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Abstra
t

We 
onstru
t PCPs with strong zero-knowledge prop-

erties. First, we 
onstru
t polynomially bounded (in

size) PCP's for NP whi
h 
an be 
he
ked using poly-

logarithmi
 queries, with polynomially low error, yet

are statisti
al zero-knowledge against an adversary that

makes U arbitrary queries, where U 
an be set to any

polynomial. Se
ond, we 
onstru
t PCPs for NEXPTIME

that 
an be 
he
ked using polynomially many queries,

yet are statisti
ally zero-knowledge against any polyno-

mially bounded adversary. These PCPs are exponential

in size and have exponentially low error. Previously, it

was only known how to 
onstru
t zero-knowledge PCPs

with a 
onstant error probability.

In the 
ourse of 
onstru
ting these PCP's we abstra
t

a tool we 
all lo
king systems. We provide the de�nition

and also a lo
king system with very eÆ
ient parameters.

This me
hanism may be useful in other settings as well.

1 Introdu
tion

1.1 Robust PCPs

There are quite natural parallels and expli
it transfor-

mations between multi-prover intera
tive proof systems

(MIPs) and probabilisti
ally 
he
kable proofs (PCPs).

However, zero-knowledge does not seem to be 
onserved
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under these transformations, and indeed the very de�-

nition of zero-knowledge for PCPs requires some 
are.

In the MIP framework, a prover 
an for example simply

refuse to answer a question that would not have been

asked by the honest veri�er. However, PCPs are for-

mally viewed as sequen
es of bits; there is no entity in

pla
e to judge a question's legitima
y. Consequently, the

theorem that everything provable in MIP is provable in

zero-knowledge [2, 7℄ does not translate over automati-


ally.

Dwork et al. [3℄ introdu
e the notion of zero-

knowledge or \robust" PCP's. A robust PCP (
; V )

is a distribution 
 on PCPs along with a probabilisti


polynomial-time veri�er V . The prover samples a PCP

from the given distribution, writes this sample down,

and the veri�er 
he
ks the sample as it would any PCP.

(
; V ) has two new parameters, L and U , with L � U : V


an 
he
k 
 by querying L bits, but one 
an simulate in

probabilisti
 polynomial time the view of any adversary

^

V who adaptively reads up to U arbitrary bits. As with

other models, the quality of the simulation determines

the type of zero-knowledge obtained.

For L � 3 and U essentially arbitrary, Dwork at al.

exhibit a robust PCP (
; V ) for NP. However, the error

obtained by these proto
ols (the probability that V will

a

ept a false statement) is as big as 1��(1=U

3

). Thus,

the 
onstru
tion of [3℄ left open the following question:

Question: Does there exist a robust PCP with error

less than

1

3

?

Indeed, the best previous PCPs had error 1 � 
 for

some small 
onstant 
. Note that the standard error-

redu
tion te
hniques do not work here, sin
e they require

the veri�er to query more bits than before, yet leave U

un
hanged. As a result, L be
omes greater than U .

Robust PCPs and the hardness of approximation

Our motivation for this investigation is primarily philo-

sophi
al. However, it is worth noting that 
onstru
tions

for robust PCPs, or variants thereof have been used to

prove results on the hardness of approximation. Kilian

and Naor [8℄ dire
tly use robust PCPs to establish the

strongest known hardness of approximation results for


ertain problems in statisti
al inferen
e. Feige and Kil-

ian [4℄ use PCPs inspired by robust PCPs, though with



slightly weaker properties, to show the strongest known

results for approximating the 
hromati
 number.

1.2 The results in this paper

We exhibit new 
onstru
tions for robust PCPs. The

properties of our �rst 
onstru
tion is embodied in The-

orem 1, below. In a nutshell, Theorem 1 says that there

exists robust PCPs in whi
h the number of queries U

needed to break the statisti
al zero-knowledge property

is nearly exponential in the number of queries L needed

to 
he
k the proof. For a reasonable setting of the pa-

rameters in Theorem 1 and for proofs of NP, this would

mean having proofs of size polynomial in the length of

the input n, having L = poly logn (i.e., L is poly loga-

rithmi
 in the length of the input) and U = n




. Using

k repetitions of the basi
 proto
ol, we 
an a
hieve 2

�k

error with L = kpoly logn and U = n




.

Theorem 1 Let PCP (�; V ) for a language L have size

at most n and require the veri�er to use at most logn


oin tosses, 
he
ks at most a 
onstant number of bits in

� and a
hieves a 
onstant soundness error probability

(smaller than 1). Let U = n

O(1)

. Then there exists a

robust PCP (
; V

0

) for L with the following properties:

� Size of proof: For any � 2 
, j�j = O(n

O(1)

).

� Cost of veri�
ation: The honest veri�er V

0

reads

L = O(log

O(1)

n) bits of the proof, and tosses

O(log

O(1)

n) 
oins.

� Completeness: If the original proof � has perfe
t


ompleteness with respe
t to V , then so does any

�

0

2 
 with respe
t to V

0

.

� Soundness: For any �

0

(not ne
essarily in 
), the

probability that the veri�er a

epts an x 62 L is at

most 1=n

O(1)

. (In
reasing the 
onstant in the power

of n is linearly related to in
reasing the 
onstant in

the 
ost of veri�
ation.

� Zero-Knowledge: 
 a
hieves statisti
al zero-

knowledge against any veri�er V

0

that is allowed

to read at most U bits of �

0

(uniformly sele
ted in


). More pre
isely, there is a probabilisti
 polyno-

mial time simulator S (with an ora
le for V

0

) that

simulates V

0

's view of �

0

. This simulation di�ers

(in the `

1

-norm) from V

0

's a
tual view by less than

1=n




for any 
, as n grows suÆ
iently large.

Theorem 1 
an be generalized to handle any number

of bits read by the original PCP, and any number of

random 
oin tosses by the original veri�er. We 
hose

to keep the 
omplexity of the statement reasonable and

still to 
over the PCP 
onstru
ted by the PCP theorem

[1℄.

Our se
ond 
onstru
tion allows the PCPs to be expo-

nentially large, but a
hieves superpolynomial robustness

(with an exponentially small error). Without going into

all of the parameters, we obtain the following result.

Theorem 2 For any language L 2 NEXPTIME, there

exists a robust PCP (
; V ) for L with the following prop-

erties.

