, this would

mean having proofs of size polynomial in the length of

the input n, having L = poly logn (i.e., L is poly loga-

rithmi in the length of the input) and U = n



. Using

k repetitions of the basi protool, we an ahieve 2

�k

error with L = kpoly logn and U = n



.

Theorem 1 Let PCP (�; V ) for a language L have size

at most n and require the veri�er to use at most logn

oin tosses, heks at most a onstant number of bits in

� and ahieves a onstant soundness error probability

(smaller than 1). Let U = n

O(1)

. Then there exists a

robust PCP (
; V

0

) for L with the following properties:

� Size of proof: For any � 2 
, j�j = O(n

O(1)

).

� Cost of veri�ation: The honest veri�er V

0

reads

L = O(log

O(1)

n) bits of the proof, and tosses

O(log

O(1)

n) oins.

� Completeness: If the original proof � has perfet

ompleteness with respet to V , then so does any

�

0

2 
 with respet to V

0

.

� Soundness: For any �

0

(not neessarily in 
), the

probability that the veri�er aepts an x 62 L is at

most 1=n

O(1)

. (Inreasing the onstant in the power

of n is linearly related to inreasing the onstant in

the ost of veri�ation.

� Zero-Knowledge: 
 ahieves statistial zero-

knowledge against any veri�er V

0

that is allowed

to read at most U bits of �

0

(uniformly seleted in


). More preisely, there is a probabilisti polyno-

mial time simulator S (with an orale for V

0

) that

simulates V

0

's view of �

0

. This simulation di�ers

(in the `

1

-norm) from V

0

's atual view by less than

1=n



for any , as n grows suÆiently large.

Theorem 1 an be generalized to handle any number

of bits read by the original PCP, and any number of

random oin tosses by the original veri�er. We hose

to keep the omplexity of the statement reasonable and

still to over the PCP onstruted by the PCP theorem

[1℄.

Our seond onstrution allows the PCPs to be expo-

nentially large, but ahieves superpolynomial robustness

(with an exponentially small error). Without going into

all of the parameters, we obtain the following result.

Theorem 2 For any language L 2 NEXPTIME, there

exists a robust PCP (
; V ) for L with the following prop-

erties.

� Cost of veri�ation: On input x, V heks 


using polynomially many (in jxj) queries, omputa-

tions and oin tosses.

� Completeness: (
; V ) has perfet ompleteness.

� Soundness: For any �

0

(not neessarily in 
), the

probability that the veri�er aepts an x 62 L is at

most 2

�jxj

.

� Zero-Knowledge: 
 ahieves statistial zero-

knowledge against any polynomially bounded veri-

�er.

1.3 Loking systems

In the ourse of onstruting the PCP for NP, we use a

loking system with very eÆient parameters. A loking

system is a pair of eÆent probabilisti mahines: The

loker and the heker. The loker is given a string S to

\hide" and produes a string L (the lok) and a key K

to the lok. The lok has the following properties: It is

\hard" to �nd the string S hidden in the lok. Given the

key K, it is \easy" to reonstrut the seret S and hek

that this is indeed the hidden string in the lok. Last,

only one string an be hidden in a lok. A legitimate

veri�er will rejet, with high probability, any other string

no matter what key he might possess. Hardness and

easiness in this settings refer to the number of bits in

L that have to be read. For the exat de�nition and

onstrution see Setion 3.

1.4 Guide to the rest of the paper.

In Setion 2 we give the basi building bloks of our

onstrutions. In Setion 3 we provide the de�nition

of loking systems and onstrut a loking system with

eÆient parameters. In Setion 4 we use the eÆient

loking system to prove Theorems 1 and 2.

2 PCPs robust against random queries

Suppose one has a PCP (P

0

; V

0

) for a language L suh

that

� jP

0

j = n,



� V

0

ips O(log n) oins and queries O(1) bits of P

0

,

� (P

0

; V

0

) has perfet ompleteness, and

� V

0

has error bounded from 1 by a onstant.

(Note that n here refers to the size of the proof and

may be exponential in the size of the input.) Then the

tehniques of [3℄ allow us to transform (P

0

; V

0

) into a

new PCP (
; V ) with the following properties, where

k > 0 is an integral parameter:

� Any proof assigned nonzero probability by 
 has

size O(k

3

n

O(1)

),

� V ips O(log n) oins and queries 3 bits of the proof.

� The proof has perfet ompleteness and soundness

error at most 1� 1=O(k

3

).

� 
 is robust against k arbitrary queries. That is,

the view so obtained an be perfetly simulated in

probabilisti polynomial time.

Note that the soundness of the protool degrades super-

linearly with respet to its robustness (k). Thus, if one

tries to redue the error to less than

1

2

by making mul-

tiple queries to the PCP then the number of queries so

made would exeed the proof's robustness.

As a useful speial ase, we onsider the veri�er that

simply runs the original veri�er m times, with inde-

pendent oin toss sequenes, and makes all of the 3m

queries spei�ed by these runs. We ahieve statistial

zero-knowledge against suh veri�ers as follows. Given

a DFKNS-type randomized PCP P , onsider the ran-

domized PCP P

0

= P

`

generated by onatenating `

PCPs, eah independently hosen aording to P . The

veri�er V

0

�rst hooses i uniformly from f1; : : : ; `g and

then runs the original veri�er V on the ith opy of the

proof.

