Probabilistically Checkable Proofs with Zero Knowledge

Joe Kilian *

Abstract

We construct PCPs with strong zero-knowledge prop-
erties. First, we construct polynomially bounded (in
size) PCP’s for NP which can be checked using poly-
logarithmic queries, with polynomially low error, yet
are statistical zero-knowledge against an adversary that
makes U arbitrary queries, where U can be set to any
polynomial. Second, we construct PCPs for NEXPTIME
that can be checked using polynomially many queries,
yet are statistically zero-knowledge against any polyno-
mially bounded adversary. These PCPs are exponential
in size and have exponentially low error. Previously, it
was only known how to construct zero-knowledge PCPs
with a constant error probability.

In the course of constructing these PCP’s we abstract
a tool we call locking systems. We provide the definition
and also a locking system with very efficient parameters.
This mechanism may be useful in other settings as well.

1 Introduction
1.1 Robust PCPs

There are quite natural parallels and explicit transfor-
mations between multi-prover interactive proof systems
(MIPs) and probabilistically checkable proofs (PCPs).
However, zero-knowledge does not seem to be conserved

*NEC Research Institute. E-mail: joe@Qresearch.nj.nec.com

TDIMACS Center, P.O.Box 1179, Piscataway, NJ 08855.
Email: erez@dimacs.rutgers.edu. Part of this work was done while
the author was at Toronto University and while the author was
visiting the NEC Research Institute.

fMathematical Institute of the Hungarian Academy of Sciences,
Pf. 127, Budapest, H-1364 Hungary and Institute for Advanced
Study, Princeton, NJ 08540. Supported by NSF grants CCR-95-
03254 and DMS-9304580, a grant from Fuji Bank and the grant
OTKA-F014919. E-mail: tardos@cs.elte.hu.

Erez Petrank f

Gabor Tardost

under these transformations, and indeed the very defi-
nition of zero-knowledge for PCPs requires some care.
In the MIP framework, a prover can for example simply
refuse to answer a question that would not have been
asked by the honest verifier. However, PCPs are for-
mally viewed as sequences of bits; there is no entity in
place to judge a question’s legitimacy. Consequently, the
theorem that everything provable in MIP is provable in
zero-knowledge [2, 7] does not translate over automati-
cally.

Dwork et al. [3] introduce the notion of zero-
knowledge or “robust” PCP’s. A robust PCP (Q,V)
is a distribution 2 on PCPs along with a probabilistic
polynomial-time verifier V. The prover samples a PCP
from the given distribution, writes this sample down,
and the verifier checks the sample as it would any PCP.
(Q,V) has two new parameters, L and U, with L < U: V
can check Q by querying L bits, but one can simulate in
probabilistic polynomial time the view of any adversary
V who adaptively reads up to U arbitrary bits. As with
other models, the quality of the simulation determines
the type of zero-knowledge obtained.

For L > 3 and U essentially arbitrary, Dwork at al.
exhibit a robust PCP (Q, V") for NP. However, the error
obtained by these protocols (the probability that V' will
accept a false statement) is as big as 1 —©(1/U?). Thus,
the construction of [3] left open the following question:

Question: Does there exist a robust PCP with error
less than %?

Indeed, the best previous PCPs had error 1 — ¢ for
some small constant c. Note that the standard error-
reduction techniques do not work here, since they require
the verifier to query more bits than before, yet leave U
unchanged. As a result, L becomes greater than U.

Robust PCPs and the hardness of approximation

Our motivation for this investigation is primarily philo-
sophical. However, it is worth noting that constructions
for robust PCPs, or variants thereof have been used to
prove results on the hardness of approximation. Kilian
and Naor [8] directly use robust PCPs to establish the
strongest known hardness of approximation results for
certain problems in statistical inference. Feige and Kil-
ian [4] use PCPs inspired by robust PCPs, though with

slightly weaker properties, to show the strongest known
results for approximating the chromatic number.

1.2 The results in this paper

We exhibit new constructions for robust PCPs. The
properties of our first construction is embodied in The-
orem 1, below. In a nutshell, Theorem 1 says that there
exists robust PCPs in which the number of queries U
needed to break the statistical zero-knowledge property
is nearly exponential in the number of queries L needed
to check the proof. For a reasonable setting of the pa-
rameters in Theorem 1 and for proofs of NP, this would
mean having proofs of size polynomial in the length of
the input n, having L = polylogn (i.e., L is poly loga-
rithmic in the length of the input) and U = n°. Using
k repetitions of the basic protocol, we can achieve 2%
error with L = kpolylogn and U = n°.