� Cost of veri�
ation: On input x, V 
he
ks 


using polynomially many (in jxj) queries, 
omputa-

tions and 
oin tosses.

� Completeness: (
; V ) has perfe
t 
ompleteness.

� Soundness: For any �

0

(not ne
essarily in 
), the

probability that the veri�er a

epts an x 62 L is at

most 2

�jxj

.

� Zero-Knowledge: 
 a
hieves statisti
al zero-

knowledge against any polynomially bounded veri-

�er.

1.3 Lo
king systems

In the 
ourse of 
onstru
ting the PCP for NP, we use a

lo
king system with very eÆ
ient parameters. A lo
king

system is a pair of eÆ
ent probabilisti
 ma
hines: The

lo
ker and the 
he
ker. The lo
ker is given a string S to

\hide" and produ
es a string L (the lo
k) and a key K

to the lo
k. The lo
k has the following properties: It is

\hard" to �nd the string S hidden in the lo
k. Given the

key K, it is \easy" to re
onstru
t the se
ret S and 
he
k

that this is indeed the hidden string in the lo
k. Last,

only one string 
an be hidden in a lo
k. A legitimate

veri�er will reje
t, with high probability, any other string

no matter what key he might possess. Hardness and

easiness in this settings refer to the number of bits in

L that have to be read. For the exa
t de�nition and


onstru
tion see Se
tion 3.

1.4 Guide to the rest of the paper.

In Se
tion 2 we give the basi
 building blo
ks of our


onstru
tions. In Se
tion 3 we provide the de�nition

of lo
king systems and 
onstru
t a lo
king system with

eÆ
ient parameters. In Se
tion 4 we use the eÆ
ient

lo
king system to prove Theorems 1 and 2.

2 PCPs robust against random queries

Suppose one has a PCP (P

0

; V

0

) for a language L su
h

that

� jP

0

j = n,



� V

0


ips O(log n) 
oins and queries O(1) bits of P

0

,

� (P

0

; V

0

) has perfe
t 
ompleteness, and

� V

0

has error bounded from 1 by a 
onstant.

(Note that n here refers to the size of the proof and

may be exponential in the size of the input.) Then the

te
hniques of [3℄ allow us to transform (P

0

; V

0

) into a

new PCP (
; V ) with the following properties, where

k > 0 is an integral parameter:

� Any proof assigned nonzero probability by 
 has

size O(k

3

n

O(1)

),

� V 
ips O(log n) 
oins and queries 3 bits of the proof.

� The proof has perfe
t 
ompleteness and soundness

error at most 1� 1=O(k

3

).

� 
 is robust against k arbitrary queries. That is,

the view so obtained 
an be perfe
tly simulated in

probabilisti
 polynomial time.

Note that the soundness of the proto
ol degrades super-

linearly with respe
t to its robustness (k). Thus, if one

tries to redu
e the error to less than

1

2

by making mul-

tiple queries to the PCP then the number of queries so

made would ex
eed the proof's robustness.

As a useful spe
ial 
ase, we 
onsider the veri�er that

simply runs the original veri�er m times, with inde-

pendent 
oin toss sequen
es, and makes all of the 3m

queries spe
i�ed by these runs. We a
hieve statisti
al

zero-knowledge against su
h veri�ers as follows. Given

a DFKNS-type randomized PCP P , 
onsider the ran-

domized PCP P

0

= P

`

generated by 
on
atenating `

PCPs, ea
h independently 
hosen a

ording to P . The

veri�er V

0

�rst 
hooses i uniformly from f1; : : : ; `g and

then runs the original veri�er V on the ith 
opy of the

proof.

Suppose that P is robust against 3k queries. Then as

long as a veri�er dire
ts at most k 3-bit queries to any

subproof of P

0

, the view obtained will be easily simulat-

able. If one makes m independent random runs from V

0

then the probability that any one subproof is sele
ted by

V

0

more than k times is bounded above by

`

�

m

k + 1

�

=`

k+1

<

m

k+1

l

k

:

If we set ` = m

2

, the above expression is at most

1=m

k�1

. Thus, when k grows as a super-
onstant

fun
tion of n, (P

0

; V

0

) is statisti
al (not perfe
t) zero-

knowledge against a veri�er that makes m independent

runs of V

0

. The 
rux of our main 
onstru
tions is to


ode P

0

in su
h a way that even an arbitrary veri�er 
an

only ask essentially random questions.

Lemma 2.1 Let k and m be arbitrary parameters and

let (P

0

; V

0

) be as above. We 
an transform (P

0

; V

0

) into

a new PCP (
; V ) su
h that

1. Any proof assigned nonzero probability by 
 has size

O((kmn)

O(1)

),

2. V looks at 3 bits of the proof.

3. V tosses at most O(log n+ log k + logm) 
oins

4. The proof has perfe
t 
ompleteness and the new ver-

i�er has error at most 1� 1=O(k

3

).

5. If some veri�er V

0

makes 3m random queries 
ho-

sen by m independent runs of V , then with probabil-

ity 1�1=m

k

V

0

's view will be simulatable in polyno-

mial time. More pre
isely, whether V

0

's view is sim-

ulatable is a fun
tion of whi
h lo
ation V

0

queries.

V

0

will query a \hard" set, in whi
h the simulator


annot perfe
tly simulate the results of the query,

with probability at most m

�k

.

By making m polynomial in n and k super
onstant,

we obtain polynomial size PCPs that are statisti
ally

zero-knowledge against a large (polynomial) number of

random queries. My making m exponential in n we ob-

tain exponential-sized PCP's that are statisti
ally zero-

knowledge against any polynomial number of queries.

3 Lo
king systems

In this se
tion we de�ne lo
king systems and 
on-

stru
t a lo
k whi
h we later use in our PCP system for

NP. Loosely speaking, a lo
k is a string whi
h holds a

se
ret. On one hand, we would like the non-legitimate

user to �nd it \hard" to dis
over the se
ret lo
ked in the

string. A se
ond demand is that given the key to the

lo
k, a veri�er 
an \easily" re
onstru
t the se
ret and

verify that this is the se
ret hidden in the lo
k. The

terms \easy" and \hard" relate to the number of bits

that have to be read from the lo
k in order to perform

the task. Last, we require that the lo
k will be a 
ommit-

ment on one se
ret. Namely, there is only one string that

the veri�er a

ept with high probability (when given the

right key to the lo
k). For any other string and for any

possible key, the veri�er will reje
t with high probability.