Suppose that P is robust against 3k queries. Then as

long as a veri�er direts at most k 3-bit queries to any

subproof of P

0

, the view obtained will be easily simulat-

able. If one makes m independent random runs from V

0

then the probability that any one subproof is seleted by

V

0

more than k times is bounded above by

`

�

m

k + 1

�

=`

k+1

<

m

k+1

l

k

:

If we set ` = m

2

, the above expression is at most

1=m

k�1

. Thus, when k grows as a super-onstant

funtion of n, (P

0

; V

0

) is statistial (not perfet) zero-

knowledge against a veri�er that makes m independent

runs of V

0

. The rux of our main onstrutions is to

ode P

0

in suh a way that even an arbitrary veri�er an

only ask essentially random questions.

Lemma 2.1 Let k and m be arbitrary parameters and

let (P

0

; V

0

) be as above. We an transform (P

0

; V

0

) into

a new PCP (
; V ) suh that

1. Any proof assigned nonzero probability by 
 has size

O((kmn)

O(1)

),

2. V looks at 3 bits of the proof.

3. V tosses at most O(log n+ log k + logm) oins

4. The proof has perfet ompleteness and the new ver-

i�er has error at most 1� 1=O(k

3

).

5. If some veri�er V

0

makes 3m random queries ho-

sen by m independent runs of V , then with probabil-

ity 1�1=m

k

V

0

's view will be simulatable in polyno-

mial time. More preisely, whether V

0

's view is sim-

ulatable is a funtion of whih loation V

0

queries.

V

0

will query a \hard" set, in whih the simulator

annot perfetly simulate the results of the query,

with probability at most m

�k

.

By making m polynomial in n and k superonstant,

we obtain polynomial size PCPs that are statistially

zero-knowledge against a large (polynomial) number of

random queries. My making m exponential in n we ob-

tain exponential-sized PCP's that are statistially zero-

knowledge against any polynomial number of queries.

3 Loking systems

In this setion we de�ne loking systems and on-

strut a lok whih we later use in our PCP system for

NP. Loosely speaking, a lok is a string whih holds a

seret. On one hand, we would like the non-legitimate

user to �nd it \hard" to disover the seret loked in the

string. A seond demand is that given the key to the

lok, a veri�er an \easily" reonstrut the seret and

verify that this is the seret hidden in the lok. The

terms \easy" and \hard" relate to the number of bits

that have to be read from the lok in order to perform

the task. Last, we require that the lok will be a ommit-

ment on one seret. Namely, there is only one string that

the veri�er aept with high probability (when given the

right key to the lok). For any other string and for any

possible key, the veri�er will rejet with high probability.

For simpliity we require that the key determines the se-

ret in deterministi polynomial time without the help

of a lok. Also, for simpliity we do not allow several

keys determining the same seret to �t a lok.

In what follows, we use n as a seurity parameter

given to the loking system. In the appliation, n will be

the size of the PCP proof, and this role of n mathes the

de�nitions in the rest of the paper. The formal de�nition

follows:



De�nition 3.1 (A loking system): Let S = f0; 1g

s

be the set of serets, L = f0; 1g

l

be the set of loks and

K = f0; 1g

k

the set of keys. Here the parameters s, l,

k (and thus the sets S, L, K) depend on the seurity

parameter n. A loking system is a pair of probabilisti

polynomial time proedures, the loker and the heker.

The loker takes a seret S 2 S as input and produes

a lok L 2 L and a key K 2 K. The heker takes

a key K 2 K, reads some bits of a lok L 2 L and

either aepts, or rejets. We say that the loker and the

heker form a loking system with error �(n), robustness

U(n), and hekability C(n) if the following onditions

hold.

1. perfet ompleteness: There is deterministi poly-

nomial time proedure to �nd the seret S from the

key K produed by the loker on input S. If L and

K are produed by the loker on input S, then the

heker on input L;K reads at most C(n) bits from

L and aepts with probability 1.

2. Soundness (or a ommitment property): For every

lok L 2 L there is at most a single �tting key K.

For all other keys K

0

6= K the heker rejets with

probability at least 1� �(n).

3. Serey (indistinguishability): For any seret S 2 S,

let L

S

be the distribution of the loks output by the

loker on S, then for any S; S

0

2 S the two distribu-

tions L

S

and L

S

0

are statistially indistinguishable

for a mahine that an read only U(n) bits from a

sample. Namely, for all probabilisti (omputation-

ally unbounded) Turing mahines A, for all on-

stants  and suÆiently large n, and for all pairs

S; S

0

2 S,

jProb

L2L

S

[A(L) = 1℄�Prob

L2L

S

0

[A(L) = 1℄j <

1

n



4. Zero knowledge (simulatability): There exists a prob-

abilisti polynomial time proedure that produes an-

swers to at most U(n) bit-queries to a (non-existing)

lok and then as it reeives any seret S it produes

a valid lok, key pair for this seret with the lok

also �tting the previous answers. Far all probabilis-

ti (omputationally unbounded) Turing mahines

A asking the bit queries and for all serets S this

proedure yields a distribution on loks whih sta-

tistially indistinguishable from the distribution of

the loks produed by the loker on input S.

Note that simulability implies indistinguishability, we

listed the latter property separatly to emphasize the sim-

ilarity to bit ommitments.

Theorem 3 Let t = O(log n) and let q be an unbounded

(non-onstant) funtion suh that 2

t

> 5q. There ex-

ists a loking system in whih the loker loks serets

of length qt, outputing loks of length q2

2t+1

and keys

of length 2qt. The loking system has error � = 15=16

robustness U(n) =

p

2

t

=n and hekability 2.