Theorem 1 Let PCP (II, V') for a language L have size
at most n and require the verifier to use at most logn
coin tosses, checks at most a constant number of bits in
IT and achieves a constant soundness error probability
(smaller than 1). Let U = n®M). Then there exists a
robust PCP (Q,V") for L with the following properties:

e Size of proof: For any Il € Q, || = O(no(l)),

e Cost of verification: The honest verifier V' reads
L = 0@og°M n) bits of the proof, and tosses
0(1og® Y n) coins.

e Completeness: If the original proof 11 has perfect
completeness with respect to V', then so does any
II' € Q with respect to V'.

e Soundness: For any II' (not necessarily in), the
probability that the verifier accepts an x &€ L is at
most 1/n0(1). (Increasing the constant in the power
of n is linearly related to increasing the constant in
the cost of verification.

o Zero-Knowledge: (2 achieves statistical zero-
knowledge against any verifier V' that is allowed
to read at most U bits of TI' (uniformly selected in
Q). More precisely, there is a probabilistic polyno-
mial time simulator S (with an oracle for V') that
simulates V'’s view of II'. This simulation differs
(in the £1-norm) from V'’s actual view by less than
1/n¢ for any ¢, as n grows sufficiently large.

Theorem 1 can be generalized to handle any number
of bits read by the original PCP, and any number of
random coin tosses by the original verifier. We chose
to keep the complexity of the statement reasonable and
still to cover the PCP constructed by the PCP theorem

1.

Our second construction allows the PCPs to be expo-
nentially large, but achieves superpolynomial robustness
(with an exponentially small error). Without going into
all of the parameters, we obtain the following result.

Theorem 2 For any language L € NEXPTIME, there
exists a robust PCP (2, V') for L with the following prop-
erties.

e Cost of verification: On input x, V checks Q
using polynomially many (in |x|) queries, computa-
tions and coin tosses.

e Completeness: (2, V) has perfect completeness.

e Soundness: For any II' (not necessarily in), the
probability that the verifier accepts an © & L is at
most 27 1%1

e Zero-Knowledge: () achieves statistical zero-
knowledge against any polynomially bounded veri-

fier.

1.3 Locking systems

In the course of constructing the PCP for NP, we use a
locking system with very efficient parameters. A locking
system is a pair of efficent probabilistic machines: The
locker and the checker. The locker is given a string S to
“hide” and produces a string L (the lock) and a key K
to the lock. The lock has the following properties: It is
“hard” to find the string S hidden in the lock. Given the
key K, it is “easy” to reconstruct the secret S and check
that this is indeed the hidden string in the lock. Last,
only one string can be hidden in a lock. A legitimate
verifier will reject, with high probability, any other string
no matter what key he might possess. Hardness and
easiness in this settings refer to the number of bits in
L that have to be read. For the exact definition and
construction see Section 3.

1.4 Guide to the rest of the paper.

In Section 2 we give the basic building blocks of our
constructions. In Section 3 we provide the definition
of locking systems and construct a locking system with
efficient parameters. In Section 4 we use the efficient
locking system to prove Theorems 1 and 2.

2 PCPs robust against random queries

Suppose one has a PCP (P, Vp) for a language L such
that

° |P0| =n,

e V; flips O(logn) coins and queries O(1) bits of Py,
e (Py,Vy) has perfect completeness, and
e V4 has error bounded from 1 by a constant.

(Note that n here refers to the size of the proof and
may be exponential in the size of the input.) Then the
techniques of [3] allow us to transform (P, V) into a
new PCP (Q,V) with the following properties, where
k > 0 is an integral parameter:

e Any proof assigned nonzero probability by Q has
size O(k*nOM),

e V flips O(logn) coins and queries 3 bits of the proof.

e The proof has perfect completeness and soundness
error at most 1 — 1/0(k?).

e () is robust against k arbitrary queries. That is,
the view so obtained can be perfectly simulated in
probabilistic polynomial time.

Note that the soundness of the protocol degrades super-
linearly with respect to its robustness (k). Thus, if one
tries to reduce the error to less than % by making mul-
tiple queries to the PCP then the number of queries so
made would exceed the proof’s robustness.