For simpli
ity we require that the key determines the se-


ret in deterministi
 polynomial time without the help

of a lo
k. Also, for simpli
ity we do not allow several

keys determining the same se
ret to �t a lo
k.

In what follows, we use n as a se
urity parameter

given to the lo
king system. In the appli
ation, n will be

the size of the PCP proof, and this role of n mat
hes the

de�nitions in the rest of the paper. The formal de�nition

follows:



De�nition 3.1 (A lo
king system): Let S = f0; 1g

s

be the set of se
rets, L = f0; 1g

l

be the set of lo
ks and

K = f0; 1g

k

the set of keys. Here the parameters s, l,

k (and thus the sets S, L, K) depend on the se
urity

parameter n. A lo
king system is a pair of probabilisti


polynomial time pro
edures, the lo
ker and the 
he
ker.

The lo
ker takes a se
ret S 2 S as input and produ
es

a lo
k L 2 L and a key K 2 K. The 
he
ker takes

a key K 2 K, reads some bits of a lo
k L 2 L and

either a

epts, or reje
ts. We say that the lo
ker and the


he
ker form a lo
king system with error �(n), robustness

U(n), and 
he
kability C(n) if the following 
onditions

hold.

1. perfe
t 
ompleteness: There is deterministi
 poly-

nomial time pro
edure to �nd the se
ret S from the

key K produ
ed by the lo
ker on input S. If L and

K are produ
ed by the lo
ker on input S, then the


he
ker on input L;K reads at most C(n) bits from

L and a

epts with probability 1.

2. Soundness (or a 
ommitment property): For every

lo
k L 2 L there is at most a single �tting key K.

For all other keys K

0

6= K the 
he
ker reje
ts with

probability at least 1� �(n).

3. Se
re
y (indistinguishability): For any se
ret S 2 S,

let L

S

be the distribution of the lo
ks output by the

lo
ker on S, then for any S; S

0

2 S the two distribu-

tions L

S

and L

S

0

are statisti
ally indistinguishable

for a ma
hine that 
an read only U(n) bits from a

sample. Namely, for all probabilisti
 (
omputation-

ally unbounded) Turing ma
hines A, for all 
on-

stants 
 and suÆ
iently large n, and for all pairs

S; S

0

2 S,

jProb

L2L

S

[A(L) = 1℄�Prob

L2L

S

0

[A(L) = 1℄j <

1

n




4. Zero knowledge (simulatability): There exists a prob-

abilisti
 polynomial time pro
edure that produ
es an-

swers to at most U(n) bit-queries to a (non-existing)

lo
k and then as it re
eives any se
ret S it produ
es

a valid lo
k, key pair for this se
ret with the lo
k

also �tting the previous answers. Far all probabilis-

ti
 (
omputationally unbounded) Turing ma
hines

A asking the bit queries and for all se
rets S this

pro
edure yields a distribution on lo
ks whi
h sta-

tisti
ally indistinguishable from the distribution of

the lo
ks produ
ed by the lo
ker on input S.

Note that simulability implies indistinguishability, we

listed the latter property separatly to emphasize the sim-

ilarity to bit 
ommitments.

Theorem 3 Let t = O(log n) and let q be an unbounded

(non-
onstant) fun
tion su
h that 2

t

> 5q. There ex-

ists a lo
king system in whi
h the lo
ker lo
ks se
rets

of length qt, outputing lo
ks of length q2

2t+1

and keys

of length 2qt. The lo
king system has error � = 15=16

robustness U(n) =

p

2

t

=n and 
he
kability 2.

Remark 3.2 Note that if we let the veri�er a

ess the

lo
k ` times, we get a system with the same robustness,


he
kability 2` and error (15=16)

`

.

In the rest of the se
tion we prove Theorem 3.

3.1 A basi
 
onstru
tion

Inuitively, the main idea of our 
onstru
tion is to use

dire
tions in the plane. Fix a dire
tion of a �nite plane,

and 
hoose a binary fun
tion whi
h is a 
onstant along

ea
h line in this dire
tion. The dire
tion will be the

se
ret and the key, and the lo
k will be the truth-table of

the fun
tion. In the next paragraph, we implement this

idea in details, but before doing that note that this has

the 
avor of a lo
king system. In order to dis
over the

hidden dire
tion without having the key, one must read

\lots" of points from the fun
tion, whereas given the

dire
tion, one may \easily" 
he
k that this dire
tion is

spe
ial for this fun
tion. Let us pro
eed and implement

this idea while stressing that as is, this idea is not enough

to a
hieve a lo
king system.

Consider a polynomial size �nite �eld F whi
h will

also fun
tion as the set of all possible se
rets S. To

hide an element S 2 F 
hoose a random fun
tion r :

F ! f0; 1g and output the truth table of the fun
tion

f : F

2

! f0; 1g de�ned by f(a; b) = r(aS � b). Given

S, a spot
he
k is verifying f(a; b) = f(a + t; b+ St) for

a random triplet (a; b; t) 2 F

3

. Completeness-wise it is

easy to 
he
k that the spot
he
ks must hold for any valid

lo
k for S. In terms of soundness, a de
eiving lo
k has

a good 
han
e for the spot
he
ks on f to hold for two

di�erent values S and S

0

only if f is almost a 
onstant

(we prove this later in the spe
ial 
ase we need). So in

order to verify that a lo
ker L hides the se
ret S, the


he
ker has to make a 
onstant number of spot
he
ks,

and to reje
t if one of them fails or if the values he gets do

not seem to be uniformly distributed. After doing this,

the veri�er 
an be 
onvin
ed that the lo
k is 
ommitted

indeed to S with high (yet 
onstant) error probability

1� �.

In terms of indistinguishibility, this system is not se-


ure even against a 
he
ker that reads two points out of

the lo
k. With probability 1=jF j the 
he
ker looks at the

right dire
tion and gets positive indi
ation to that. How-

ever, this 
onstru
tion seems to be a �rst step in the right

dire
tion sin
e with \quite good" probability the 
he
ker

will have to read \many" points before en
ountering two

points of the predetermined dire
tion S. And before en-


ountering two points on dire
tion S, the 
he
ker only

sees uniformly 
hosen random bits (the fun
tion r). We

shall improve the se
urity parameters later.