Remark 3.2 Note that if we let the veri�er aess the

lok ` times, we get a system with the same robustness,

hekability 2` and error (15=16)

`

.

In the rest of the setion we prove Theorem 3.

3.1 A basi onstrution

Inuitively, the main idea of our onstrution is to use

diretions in the plane. Fix a diretion of a �nite plane,

and hoose a binary funtion whih is a onstant along

eah line in this diretion. The diretion will be the

seret and the key, and the lok will be the truth-table of

the funtion. In the next paragraph, we implement this

idea in details, but before doing that note that this has

the avor of a loking system. In order to disover the

hidden diretion without having the key, one must read

\lots" of points from the funtion, whereas given the

diretion, one may \easily" hek that this diretion is

speial for this funtion. Let us proeed and implement

this idea while stressing that as is, this idea is not enough

to ahieve a loking system.

Consider a polynomial size �nite �eld F whih will

also funtion as the set of all possible serets S. To

hide an element S 2 F hoose a random funtion r :

F ! f0; 1g and output the truth table of the funtion

f : F

2

! f0; 1g de�ned by f(a; b) = r(aS � b). Given

S, a spothek is verifying f(a; b) = f(a + t; b+ St) for

a random triplet (a; b; t) 2 F

3

. Completeness-wise it is

easy to hek that the spotheks must hold for any valid

lok for S. In terms of soundness, a deeiving lok has

a good hane for the spotheks on f to hold for two

di�erent values S and S

0

only if f is almost a onstant

(we prove this later in the speial ase we need). So in

order to verify that a loker L hides the seret S, the

heker has to make a onstant number of spotheks,

and to rejet if one of them fails or if the values he gets do

not seem to be uniformly distributed. After doing this,

the veri�er an be onvined that the lok is ommitted

indeed to S with high (yet onstant) error probability

1� �.

In terms of indistinguishibility, this system is not se-

ure even against a heker that reads two points out of

the lok. With probability 1=jF j the heker looks at the

right diretion and gets positive indiation to that. How-

ever, this onstrution seems to be a �rst step in the right

diretion sine with \quite good" probability the heker

will have to read \many" points before enountering two

points of the predetermined diretion S. And before en-

ountering two points on diretion S, the heker only

sees uniformly hosen random bits (the funtion r). We

shall improve the seurity parameters later.



3.2 Drawbaks of the basi onstrutions

Let us list the drawbaks of this primitive lok and

then proeed with solving them.

1. Indisinguishibility not ahieved: The role of

the key and the seret are both played by the value

S. Thus, if one suspets the value of the seret it

an be easily heked. We want that even if one

knows that the seret is one of two possible values,

limited aess to the valid lok should not help him

deide whih value is orret. Furthemore, even if

one does not know the value of S he might still guess

and hek. For a key of logarithmi length (whih is

a requirement if the truth table is to be polynomial

in size), the probability of suess is not negligible.

To summarize, indistinguishibility is not ahieved.

2. Completeness is not perfet: Finally, one

prefers perfet ompleteness, i.e. no hane of reje-

tion for a valid lok. Here an unluky heker an

rejet after seeing only zeros of a valid lok (an un-

luky legitimate loker an even produe a onstant

f that is always rejeted).

Before presenting our loking system we give an intuitive

aount of how we solve both of the above problems.

We solve the �rst problem by using many opies of

the basi onstrution to hide digits of a Reed-Solomon

odeword. We make sure that breaking a few of them

does not ompromise the seret (in the strong sense of

indistinguishibility and simulatability) and if one reads

only U(n) bits of the seret, then one an break many

of them with negligible probability only.

To solve the seond problem we make a stronger de-

mand on a valid lok: the funtion f must evaluate to

zero on exatly half of the points in the plane. This

allows not to rejet in ase the heker sees only zeros

or only ones in the original spotheks. Spei�allly, we

hoose the �eld F of harateristi 2 and insist that the

funtion r : F ! f0; 1g used in loking a seret x satis-

�es r(b) = r(b+ 1) (de�ning x = 1� x) for every value

b 2 F . Note that (b+1)+1 = b. We hoose a random r

whih satis�es this restrition. This implies that a valid

lok L satis�es L(a; b) = L(a; b+ 1) for every a; b 2 F

and it is enough to speify only one of these values in

the lok, it determines the other. Thus, by speifying

only half of the lok, we make sure that the even invalid

loks satisfy the balaning property, ensuring the sound-

ness property of the lok. We proeed with the formal

onstrution and proof.

3.3 Construting a loking system with

good parameters

Let us desribe our system in detail. Let q = q(n) =

!(1) be any (polynomially bounded, polynomial time

omputable) parameter. We will use 4q basi systems in

the onstrution. Let F be a �nite �eld of size jF j = 2

t

with t = �(logn) and jF j � 5q. Let C and D be two

disjoint subsets of F with jCj = q and jDj = 4q (think of

C as being the �rst q elements in some enumeration over

the elements of F , and D being the next 4q elements).

Our set of keys K is the set of polynomials over F with

degree smaller than 2q. Thus the binary length of a key

is k = 2qt. The seret determined by a key p is pjC i.e.

the values of the polynomial p on the q elements in C.

Thus the binary length of the seret is s = qt. Note that

the set S of all serets is the set of all funtions from C

to F .