As a useful special case, we consider the verifier that
simply runs the original verifier m times, with inde-
pendent coin toss sequences, and makes all of the 3m
queries specified by these runs. We achieve statistical
zero-knowledge against such verifiers as follows. Given
a DFKNS-type randomized PCP P, consider the ran-
domized PCP P' = P! generated by concatenating ¢
PCPs, each independently chosen according to P. The
verifier V' first chooses ¢ uniformly from {1,...,¢} and
then runs the original verifier V' on the ith copy of the
proof.

Suppose that P is robust against 3k queries. Then as
long as a verifier directs at most k 3-bit queries to any
subproof of P’, the view obtained will be easily simulat-
able. If one makes m independent random runs from V'’
then the probability that any one subproof is selected by
V' more than k times is bounded above by

é(N >/4’“+1 < mk+1.

k+1 Ik
If we set £ = m?, the above expression is at most
1/m*=1. Thus, when k grows as a super-constant

function of n, (P',V') is statistical (not perfect) zero-
knowledge against a verifier that makes m independent
runs of V'. The crux of our main constructions is to
code P’ in such a way that even an arbitrary verifier can
only ask essentially random questions.

Lemma 2.1 Let k and m be arbitrary parameters and
let (Po, Vo) be as above. We can transform (Py, Vo) into
a new PCP (Q,V) such that

1. Any proof assigned nonzero probability by Q) has size
O((kmn)°W),

2. V looks at 3 bits of the proof.

o

V tosses at most O(logn + logk + logm) coins

4. The proof has perfect completeness and the new ver-
ifier has error at most 1 — 1/O(k?).

5. If some verifier V' makes 3m random queries cho-
sen by m independent runs of V, then with probabil-
ity 1—1/m* V' ’s view will be simulatable in polyno-
mial time. More precisely, whether V'’s view is sim-
ulatable is a function of which location V' queries.
V" will query a “hard” set, in which the simulator
cannot perfectly simulate the results of the query,
with probability at most m™*.

By making m polynomial in n and k superconstant,
we obtain polynomial size PCPs that are statistically
zero-knowledge against a large (polynomial) number of
random queries. My making m exponential in n we ob-
tain exponential-sized PCP’s that are statistically zero-
knowledge against any polynomial number of queries.

3 Locking systems

In this section we define locking systems and con-
struct a lock which we later use in our PCP system for
NP. Loosely speaking, a lock is a string which holds a
secret. On one hand, we would like the non-legitimate
user to find it “hard” to discover the secret locked in the
string. A second demand is that given the key to the
lock, a verifier can “easily” reconstruct the secret and
verify that this is the secret hidden in the lock. The
terms “easy” and “hard” relate to the number of bits
that have to be read from the lock in order to perform
the task. Last, we require that the lock will be a commit-
ment on one secret. Namely, there is only one string that
the verifier accept with high probability (when given the
right key to the lock). For any other string and for any
possible key, the verifier will reject with high probability.
For simplicity we require that the key determines the se-
cret in deterministic polynomial time without the help
of a lock. Also, for simplicity we do not allow several
keys determining the same secret to fit a lock.

In what follows, we use n as a security parameter
given to the locking system. In the application, n will be
the size of the PCP proof, and this role of n matches the
definitions in the rest of the paper. The formal definition
follows:

Definition 3.1 (A locking system): Let S = {0,1}*°
be the set of secrets, L = {0,1}' be the set of locks and
K = {0,1}* the set of keys. Here the parameters s, I,
k (and thus the sets S, L, K) depend on the security
parameter n. A locking system is a pair of probabilistic
polynomial time procedures, the locker and the checker.
The locker takes a secret S € S as input and produces
a lock L € L and a key K € K. The checker takes
a key K € K, reads some bits of a lock L € L and
either accepts, or rejects. We say that the locker and the
checker form a locking system with error e(n), robustness
U(n), and checkability C(n) if the following conditions
hold.

1. perfect completeness: There is deterministic poly-
nomial time procedure to find the secret S from the
key K produced by the locker on input S. If L and
K are produced by the locker on input S, then the
checker on input L, K reads at most C(n) bits from
L and accepts with probability 1.

2. Soundness (or a commitment property): For every
lock L € L there is at most a single fitting key K.
For all other keys K' # K the checker rejects with
probability at least 1 — e(n).