3.2 Drawba
ks of the basi
 
onstru
tions

Let us list the drawba
ks of this primitive lo
k and

then pro
eed with solving them.

1. Indisinguishibility not a
hieved: The role of

the key and the se
ret are both played by the value

S. Thus, if one suspe
ts the value of the se
ret it


an be easily 
he
ked. We want that even if one

knows that the se
ret is one of two possible values,

limited a

ess to the valid lo
k should not help him

de
ide whi
h value is 
orre
t. Furthemore, even if

one does not know the value of S he might still guess

and 
he
k. For a key of logarithmi
 length (whi
h is

a requirement if the truth table is to be polynomial

in size), the probability of su

ess is not negligible.

To summarize, indistinguishibility is not a
hieved.

2. Completeness is not perfe
t: Finally, one

prefers perfe
t 
ompleteness, i.e. no 
han
e of reje
-

tion for a valid lo
k. Here an unlu
ky 
he
ker 
an

reje
t after seeing only zeros of a valid lo
k (an un-

lu
ky legitimate lo
ker 
an even produ
e a 
onstant

f that is always reje
ted).

Before presenting our lo
king system we give an intuitive

a

ount of how we solve both of the above problems.

We solve the �rst problem by using many 
opies of

the basi
 
onstru
tion to hide digits of a Reed-Solomon


odeword. We make sure that breaking a few of them

does not 
ompromise the se
ret (in the strong sense of

indistinguishibility and simulatability) and if one reads

only U(n) bits of the se
ret, then one 
an break many

of them with negligible probability only.

To solve the se
ond problem we make a stronger de-

mand on a valid lo
k: the fun
tion f must evaluate to

zero on exa
tly half of the points in the plane. This

allows not to reje
t in 
ase the 
he
ker sees only zeros

or only ones in the original spot
he
ks. Spe
i�
allly, we


hoose the �eld F of 
hara
teristi
 2 and insist that the

fun
tion r : F ! f0; 1g used in lo
king a se
ret x satis-

�es r(b) = r(b+ 1) (de�ning x = 1� x) for every value

b 2 F . Note that (b+1)+1 = b. We 
hoose a random r

whi
h satis�es this restri
tion. This implies that a valid

lo
k L satis�es L(a; b) = L(a; b+ 1) for every a; b 2 F

and it is enough to spe
ify only one of these values in

the lo
k, it determines the other. Thus, by spe
ifying

only half of the lo
k, we make sure that the even invalid

lo
ks satisfy the balan
ing property, ensuring the sound-

ness property of the lo
k. We pro
eed with the formal


onstru
tion and proof.

3.3 Constru
ting a lo
king system with

good parameters

Let us des
ribe our system in detail. Let q = q(n) =

!(1) be any (polynomially bounded, polynomial time


omputable) parameter. We will use 4q basi
 systems in

the 
onstru
tion. Let F be a �nite �eld of size jF j = 2

t

with t = �(logn) and jF j � 5q. Let C and D be two

disjoint subsets of F with jCj = q and jDj = 4q (think of

C as being the �rst q elements in some enumeration over

the elements of F , and D being the next 4q elements).

Our set of keys K is the set of polynomials over F with

degree smaller than 2q. Thus the binary length of a key

is k = 2qt. The se
ret determined by a key p is pjC i.e.

the values of the polynomial p on the q elements in C.

Thus the binary length of the se
ret is s = qt. Note that

the set S of all se
rets is the set of all fun
tions from C

to F .

The lo
ker: To lo
k a se
ret S : C ! F the lo
ker

starts by 
hoosing a uniform random polynomial p of

degree less than 2q with pjC = S. Then, the lo
ker

uses the basi
 lo
k to lo
k the value p(d) for ea
h d 2

D. Spe
i�
ally, the lo
ker 
hooses a uniform random

fun
tion r

d

: F ! f0; 1g satisfying r

d

(b) = r

d

(b+ 1) for

every d 2 F , and sets a basi
 lo
k f

d

(a; b) = r

d

(p(d)a�

b). Re
all that this 
onstru
tion ensures that f

d

(a; b) =

f

d

(a; b+ 1) for every a, b and d. Thus, it is enough to

store in the basi
 lo
k only the value of one of them, and

if needed we 
ompute the other. Finally, we de�ne the

lo
k to be the set of basi
 lo
ks f

d

for all d 2 D.

The 
he
ker: Given a key p 2 K, i.e., a polynomial over

F with degree smaller than 2q, and a lo
k L 2 L, the


he
ker perfoms the following test to 
he
k that the key

�ts the lo
k. The 
he
ker pi
ks a value d 2 D uniformly

at random, and performs a spot
he
k on the basi
 lo
k

f

d

: He pi
ks a triplet (a; b; t) 2 F

3

uniformly at random,

and 
he
ks that f

d

(a; b) = f

d

(a+ t; b+ t � p(d)).

3.4 Analysis of the lo
king system

3.4.1 Parameters:

Re
all that t = �(logn) and that q is an unbounded

fun
tion. We think of q as a slowly growing fun
tion

below logn. A key is of length k = 2qt whi
h is slightly

superlogarithmi
, but k = O(log

2

n). Note that k has

to be superlogarithmi
 in any lo
king system or the key


an be guessed with polynomial su

ess probability. A

se
ret is of length qt, i.e., s = O(log

2

n). A lo
k is of size

4q � jF j

2

=2 = q2

2t+1

.

We remark that we 
hose to implement k=s = 2, but

any 
onstant ratio above 1 will work here. Clearly if the

key is to determine the se
tret the key has to be at least

as long as the se
ret.

The number of bits of the lo
k the 
he
ker reads is

two. This is best possible as 
he
kability 1 implies k � U

for any lo
king system (where U is the robustness of the

lo
k), meaning too long keys.



3.4.2 Completeness:

To retrieve the se
ret from the key one evaluates p on all

points in C. Clearly, if the lo
ker follows his proto
ol,

and the 
he
ker gets the output lo
k and key, then the


he
ker will always a

ept.

3.4.3 Soundness:

We show that the soundness error is at most � � 15=16.

Consider the basi
 s
heme �rst. We make the following


laim.