The loker: To lok a seret S : C ! F the loker

starts by hoosing a uniform random polynomial p of

degree less than 2q with pjC = S. Then, the loker

uses the basi lok to lok the value p(d) for eah d 2

D. Spei�ally, the loker hooses a uniform random

funtion r

d

: F ! f0; 1g satisfying r

d

(b) = r

d

(b+ 1) for

every d 2 F , and sets a basi lok f

d

(a; b) = r

d

(p(d)a�

b). Reall that this onstrution ensures that f

d

(a; b) =

f

d

(a; b+ 1) for every a, b and d. Thus, it is enough to

store in the basi lok only the value of one of them, and

if needed we ompute the other. Finally, we de�ne the

lok to be the set of basi loks f

d

for all d 2 D.

The heker: Given a key p 2 K, i.e., a polynomial over

F with degree smaller than 2q, and a lok L 2 L, the

heker perfoms the following test to hek that the key

�ts the lok. The heker piks a value d 2 D uniformly

at random, and performs a spothek on the basi lok

f

d

: He piks a triplet (a; b; t) 2 F

3

uniformly at random,

and heks that f

d

(a; b) = f

d

(a+ t; b+ t � p(d)).

3.4 Analysis of the loking system

3.4.1 Parameters:

Reall that t = �(logn) and that q is an unbounded

funtion. We think of q as a slowly growing funtion

below logn. A key is of length k = 2qt whih is slightly

superlogarithmi, but k = O(log

2

n). Note that k has

to be superlogarithmi in any loking system or the key

an be guessed with polynomial suess probability. A

seret is of length qt, i.e., s = O(log

2

n). A lok is of size

4q � jF j

2

=2 = q2

2t+1

.

We remark that we hose to implement k=s = 2, but

any onstant ratio above 1 will work here. Clearly if the

key is to determine the setret the key has to be at least

as long as the seret.

The number of bits of the lok the heker reads is

two. This is best possible as hekability 1 implies k � U

for any loking system (where U is the robustness of the

lok), meaning too long keys.



3.4.2 Completeness:

To retrieve the seret from the key one evaluates p on all

points in C. Clearly, if the loker follows his protool,

and the heker gets the output lok and key, then the

heker will always aept.

3.4.3 Soundness:

We show that the soundness error is at most � � 15=16.

Consider the basi sheme �rst. We make the following

laim.

Claim 3.3 Let f : F

2

! f0; 1g be a funtion whih

has exatly the same number of zeros and ones in its

outpout. For suh a funtion, there is at most one value

x 2 F suh that a spothek of f in diretion x holds

with probability greater than 3=4.

Proof: Let x 6= y be two values in F . Consider the

following experiment: We pik unifromly and indepen-

dently at random two points A;B 2 F

2

, and onsider

the point C in whih the line through B in diretion y

meets the line through A in diretion x. The point C

is a randomly hosen point on the line of A in dire-

tion x. Thus, omparing the value of f on A and on C

is atually a uniform random spothek in diretion x.

Similarly, omparing the value of f on B and C is atu-

ally a random spothek of diretion y. By the balane

property of the funtion, we know that for the random

points A and B it holds that with probability exatly 1=2

that f(A) 6= f(B). In this ase, one of the spotheks

must fail. So with probability at least 1=2 one of the

diretions fail, then one of these diretions must have its

spotheks fail with probability at least 1=4.

Now �x any lok L 2 L. It ontains the funtions f

d

:

F

2

! f0; 1g for every d 2 D and all of these funtions

have as many zeros as ones. Let g : D ! F be a funtion

where g(d) is the diretion in whih a spothek of f

d

is

most likely to pass (we break ties arbitrarily). By laim

3.3, any spothek on f

d

with diretion di�erent than

g(d), fails with probability at least 1=4. Reall that a

key is a polynomial of degree smaller than 2q. Thus, two

di�erent keys must agree on less than 2q points inD, and

thus they disagree on more than 2q points. Therefore,

there ould be only one polynomial (i.e., only one key)

whih disagrees with g(d) on at most q points. We laim

that for all other keys, i.e., for eah key p 2 K whih

di�ers from g on more than q values of D, the heker

aepts the key p on the lok L with probability less

than 15=16.

Sine the heker hooses a funtion f

d

to hek uni-

formly in d 2 D, then with probability over 1=4 we have

g(d) 6= p(d). Then it performs a spothek of f

d

in dire-

tion p(d), and sine p(d) 6= g(d), we get that the heker

rejets with probability at least 1=4. Thus there is only

one key for whih the probability that the heker rejets

is at most 1=16.

Remark 3.4 We have shown that the error parameter

here is � � 15=16. We remark that one an derease the

value of this onstant to 7=8 but with the heker reading

only a onstant number of bits of the lok the error must

be a onstant. Performing h independent heks one an

derease the error to �

h

for the prie of multiplying the

number of bits read by the heker by h.

3.4.4 Indistinguishibility:

Let L

S

to be the distribution on loks output by the

loker on a seret S 2 S. In this setion we are go-

ing to show that for any two serets S; S

0

2 S, the two

distributions L

S

and L

S

0

are statistially indistinguish-

able by any probabilisti mahine that reads at most

U(n) �

p

jF j=n bits from a sampled lok.