3. Secrecy (indistinguishability): For any secret S € S,
let Lg be the distribution of the locks output by the
locker on S, then for any S,S" € S the two distribu-
tions Ls and Lg are statistically indistinguishable
for a machine that can read only U(n) bits from a
sample. Namely, for all probabilistic (computation-
ally unbounded) Turing machines A, for all con-
stants ¢ and sufficiently large n, and for all pairs
S,S8" €S,

1
|PI‘ObL€LS[A(L) =].] —PI‘ObLeLS, [A(L) =].]| < E

4. Zero knowledge (simulatability): There ezxists a prob-
abilistic polynomial time procedure that produces an-
swers to at most U(n) bit-queries to a (non-ezisting)
lock and then as it receives any secret S it produces
a valid lock, key pair for this secret with the lock
also fitting the previous answers. Far all probabilis-
tic (computationally unbounded) Turing machines
A asking the bit queries and for all secrets S this
procedure yields a distribution on locks which sta-
tistically indistinguishable from the distribution of
the locks produced by the locker on input S.

Note that simulability implies indistinguishability, we
listed the latter property separatly to emphasize the sim-
ilarity to bit commitments.

Theorem 3 Let t = O(logn) and let g be an unbounded
(non-constant) function such that 28 > 5q. There ex-
ists a locking system in which the locker locks secrets

of length qt, outputing locks of length ¢2%'*1 and keys
of length 2qt. The locking system has error ¢ = 15/16
robustness U(n) = /2t /n and checkability 2.

Remark 3.2 Note that if we let the verifier access the
lock € times, we get a system with the same robustness,
checkability 2¢ and error (15/16)°.

In the rest of the section we prove Theorem 3.
3.1 A basic construction

Inuitively, the main idea of our construction is to use
directions in the plane. Fix a direction of a finite plane,
and choose a binary function which is a constant along
each line in this direction. The direction will be the
secret and the key, and the lock will be the truth-table of
the function. In the next paragraph, we implement this
idea in details, but before doing that note that this has
the flavor of a locking system. In order to discover the
hidden direction without having the key, one must read
“lots” of points from the function, whereas given the
direction, one may “easily” check that this direction is
special for this function. Let us proceed and implement
this idea while stressing that as is, this idea is not enough
to achieve a locking system.

Consider a polynomial size finite field F' which will
also function as the set of all possible secrets S. To
hide an element S € F' choose a random function r :
F — {0,1} and output the truth table of the function
f: F? - {0,1} defined by f(a,b) = r(aS —b). Given
S, a spotcheck is verifying f(a,b) = f(a + t,b+ St) for
a random triplet (a,b,t) € F?. Completeness-wise it is
easy to check that the spotchecks must hold for any valid
lock for S. In terms of soundness, a deceiving lock has
a good chance for the spotchecks on f to hold for two
different values S and S’ only if f is almost a constant
(we prove this later in the special case we need). So in
order to verify that a locker L hides the secret S, the
checker has to make a constant number of spotchecks,
and to reject if one of them fails or if the values he gets do
not seem to be uniformly distributed. After doing this,
the verifier can be convinced that the lock is committed
indeed to S with high (yet constant) error probability
1—e

In terms of indistinguishibility, this system is not se-
cure even against a checker that reads two points out of
the lock. With probability 1/|F| the checker looks at the
right direction and gets positive indication to that. How-
ever, this construction seems to be a first step in the right
direction since with “quite good” probability the checker
will have to read “many” points before encountering two
points of the predetermined direction S. And before en-
countering two points on direction S, the checker only
sees uniformly chosen random bits (the function r). We
shall improve the security parameters later.

3.2 Drawbacks of the basic constructions

Let us list the drawbacks of this primitive lock and
then proceed with solving them.

1. Indisinguishibility not achieved: The role of
the key and the secret are both played by the value
S. Thus, if one suspects the value of the secret it
can be easily checked. We want that even if one
knows that the secret is one of two possible values,
limited access to the valid lock should not help him
decide which value is correct. Furthemore, even if
one does not know the value of S he might still guess
and check. For a key of logarithmic length (which is
a requirement if the truth table is to be polynomial
in size), the probability of success is not negligible.
To summarize, indistinguishibility is not achieved.

2. Completeness is not perfect: Finally, one
prefers perfect completeness, i.e. no chance of rejec-
tion for a valid lock. Here an unlucky checker can
reject after seeing only zeros of a valid lock (an un-
lucky legitimate locker can even produce a constant
f that is always rejected).