Claim 3.3 Let f : F

2

! f0; 1g be a fun
tion whi
h

has exa
tly the same number of zeros and ones in its

outpout. For su
h a fun
tion, there is at most one value

x 2 F su
h that a spot
he
k of f in dire
tion x holds

with probability greater than 3=4.

Proof: Let x 6= y be two values in F . Consider the

following experiment: We pi
k unifromly and indepen-

dently at random two points A;B 2 F

2

, and 
onsider

the point C in whi
h the line through B in dire
tion y

meets the line through A in dire
tion x. The point C

is a randomly 
hosen point on the line of A in dire
-

tion x. Thus, 
omparing the value of f on A and on C

is a
tually a uniform random spot
he
k in dire
tion x.

Similarly, 
omparing the value of f on B and C is a
tu-

ally a random spot
he
k of dire
tion y. By the balan
e

property of the fun
tion, we know that for the random

points A and B it holds that with probability exa
tly 1=2

that f(A) 6= f(B). In this 
ase, one of the spot
he
ks

must fail. So with probability at least 1=2 one of the

dire
tions fail, then one of these dire
tions must have its

spot
he
ks fail with probability at least 1=4.

Now �x any lo
k L 2 L. It 
ontains the fun
tions f

d

:

F

2

! f0; 1g for every d 2 D and all of these fun
tions

have as many zeros as ones. Let g : D ! F be a fun
tion

where g(d) is the dire
tion in whi
h a spot
he
k of f

d

is

most likely to pass (we break ties arbitrarily). By 
laim

3.3, any spot
he
k on f

d

with dire
tion di�erent than

g(d), fails with probability at least 1=4. Re
all that a

key is a polynomial of degree smaller than 2q. Thus, two

di�erent keys must agree on less than 2q points inD, and

thus they disagree on more than 2q points. Therefore,

there 
ould be only one polynomial (i.e., only one key)

whi
h disagrees with g(d) on at most q points. We 
laim

that for all other keys, i.e., for ea
h key p 2 K whi
h

di�ers from g on more than q values of D, the 
he
ker

a

epts the key p on the lo
k L with probability less

than 15=16.

Sin
e the 
he
ker 
hooses a fun
tion f

d

to 
he
k uni-

formly in d 2 D, then with probability over 1=4 we have

g(d) 6= p(d). Then it performs a spot
he
k of f

d

in dire
-

tion p(d), and sin
e p(d) 6= g(d), we get that the 
he
ker

reje
ts with probability at least 1=4. Thus there is only

one key for whi
h the probability that the 
he
ker reje
ts

is at most 1=16.

Remark 3.4 We have shown that the error parameter

here is � � 15=16. We remark that one 
an de
rease the

value of this 
onstant to 7=8 but with the 
he
ker reading

only a 
onstant number of bits of the lo
k the error must

be a 
onstant. Performing h independent 
he
ks one 
an

de
rease the error to �

h

for the pri
e of multiplying the

number of bits read by the 
he
ker by h.

3.4.4 Indistinguishibility:

Let L

S

to be the distribution on lo
ks output by the

lo
ker on a se
ret S 2 S. In this se
tion we are go-

ing to show that for any two se
rets S; S

0

2 S, the two

distributions L

S

and L

S

0

are statisti
ally indistinguish-

able by any probabilisti
 ma
hine that reads at most

U(n) �

p

jF j=n bits from a sampled lo
k.

Re
all that the distribution L

S

is output on a se
ret S

by the lo
ker 
ondu
ting the following pro
edure. The

lo
ker pi
ks uniformly at random a polynomial p 2 K

su
h that pjC = S. This polynomial is the key. Then,

the lo
ker sele
ts jDj uniform random fun
tions r

d

: F !

f0; 1g satisfying r

d

(b) = r

d

(b+ 1) for any b 2 F , one

fun
tion for ea
h d 2 D,. Finally, the lo
ker sets the

lo
k to be the set of fun
tions f

d

(a; b) = r

d

(a � p(d)� b)

for all d 2 D.

Fix the value m = U(n) (the robustness of the sys-

tem). We are going to show that the distributions L

S

and L

S

0

are statisti
ally indistinguishable even if we al-

low the ma
hine to be more powerful then just reading

bits from the lo
k. Suppose instead of letting the ma-


hine read m bits of the lo
k, we let it ask m

2

queries

of the following type: The ma
hine writes a pair (d; x),

where d 2 D and x 2 F , on a spe
ial query tape, and

then it gets an answer whether p(d) = x. After mak-

ing m

2

(adaptive) queries of this type and running some

unbounded 
omputation, the ma
hine produ
es an out-

put. We 
all this ma
hine the query ma
hine. Let us

�rst show that the query ma
hine is stronger. Later,

we show that even a query ma
hine 
annot distinguish

well between L

S

and L

S

0

. To show this, we show that

a query ma
hine whi
h makes m

2

queries 
an perfe
tly

simulate the output distribution of a (regular) ma
hine

whi
h reads at most m bits of the lo
k.

Let M be a ma
hine reading at most m values of a

lo
k L. We build a query ma
hine M

0

that makes at

most m

2

queries and produ
e the same distribution of

outputs as M . (The distribution is on the 
hoi
e of a

lo
k L 2 L

S

and on the 
hoi
e of a random tape for M .)

M

0

will run M and use its m

2

queries to simulate the

bits read byM from the lo
k. M

0

also keeps tra
k ofM 's

readings so that if a bit of the lo
k is read more than on
e



by M , then M

0

returns the same value ea
h time. M

0

is

going to letM get random bits for all its queries unless it

reads two bits f

d

(a; b) and f

d

(a

0

; b

0

) for two points (a; b)

and (a

0

; b

0

) lying on the unique dire
tion p(d). In this


ase, the ma
hineM

0

feeds M with the same bit in both


ases. Sin
e f(a; b) 6= f(a; b+1) we also must 
he
k the

relation of (a; b) and (a

0

; b

0

+ 1).