Reall that the distribution L

S

is output on a seret S

by the loker onduting the following proedure. The

loker piks uniformly at random a polynomial p 2 K

suh that pjC = S. This polynomial is the key. Then,

the loker selets jDj uniform random funtions r

d

: F !

f0; 1g satisfying r

d

(b) = r

d

(b+ 1) for any b 2 F , one

funtion for eah d 2 D,. Finally, the loker sets the

lok to be the set of funtions f

d

(a; b) = r

d

(a � p(d)� b)

for all d 2 D.

Fix the value m = U(n) (the robustness of the sys-

tem). We are going to show that the distributions L

S

and L

S

0

are statistially indistinguishable even if we al-

low the mahine to be more powerful then just reading

bits from the lok. Suppose instead of letting the ma-

hine read m bits of the lok, we let it ask m

2

queries

of the following type: The mahine writes a pair (d; x),

where d 2 D and x 2 F , on a speial query tape, and

then it gets an answer whether p(d) = x. After mak-

ing m

2

(adaptive) queries of this type and running some

unbounded omputation, the mahine produes an out-

put. We all this mahine the query mahine. Let us

�rst show that the query mahine is stronger. Later,

we show that even a query mahine annot distinguish

well between L

S

and L

S

0

. To show this, we show that

a query mahine whih makes m

2

queries an perfetly

simulate the output distribution of a (regular) mahine

whih reads at most m bits of the lok.

Let M be a mahine reading at most m values of a

lok L. We build a query mahine M

0

that makes at

most m

2

queries and produe the same distribution of

outputs as M . (The distribution is on the hoie of a

lok L 2 L

S

and on the hoie of a random tape for M .)

M

0

will run M and use its m

2

queries to simulate the

bits read byM from the lok. M

0

also keeps trak ofM 's

readings so that if a bit of the lok is read more than one



by M , then M

0

returns the same value eah time. M

0

is

going to letM get random bits for all its queries unless it

reads two bits f

d

(a; b) and f

d

(a

0

; b

0

) for two points (a; b)

and (a

0

; b

0

) lying on the unique diretion p(d). In this

ase, the mahineM

0

feeds M with the same bit in both

ases. Sine f(a; b) 6= f(a; b+1) we also must hek the

relation of (a; b) and (a

0

; b

0

+ 1).

This is implemented in the following manner. When-

ever M asks for a new bit f

d

(a; b) of the lok, mahine

M

0

heks all points (a

0

; b

0

) on whih M has queried f

d

previously. If (a; b) = (a

0

; b

0

) for some previous point,

then M

0

gives M the same answer as before (denote by

q

d

(a

0

; b

0

) previous answers given to M by M

0

). Simi-

larly if (a; b + 1) = (a

0

; b

0

) for a previous point, then

M

0

gives q

d

(a; b) = q

d

(a

0

; b

0

) to M . Otherwise, for

all these points in whih a 6= a

0

M

0

makes queries to

hek if one of them satis�es p(d) = (b� b

0

)=(a� a

0

) or

p(d) = (b�b

0

+1)=(a�a

0

): If all queries are false, then ma-

hineM

0

hooses uniformly at random a bit, sets q

d

(a; b)

to ontain this bit for future use, and feeds this new bit

as an answer to M . Otherwise, if there is a point (a

0

; b

0

)

for whih p(d) = (b� b

0

)=(a� a

0

), then mahine M

0

sets

q

d

(a; b) = q

d

(a

0

; b

0

) and feeds q

d

(a; b) to M , or if there is

a point (a

0

; b

0

) for whih p(d) = (b�b

0

+1)=(a�a

0

), then

mahineM

0

sets q

d

(a; b) = q

d

(a

0

; b

0

) and feeds q

d

(a; b) to

M . (Note that in ase a = a

0

and b 6= b

0

queries are not

needed, the points are not on the same line.)

We go on with verifying the indistinguishibility by any

query mahine (making at most m

2

queries). Let S; S

0

be any two serets in S. We would like to show that

L

S

and L

S

0

are indistinguishable by any query mahine.

For a seret S 2 S let K

S

be the set of keys p 2 K

orresponding to seret S, i.e. the set of all poynomials

p of degree smaller than 2q having pjC = S. We have

jK

S

j = jF j

q

. Consider now a query mahine M . We

make two simplifying assumptions. First, sine M is

not omputationally bounded, we may assume thatM is

deterministi (pik the best random tape for M). Thus,

the run of M is determined by the sequene of answers

it reeives for the queries it makes. Seond, we assume

that M \wins" as a distinguisher (or really reovers the

seret S) in ase M gets to learn the value of the key p

on q di�erent elements of D.

(Clearly with one more query, he ould tell between

two di�erent serets.) Thus, in what follows, we assume

that runs have at most q \yes" answers in them. After

q values have been guessed orretly, the run terminates

(suessfully).

We would like to ompute the probability that M

aepts for a random key in K

S

and for a random key

in K

S

0

. Think of a run of M as a series of m

2

queries

and answers made by M and answered by the orale

followed by M 's aepting or rejeting. The run of M is

ompletely determined by the answers that M gets for

his queries sine M does not toss oins. Let T be a run,

let S be a seret, and denote by K

T;S

the set of all keys

for S whih are onsistent with the answers given in the

run. The probability that the run T ours, given that

the seret is S, is jK

T;S

j=jK

S

j. The distribution spae

is that of the loker hoosing a random key in K

S

. The

probability that M distinguishes S from S

0

is:

�

�

�

�

�

�

X

aepting T

jK

T;S

j

jK

S

j

�

jK

T;S

0

j

jK

S

0

j

�

�

�

�

�

�

�

X

T

�

�

�

�

jK

T;S

j

jK

S

j

�

jK

T;S

0

j

jK

S

0

j

�

�

�

�

We note that jK

S

j = jF j

q

independently of S, and in

what follows, we ompute for eah run T , a bound on

the magnitude of jK

T;S

j � jK

T;S

0

j.