This is implemented in the following manner. When-

ever M asks for a new bit f

d

(a; b) of the lo
k, ma
hine

M

0


he
ks all points (a

0

; b

0

) on whi
h M has queried f

d

previously. If (a; b) = (a

0

; b

0

) for some previous point,

then M

0

gives M the same answer as before (denote by

q

d

(a

0

; b

0

) previous answers given to M by M

0

). Simi-

larly if (a; b + 1) = (a

0

; b

0

) for a previous point, then

M

0

gives q

d

(a; b) = q

d

(a

0

; b

0

) to M . Otherwise, for

all these points in whi
h a 6= a

0

M

0

makes queries to


he
k if one of them satis�es p(d) = (b� b

0

)=(a� a

0

) or

p(d) = (b�b

0

+1)=(a�a

0

): If all queries are false, then ma-


hineM

0


hooses uniformly at random a bit, sets q

d

(a; b)

to 
ontain this bit for future use, and feeds this new bit

as an answer to M . Otherwise, if there is a point (a

0

; b

0

)

for whi
h p(d) = (b� b

0

)=(a� a

0

), then ma
hine M

0

sets

q

d

(a; b) = q

d

(a

0

; b

0

) and feeds q

d

(a; b) to M , or if there is

a point (a

0

; b

0

) for whi
h p(d) = (b�b

0

+1)=(a�a

0

), then

ma
hineM

0

sets q

d

(a; b) = q

d

(a

0

; b

0

) and feeds q

d

(a; b) to

M . (Note that in 
ase a = a

0

and b 6= b

0

queries are not

needed, the points are not on the same line.)

We go on with verifying the indistinguishibility by any

query ma
hine (making at most m

2

queries). Let S; S

0

be any two se
rets in S. We would like to show that

L

S

and L

S

0

are indistinguishable by any query ma
hine.

For a se
ret S 2 S let K

S

be the set of keys p 2 K


orresponding to se
ret S, i.e. the set of all poynomials

p of degree smaller than 2q having pjC = S. We have

jK

S

j = jF j

q

. Consider now a query ma
hine M . We

make two simplifying assumptions. First, sin
e M is

not 
omputationally bounded, we may assume thatM is

deterministi
 (pi
k the best random tape for M). Thus,

the run of M is determined by the sequen
e of answers

it re
eives for the queries it makes. Se
ond, we assume

that M \wins" as a distinguisher (or really re
overs the

se
ret S) in 
ase M gets to learn the value of the key p

on q di�erent elements of D.

(Clearly with one more query, he 
ould tell between

two di�erent se
rets.) Thus, in what follows, we assume

that runs have at most q \yes" answers in them. After

q values have been guessed 
orre
tly, the run terminates

(su

essfully).

We would like to 
ompute the probability that M

a

epts for a random key in K

S

and for a random key

in K

S

0

. Think of a run of M as a series of m

2

queries

and answers made by M and answered by the ora
le

followed by M 's a

epting or reje
ting. The run of M is


ompletely determined by the answers that M gets for

his queries sin
e M does not toss 
oins. Let T be a run,

let S be a se
ret, and denote by K

T;S

the set of all keys

for S whi
h are 
onsistent with the answers given in the

run. The probability that the run T o

urs, given that

the se
ret is S, is jK

T;S

j=jK

S

j. The distribution spa
e

is that of the lo
ker 
hoosing a random key in K

S

. The

probability that M distinguishes S from S

0

is:

�

�

�

�

�

�

X

a

epting T

jK

T;S

j

jK

S

j

�

jK

T;S

0

j

jK

S

0

j

�

�

�

�

�

�

�

X

T

�

�

�

�

jK

T;S

j

jK

S

j

�

jK

T;S

0

j

jK

S

0

j

�

�

�

�

We note that jK

S

j = jF j

q

independently of S, and in

what follows, we 
ompute for ea
h run T , a bound on

the magnitude of jK

T;S

j � jK

T;S

0

j.

Consider a parti
ular run T of the ma
hine M . By

the end of the run, M 's view 
ontains the value of p on

the pla
es d 2 D

0

for a set D

0

� D, jD

0

j � q. It also


ontains inequalities of the form p(d) 6= x for some pairs

(d; x) 2 E, where E � (D � D

0

) � F and jEj � m

2

.

To 
ompute jK

T;S

j, we start with the set K

D

0

of all

keys p 2 K

S

having the required values on D

0

, and use

the in
lusion-ex
lusion formula to remove those who are

in
onsistent with the inequalities dis
overed in the run:

jK

T;S

j =

jEj

X

i=0

(�1)

i

X

E

0

�E jE

0

j=i

jfp 2 K

D

0

jp(d) = x for every (d; x) 2 E

0

gj

Noti
e that the summand is zero if E

0


ontains two val-

ues with the same �rst 
oordinate d, and otherwise it is

jF j

q�jD

0

j�i

if i � q � jD

0

j. In parti
ular the summand

for i � q � jD

0

j is independent of the se
ret S. As the

partial sums alternate in being lower and higher than

jK

T;S

j this means that the di�eren
e jjK

T;S

j � jK

T;S

0

jj

is below the absolute value of the term with i = q�jD

0

j.

Namely,

�

�

jK

T;S

j � jK

T;S

0

j

�

�

�

�

m

2

q � jD

0

j

�

:

This means that for any run in whi
h the number of

\yes" answers given by the ora
le (i.e., the size of D

0

) is

i, the di�ern
e jjK

T;S

j � jK

T;S

0

jj is bounded by a value

that is independent of the se
rets S; S

0

and of the run

T . We are now going to sum over all runs, partitioning

them by the size ofD

0

. Note that our estimate also holds

for jD

0

j = q. In this 
ase, 0 � jK

T;S

j; jK

T;S

0

j � 1, and

thus the di�eren
e is at most 1.



Sin
e the run T is determined by the answers for the

queries, there are at most

�

m

2

i

�

runs T with i \yes" an-

swers, that is with jD

0

j = i. Therefore,

X

T

�

�

�

�

jK

T;S

j

jK

S

j

�

jK

T;S

0

j

jK

S

0

j

�

�

�

�

=

1

jF j

q

X

T

jjK

T;S

j � jK

T;S

0

jj

�

1

jF j

q

q

X

i=0

�

m

2

i

��

m

2

q � i

�

=

�

2m

2

q

�

jF j

q

<

�

m

2

jF j

�

q

Sin
e m �

p

jF j=n, this fra
tion is negligible. Thus, we

get that a negligible fra
tion is an upper bound on the

distinguishibility of any two se
rets S; S

0

by any query

ma
hine M that makes at most m

2

queries and we are

done.

3.5 Simulatability

Let us further prove that for our spe
i�
 lo
king sys-

tem indistinguishibility implies simulatability. We look

at the user invoking the simulator as a query ma
hine as

in the previous paragraph. Note that this is OK sin
e

the query ma
hine 
an perfe
tly simulate the output of

a regular user. The simulator works as follows. It begins

by setting the se
ret to be the all zeros se
ret. Then, it

uses the 
he
ker to produ
e a lo
k for this spe
i�
 se
ret,

and lets the user make U

2

queries to the key output by

the lo
ker. Later, the user 
omes up with a se
ret S and

the simulator replies whith a lo
k and key for that se
ret

su
h that the lo
k mat
hes the user's view so far.

After querying the lo
k U

2

times, the user has some

information on the key whi
h in
ludes some values that

the polynomial must evaluate to (\yes" answers) and

some values that the polynomial does not evaluate to

(\no" answers). The simulator now 
hooses a random

polynomial that mat
hes both the information given so

far on the key and the values of the polynomial as deter-

mined by the given se
ret S. The simulator outputs this

polynomial as the key for the se
ret S. and produ
es the

yet unseen part of the lo
k randomly a

ording to this

key.

Let us �rst show that su
h a polynomial 
an be 
hosen

in probabilisti
 polynomial time with a very high prob-

ability of su

ess. If the user has seen q \yes" answers,

thus he knows the value of the polynomial at q di�erent

lo
ations, then the simulation fails. This happens with

negligible probability (on a random key for the all zero

se
ret) as shown in the previous subse
tion. So suppose

the user sees less than q values of the polynomial. To


hoose a proper polynomial, the simulator �rst 
hooses

a random polynomial whi
h mat
hes the values of the

polynomial known to him. If this polynomial 
ontra-

di
ts the inequalities he knows, he tries again and again

until he su

eeds. Let us argue that there is a prob-

ability 1 � 1=n to su

eed in ea
h of these tries, thus

repeating this pro
ess more than a 
onstant times fails

with negligible probability. Sin
e the value of the poly-

nomial is predetermined in less than 2q pla
es, 
hoosing

a random polynomial that mat
hes these less than 2q

values leaves the value at any spe
i�
 other point ran-

dom. The user has seen at most U

2

inequalities (\no"

answers). Ea
h one of these inequalities is falsi�ed by

a random polynomial with probability at most 1=jF j.

Thus the probability that a random polynomial hits a

forbidden value is at most U

2

=jF j � 1=n.

Next, we 
laim that the distribution output by the

simulator is indistinguishable from a \real" distribution

the lo
ker produ
es on the se
ret S. Suppose a user A


ould tell the di�eren
e. We think of A as a querry ma-


hine whi
h 
an also look at the entire lo
k and key after

his U

2

queries. Surely, this last stage does not help him,

as in both 
ases the same thing happens: he re
eives a

uniform random lo
k-key pair des
ribing S and �tting

his view so far. But if he distinguished the two 
ases

before this last stage, then he a
tually distinguished the

all zero se
ret from S. We know that he 
an do this with

negligible probability only.

This 
ompletes the analysis of the lo
king system and

the proof of Theorem 3.

4 Proofs of Theorems 1 and 2

In this se
tion, we des
ribe a te
hnique for using lo
ks

to 
onvert PCPs robust against random queries into

PCPs robust against dire
ted queries. This te
hnique

is then applied to the PCP of Se
tion 2 to prove Theo-

rems 1 and 2.

4.1 The new PCP

The stru
ture of the new zero knowledge PCP that

we build 
onsists of three tables, PCP, PERM and MIX.

We �rst des
ribe how they are generated and then show

how to verify them. The prover exe
utes the following

steps.

1. Lo
king the PCP: The prover generates a PCP

a

ording to Lemma 2.1. This PCP 
onsists of an

array of bits, b

1

; : : : ; b

m

. For ea
h bit b

i

the prover

generates a lo
k/key pair (L

i

;K

i

) and sets PCP(i) =

L

i

.

2. Lo
king a random permutation of the keys:

Let R denote the spa
e of random 
oin tosses used



by the original veri�er. The prover generates a

random permutation � on R. For ea
h r 2 R,

the prover generates a lo
k/key pair (L

r

;K

r

) for

te value �(r) and sets PERM(r) = L

r

.

3. Allowing random a

ess to the PCP: The

prover generates MIX by

MIX(�(r)) = (r;K

a

;K

b

;K




;K

r

);

where, the original veri�er would look at bits a; b

and 
 given random string r.

We leave unspe
i�ed the parameters of the lo
ks,

whi
h will vary depending on whi
h theorem we wish

to prove.

To verify the new PCP, the new veri�er V exe
utes

the following steps.

1. V 
hooses r

0

2 R at random, and queries

MIX(r

0

) = (r;K

a

;K

b

;K




;K

r

).

2. V uses K

r

to unlo
k PERM(r) and 
he
ks that the

resulting value is indeed r

0

.

3. V 
omputes the lo
ations (a; b; 
) of the 3 bits the

original veri�er V

0

would have 
he
ked given r, and

uses K

a

;K

b

and K




to unlo
k PCP(a), PCP(b) and

PCP(
), obtaining b

a

; b

b

and b




.

4. V 
he
ks that V

0

would have a

epted (r; b

a

; b

b

; b




).

Finally, V reje
ts if any unlo
king operation or any 
he
k

fails, and a

epts otherwise.

4.2 Analysis of the new PCP

We now bound the relevant parameters of the new

PCP in terms of the parameters of the original PCP

and the parameters used in the lo
ks.

Perfe
t Completeness: It is easy to verify that if the

original PCP had perfe
t 
ompleteness then the new

PCP has perfe
t 
ompleteness.

Complexity: Suppose that the PCP used by

Lemma 2.1 was of size n and the veri�er uses logn ran-

dom bits. Then the PCP 
onstru
ted by Lemma 2.1 will

be of size O((kmn)

O(1)

), where m and k are parameters

to be set later. Thus PCP will have O((kmn)

O(1)

) lo
ks.

Similarly, MIX will have O((kmn)

O(1)

) entries, ea
h 
on-

sisting of string of length O(log n+log k+logm) (to rep-

resent r) and 4 keys, and PERM will have O((kmn)

O(1)

)

lo
ks. Ea
h key is of length O(qt) and ea
h lo
k is of

length O(2

2t

q). Hen
e, the size of the proof will be

O(2

2t

q(kmn)

O(1)

). Here q and t are the parameters used

in the lo
ks.