Consider a partiular run T of the mahine M . By

the end of the run, M 's view ontains the value of p on

the plaes d 2 D

0

for a set D

0

� D, jD

0

j � q. It also

ontains inequalities of the form p(d) 6= x for some pairs

(d; x) 2 E, where E � (D � D

0

) � F and jEj � m

2

.

To ompute jK

T;S

j, we start with the set K

D

0

of all

keys p 2 K

S

having the required values on D

0

, and use

the inlusion-exlusion formula to remove those who are

inonsistent with the inequalities disovered in the run:

jK

T;S

j =

jEj

X

i=0

(�1)

i

X

E

0

�E jE

0

j=i

jfp 2 K

D

0

jp(d) = x for every (d; x) 2 E

0

gj

Notie that the summand is zero if E

0

ontains two val-

ues with the same �rst oordinate d, and otherwise it is

jF j

q�jD

0

j�i

if i � q � jD

0

j. In partiular the summand

for i � q � jD

0

j is independent of the seret S. As the

partial sums alternate in being lower and higher than

jK

T;S

j this means that the di�erene jjK

T;S

j � jK

T;S

0

jj

is below the absolute value of the term with i = q�jD

0

j.

Namely,

�

�

jK

T;S

j � jK

T;S

0

j

�

�

�

�

m

2

q � jD

0

j

�

:

This means that for any run in whih the number of

\yes" answers given by the orale (i.e., the size of D

0

) is

i, the di�erne jjK

T;S

j � jK

T;S

0

jj is bounded by a value

that is independent of the serets S; S

0

and of the run

T . We are now going to sum over all runs, partitioning

them by the size ofD

0

. Note that our estimate also holds

for jD

0

j = q. In this ase, 0 � jK

T;S

j; jK

T;S

0

j � 1, and

thus the di�erene is at most 1.



Sine the run T is determined by the answers for the

queries, there are at most

�

m

2

i

�

runs T with i \yes" an-

swers, that is with jD

0

j = i. Therefore,

X

T

�

�

�

�

jK

T;S

j

jK

S

j

�

jK

T;S

0

j

jK

S

0

j

�

�

�

�

=

1

jF j

q

X

T

jjK

T;S

j � jK

T;S

0

jj

�

1

jF j

q

q

X

i=0

�

m

2

i

��

m

2

q � i

�

=

�

2m

2

q

�

jF j

q

<

�

m

2

jF j

�

q

Sine m �

p

jF j=n, this fration is negligible. Thus, we

get that a negligible fration is an upper bound on the

distinguishibility of any two serets S; S

0

by any query

mahine M that makes at most m

2

queries and we are

done.

3.5 Simulatability

Let us further prove that for our spei� loking sys-

tem indistinguishibility implies simulatability. We look

at the user invoking the simulator as a query mahine as

in the previous paragraph. Note that this is OK sine

the query mahine an perfetly simulate the output of

a regular user. The simulator works as follows. It begins

by setting the seret to be the all zeros seret. Then, it

uses the heker to produe a lok for this spei� seret,

and lets the user make U

2

queries to the key output by

the loker. Later, the user omes up with a seret S and

the simulator replies whith a lok and key for that seret

suh that the lok mathes the user's view so far.

After querying the lok U

2

times, the user has some

information on the key whih inludes some values that

the polynomial must evaluate to (\yes" answers) and

some values that the polynomial does not evaluate to

(\no" answers). The simulator now hooses a random

polynomial that mathes both the information given so

far on the key and the values of the polynomial as deter-

mined by the given seret S. The simulator outputs this

polynomial as the key for the seret S. and produes the

yet unseen part of the lok randomly aording to this

key.

Let us �rst show that suh a polynomial an be hosen

in probabilisti polynomial time with a very high prob-

ability of suess. If the user has seen q \yes" answers,

thus he knows the value of the polynomial at q di�erent

loations, then the simulation fails. This happens with

negligible probability (on a random key for the all zero

seret) as shown in the previous subsetion. So suppose

the user sees less than q values of the polynomial. To

hoose a proper polynomial, the simulator �rst hooses

a random polynomial whih mathes the values of the

polynomial known to him. If this polynomial ontra-

dits the inequalities he knows, he tries again and again

until he sueeds. Let us argue that there is a prob-

ability 1 � 1=n to sueed in eah of these tries, thus

repeating this proess more than a onstant times fails

with negligible probability. Sine the value of the poly-

nomial is predetermined in less than 2q plaes, hoosing

a random polynomial that mathes these less than 2q

values leaves the value at any spei� other point ran-

dom. The user has seen at most U

2

inequalities (\no"

answers). Eah one of these inequalities is falsi�ed by

a random polynomial with probability at most 1=jF j.

Thus the probability that a random polynomial hits a

forbidden value is at most U

2

=jF j � 1=n.

Next, we laim that the distribution output by the

simulator is indistinguishable from a \real" distribution

the loker produes on the seret S. Suppose a user A

ould tell the di�erene. We think of A as a querry ma-

hine whih an also look at the entire lok and key after

his U

2

queries. Surely, this last stage does not help him,

as in both ases the same thing happens: he reeives a

uniform random lok-key pair desribing S and �tting

his view so far. But if he distinguished the two ases

before this last stage, then he atually distinguished the

all zero seret from S. We know that he an do this with

negligible probability only.

This ompletes the analysis of the loking system and

the proof of Theorem 3.

4 Proofs of Theorems 1 and 2

In this setion, we desribe a tehnique for using loks

to onvert PCPs robust against random queries into

PCPs robust against direted queries. This tehnique

is then applied to the PCP of Setion 2 to prove Theo-

rems 1 and 2.

4.1 The new PCP

The struture of the new zero knowledge PCP that

we build onsists of three tables, PCP, PERM and MIX.

We �rst desribe how they are generated and then show

how to verify them. The prover exeutes the following

steps.

1. Loking the PCP: The prover generates a PCP

aording to Lemma 2.1. This PCP onsists of an

array of bits, b

1

; : : : ; b

m

. For eah bit b

i

the prover

generates a lok/key pair (L

i

;K

i

) and sets PCP(i) =

L

i

.

2. Loking a random permutation of the keys:

Let R denote the spae of random oin tosses used



by the original veri�er. The prover generates a

random permutation � on R. For eah r 2 R,

the prover generates a lok/key pair (L

r

;K

r

) for

te value �(r) and sets PERM(r) = L

r

.

3. Allowing random aess to the PCP: The

prover generates MIX by

MIX(�(r)) = (r;K

a

;K

b

;K



;K

r

);

where, the original veri�er would look at bits a; b

and  given random string r.

We leave unspei�ed the parameters of the loks,

whih will vary depending on whih theorem we wish

to prove.

To verify the new PCP, the new veri�er V exeutes

the following steps.

1. V hooses r

0

2 R at random, and queries

MIX(r

0

) = (r;K

a

;K

b

;K



;K

r

).

2. V uses K

r

to unlok PERM(r) and heks that the

resulting value is indeed r

0

.

3. V omputes the loations (a; b; ) of the 3 bits the

original veri�er V

0

would have heked given r, and

uses K

a

;K

b

and K



to unlok PCP(a), PCP(b) and

PCP(), obtaining b

a

; b

b

and b



.

4. V heks that V

0

would have aepted (r; b

a

; b

b

; b



).

Finally, V rejets if any unloking operation or any hek

fails, and aepts otherwise.

4.2 Analysis of the new PCP

We now bound the relevant parameters of the new

PCP in terms of the parameters of the original PCP

and the parameters used in the loks.

Perfet Completeness: It is easy to verify that if the

original PCP had perfet ompleteness then the new

PCP has perfet ompleteness.

Complexity: Suppose that the PCP used by

Lemma 2.1 was of size n and the veri�er uses logn ran-

dom bits. Then the PCP onstruted by Lemma 2.1 will

be of size O((kmn)

O(1)

), where m and k are parameters

to be set later. Thus PCP will have O((kmn)

O(1)

) loks.

Similarly, MIX will have O((kmn)

O(1)

) entries, eah on-

sisting of string of length O(log n+log k+logm) (to rep-

resent r) and 4 keys, and PERM will have O((kmn)

O(1)

)

loks. Eah key is of length O(qt) and eah lok is of

length O(2

2t

q). Hene, the size of the proof will be

O(2

2t

q(kmn)

O(1)

). Here q and t are the parameters used

in the loks.

In eah iteration of the protool, The veri�er queries

an entry of MIX(r

0

), whih is of length O(qt)+O(log n+

log k + logm). It then heks O(1) loks requiring O(1)

probes eah.

Soundness: We argue that if the original PCP had

error at most 1� s, i.e., the veri�er aepts x 62 L with

probability at most 1 � s, then the new PCP will have

error at most 1 � s=16. First reall that a lok may

be opened at most one way without inurring a 1=16

probability of rejetion. By inspetion of the protool,

there is never any advantage to onstruting a lok that

an't be opened, so we assume without loss of generality

that every lok has a well-de�ned ontent. Let P be the

PCP obtained by taking the ontents of PCP's loks,

and de�ne �(r) as the ontents of PERM(r) (� is not

neessarily a permutation).

Denote by V [r℄ the run of veri�er V using random

oin tosses r. We say that r

0

2 R is good if there exists

an r 2 R suh that r

0

= �(r) and V

0

[r℄ aepts P , and

bad otherwise. There are at least sjRj bad r

0

, sine V

0

aepts on at most (1� s)jRj tapes. We now argue that

if V hooses a bad r

0

he will rejet with probability at

least 1=16; this will omplete the soundness analysis.

Let MIX(r

0

) = (r;K

a

;K

b

;K



;K

r

). If �(r) 6= r

0

then

V will rejet with probability at least 1=16 in Step 2. If

�(r) = r

0

then V

0

[r℄ must rejet P (or r

0

would be good),

in whih ase V will either rejet with probability at least

1=16 in Step 3 (if K

a

;K

b

or K



try to unlok inorret

values) or rejet with probability 1 in Step 4 (sine V [r℄

rejets P ).

The soundness of the PCP may be ampli�ed by rep-

etitions in the standard manner.