In ea
h iteration of the proto
ol, The veri�er queries

an entry of MIX(r

0

), whi
h is of length O(qt)+O(log n+

log k + logm). It then 
he
ks O(1) lo
ks requiring O(1)

probes ea
h.

Soundness: We argue that if the original PCP had

error at most 1� s, i.e., the veri�er a

epts x 62 L with

probability at most 1 � s, then the new PCP will have

error at most 1 � s=16. First re
all that a lo
k may

be opened at most one way without in
urring a 1=16

probability of reje
tion. By inspe
tion of the proto
ol,

there is never any advantage to 
onstru
ting a lo
k that


an't be opened, so we assume without loss of generality

that every lo
k has a well-de�ned 
ontent. Let P be the

PCP obtained by taking the 
ontents of PCP's lo
ks,

and de�ne �(r) as the 
ontents of PERM(r) (� is not

ne
essarily a permutation).

Denote by V [r℄ the run of veri�er V using random


oin tosses r. We say that r

0

2 R is good if there exists

an r 2 R su
h that r

0

= �(r) and V

0

[r℄ a

epts P , and

bad otherwise. There are at least sjRj bad r

0

, sin
e V

0

a

epts on at most (1� s)jRj tapes. We now argue that

if V 
hooses a bad r

0

he will reje
t with probability at

least 1=16; this will 
omplete the soundness analysis.

Let MIX(r

0

) = (r;K

a

;K

b

;K




;K

r

). If �(r) 6= r

0

then

V will reje
t with probability at least 1=16 in Step 2. If

�(r) = r

0

then V

0

[r℄ must reje
t P (or r

0

would be good),

in whi
h 
ase V will either reje
t with probability at least

1=16 in Step 3 (if K

a

;K

b

or K




try to unlo
k in
orre
t

values) or reje
t with probability 1 in Step 4 (sin
e V [r℄

reje
ts P ).

The soundness of the PCP may be ampli�ed by rep-

etitions in the standard manner.

Robustness: We give only a brief sket
h of this analy-

sis. We �rst argue that if (a possibly mali
ious) V makes

less than min(m;U) queries to (PCP;PERM;MIX) then,

unless a \bad event" happens, V 's view 
an be simulated

statisti
ally 
losely. Here, U (=

p

2

t

=n) is a parameter

of the lo
k box. We then show that su
h bad events

o

ur with negligible probability.

First, we simplify matters in a manner that only helps

the adversary. If V queries any bit ofMIX(i) then we give

it the entire 
ontents of MIX(i) = (r;K

a

;K

b

;K




;K

r

),

the values for the original PCP at lo
ations a; b and 


(i.e. b

a

; b

b

and b




) and the values of the lo
ks L

a

; L

b

; L




and L

r

. We assume that V queries MIX(i) only on
e for

ea
h i.

Our simulator works as follows. Whenever V queries

MIX(r

0

), the simulator S performs the following steps:

1. S randomly 
hooses r 2 R, r not previously 
hosen,

and sets �(r) = r

0

.

2. S 
omputes a; b and 
, the indi
es queried by V

0

[r℄

3. S invokes the simulator for the original PCP to ob-

tain simulated b

a

; b

b

and b




. Note that this simula-

tion depends on the values of b

i

that may already



have been spe
i�ed; indeed, some or all of (b

a

; b

b

; b




)

may already have been determined.

4. S invokes the lo
ker simulator to produ
e

(K

a

; L

a

); (K

b

; L

b

); (K




; L




); and (K

r

; L

r

):

This simulation is performed based on the now de-

termined b

a

; b

b

; b




and �(r) and on the previously

determined (by the simulation) bits of L

a

; L

b

; L




and L

r

.

Whenever V queries bits of PERM(r) = L

r

or PCP(i) =

L

i

, S 
alls the lo
k simulator to simulate the values of

these bits. In some 
ases, L

r

or L

i

may have been en-

tirely determined by the simulation, due to the simula-

tion of a MIX(r

0

) query.

If the simulators for the lo
king system and the orig-

inal PCP were always statisti
ally 
lose, then by a

straightforward argument the resulting simulation would

be statisti
ally 
lose. However, sometimes the lower-

level simulations would abort, dete
ting a situation in

whi
h they 
ould no longer guarantee a 
lose simulation.

We now bound the probability of su
h bad events. First,

the simulation of the original PCP is performed essen-

tially independent from the other simulations. We �rst

note that whenever it is invoked it is on a random string

r that is new but otherwise random. By Lemma 2.1,

up to m simulations 
an be performed with a bad event

o

uring with probability at most 1=m

k

.

Similarly, the simulator for ea
h lo
ker 
an handle up

to U queries, and the di�eren
e between the output of

the simulation and the view obtained by using a
tual

lo
k boxes will be less than 1=n




for any 
, as n grows

suÆ
iently large. Sin
e at most U simulations are in-

voked, the di�eren
e will be at most U=n




.

4.3 Setting the Parameters

To prove Theorems 1 and 2, we give appropriate set-

tings for the parameters m and k used in Lemma 2.1

and for t and q used in the lo
ker 
onstru
tion. Re
all

that n is the size of the original PCP (though we may

arti�
ially make it larger, as dis
ussed below). For The-

orem 1, we 
an set k = t = q = 
 logn for 
 a suÆ
iently

large 
onstant, so that

p

2

t

=n � U . We set m to be at

least U . Note that m

�k

is negligible. Also, note that

for large 
, as n grows suÆ
iently large, the deviations

due to the lo
k box simulators (U=n




) will be less than

n




0

�


as n grows suÆ
iently large.

Note that we are being ar
hai
 in our notion of se-


urity, typi
ally one allows for a se
urity parameter so

greater se
urity 
an be obtained for the proof of a �xed-

sized statment. We 
an obtain the same e�e
t by delib-

erately padding n, the size of the original PCP. Details

are omitted.

For Theorem 2 we assume without loss of generality

that the original PCP proving L has size n = 2

jxj




1

for




1

suÆ
iently large (if not, we 
an pad the PCP). We

then 
an set U = 2

jxj

, and set k = t = q = jxj




, for 


large enough so that

p

2

t

=n � U . Details are omitted.
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