Robustness: We give only a brief sketh of this analy-

sis. We �rst argue that if (a possibly maliious) V makes

less than min(m;U) queries to (PCP;PERM;MIX) then,

unless a \bad event" happens, V 's view an be simulated

statistially losely. Here, U (=

p

2

t

=n) is a parameter

of the lok box. We then show that suh bad events

our with negligible probability.

First, we simplify matters in a manner that only helps

the adversary. If V queries any bit ofMIX(i) then we give

it the entire ontents of MIX(i) = (r;K

a

;K

b

;K



;K

r

),

the values for the original PCP at loations a; b and 

(i.e. b

a

; b

b

and b



) and the values of the loks L

a

; L

b

; L



and L

r

. We assume that V queries MIX(i) only one for

eah i.

Our simulator works as follows. Whenever V queries

MIX(r

0

), the simulator S performs the following steps:

1. S randomly hooses r 2 R, r not previously hosen,

and sets �(r) = r

0

.

2. S omputes a; b and , the indies queried by V

0

[r℄

3. S invokes the simulator for the original PCP to ob-

tain simulated b

a

; b

b

and b



. Note that this simula-

tion depends on the values of b

i

that may already



have been spei�ed; indeed, some or all of (b

a

; b

b

; b



)

may already have been determined.

4. S invokes the loker simulator to produe

(K

a

; L

a

); (K

b

; L

b

); (K



; L



); and (K

r

; L

r

):

This simulation is performed based on the now de-

termined b

a

; b

b

; b



and �(r) and on the previously

determined (by the simulation) bits of L

a

; L

b

; L



and L

r

.

Whenever V queries bits of PERM(r) = L

r

or PCP(i) =

L

i

, S alls the lok simulator to simulate the values of

these bits. In some ases, L

r

or L

i

may have been en-

tirely determined by the simulation, due to the simula-

tion of a MIX(r

0

) query.

If the simulators for the loking system and the orig-

inal PCP were always statistially lose, then by a

straightforward argument the resulting simulation would

be statistially lose. However, sometimes the lower-

level simulations would abort, deteting a situation in

whih they ould no longer guarantee a lose simulation.

We now bound the probability of suh bad events. First,

the simulation of the original PCP is performed essen-

tially independent from the other simulations. We �rst

note that whenever it is invoked it is on a random string

r that is new but otherwise random. By Lemma 2.1,

up to m simulations an be performed with a bad event

ouring with probability at most 1=m

k

.

Similarly, the simulator for eah loker an handle up

to U queries, and the di�erene between the output of

the simulation and the view obtained by using atual

lok boxes will be less than 1=n



for any , as n grows

suÆiently large. Sine at most U simulations are in-

voked, the di�erene will be at most U=n



.

4.3 Setting the Parameters

To prove Theorems 1 and 2, we give appropriate set-

tings for the parameters m and k used in Lemma 2.1

and for t and q used in the loker onstrution. Reall

that n is the size of the original PCP (though we may

arti�ially make it larger, as disussed below). For The-

orem 1, we an set k = t = q =  logn for  a suÆiently

large onstant, so that

p

2

t

=n � U . We set m to be at

least U . Note that m

�k

is negligible. Also, note that

for large , as n grows suÆiently large, the deviations

due to the lok box simulators (U=n



) will be less than

n



0

�

as n grows suÆiently large.

Note that we are being arhai in our notion of se-

urity, typially one allows for a seurity parameter so

greater seurity an be obtained for the proof of a �xed-

sized statment. We an obtain the same e�et by delib-

erately padding n, the size of the original PCP. Details

are omitted.

For Theorem 2 we assume without loss of generality

that the original PCP proving L has size n = 2

jxj



1

for



1

suÆiently large (if not, we an pad the PCP). We

then an set U = 2

jxj

, and set k = t = q = jxj



, for 

large enough so that

p

2

t

=n � U . Details are omitted.

5 Aknowledgments

We thank Sanjeev Arora, Noam Nisan, and Mike Saks

for helpful disussions.

Referenes

[1℄ S. Arora, C. Lund, R. Motwani, M. Sudan, and

M. Szegedy. Proof veri�ation and intratability of

approximation problems. In Pro. 33rd IEEE Symp.

on Foundations of Computer Siene, pages 13{22,

1992.

[2℄ M. Ben-Or, S. Goldwasser, J. Kilian, and A.

Wigderson. Multi-Prover Interative Proofs: How

to Remove Intratability Assumptions, Pro. of

STOC88.

[3℄ C. Dwork, U. Feige, J. Kilian, M. Naor, S. Safra,

\Low Communiation, 2-Prover Zero-Knowledge

Proofs for NP"Advanes in Cryptology: Crypto '92,

pages 217{229.

[4℄ U. Feige and J. Kilian. \Zero-Knowledge and the

Chromati Number" In Proeedings, 1996 Confer-

ene on Computational Complexity.

[5℄ S. Goldwasser, S. Miali, and C. Rako�. The

Knowledge Complexity of Interative Proof Sys-

tems. SIAM J. Comput., 18 (1):186{208, 1989.

[6℄ J. H�astad. Testing of the long ode and hardness

for lique Pro. 28th ACM Symp. on Theory of

Computing, pages 11{19,1996.

[7℄ J. Kilian. Uses of randomness in algorithms and

protools. Ph.D. thesis.

[8℄ J. Kilian and M. Naor. On the Complexity of Statis-

tial Reasoning. In Proeedings, Israeli Symposium

on Theory of Computing and Systems, pages 209{

217, 1995.