Before presenting our locking system we give an intuitive
account of how we solve both of the above problems.

We solve the first problem by using many copies of
the basic construction to hide digits of a Reed-Solomon
codeword. We make sure that breaking a few of them
does not compromise the secret (in the strong sense of
indistinguishibility and simulatability) and if one reads
only U(n) bits of the secret, then one can break many
of them with negligible probability only.

To solve the second problem we make a stronger de-
mand on a valid lock: the function f must evaluate to
zero on exactly half of the points in the plane. This
allows not to reject in case the checker sees only zeros
or only ones in the original spotchecks. Specificallly, we
choose the field F' of characteristic 2 and insist that the
function r : F — {0, 1} used in locking a secret x satis-
fies r(b) = r(b+ 1) (defining T = 1 — z) for every value
b € F. Note that (b+ 1)+ 1 =b. We choose a random r
which satisfies this restriction. This implies that a valid
lock L satisfies L(a,b) = L(a,b+ 1) for every a,b € F
and it is enough to specify only one of these values in
the lock, it determines the other. Thus, by specifying
only half of the lock, we make sure that the even invalid
locks satisfy the balancing property, ensuring the sound-
ness property of the lock. We proceed with the formal
construction and proof.

3.3 Constructing a locking system with
good parameters

Let us describe our system in detail. Let ¢ = g(n) =
w(1) be any (polynomially bounded, polynomial time

computable) parameter. We will use 4¢ basic systems in
the construction. Let F' be a finite field of size |F| = 2°
with t = O(logn) and |F| > 5¢. Let C and D be two
disjoint subsets of F with |C| = q and | D| = 4¢ (think of
C as being the first g elements in some enumeration over
the elements of F', and D being the next 4¢ elements).
Our set of keys K is the set of polynomials over F' with
degree smaller than 2¢. Thus the binary length of a key
is k = 2qt. The secret determined by a key p is p|C' i.e.
the values of the polynomial p on the ¢ elements in C.
Thus the binary length of the secret is s = gt. Note that
the set S of all secrets is the set of all functions from C'
to F.

The locker: To lock a secret S : C' — F the locker
starts by choosing a uniform random polynomial p of
degree less than 2¢ with p|C = S. Then, the locker
uses the basic lock to lock the value p(d) for each d €
D. Specifically, the locker chooses a uniform random
function rq : F' — {0,1} satisfying r4(b) = r4(b+ 1) for
every d € F', and sets a basic lock fi(a,b) = rq(p(d)a —
b). Recall that this construction ensures that fs(a,b) =
fa(a,b+ 1) for every a, b and d. Thus, it is enough to
store in the basic lock only the value of one of them, and
if needed we compute the other. Finally, we define the
lock to be the set of basic locks fy for all d € D.

The checker: Given akey p € K, i.e., a polynomial over
F with degree smaller than 2¢, and a lock L € L, the
checker perfoms the following test to check that the key
fits the lock. The checker picks a value d € D uniformly
at random, and performs a spotcheck on the basic lock
fa: He picks a triplet (a,b,t) € F? uniformly at random,
and checks that fi(a,b) = fala +t, b+t - p(d)).

3.4 Analysis of the locking system

3.4.1 Parameters:

Recall that ¢ = ©(logn) and that ¢ is an unbounded
function. We think of ¢ as a slowly growing function
below logn. A key is of length k& = 2¢t which is slightly
superlogarithmic, but & = O(logn). Note that k has
to be superlogarithmic in any locking system or the key
can be guessed with polynomial success probability. A
secret is of length ¢t, i.e., s = O(log” n). A lock is of size
4q-|F|? /2 = q2%+1.

We remark that we chose to implement k/s = 2, but
any constant ratio above 1 will work here. Clearly if the
key is to determine the sectret the key has to be at least
as long as the secret.

The number of bits of the lock the checker reads is
two. This is best possible as checkability 1 implies k > U
for any locking system (where U is the robustness of the
lock), meaning too long keys.

3.4.2 Completeness:

To retrieve the secret from the key one evaluates p on all
points in C. Clearly, if the locker follows his protocol,
and the checker gets the output lock and key, then the
checker will always accept.

3.4.3 Soundness:

We show that the soundness error is at most € < 15/16.
Consider the basic scheme first. We make the following
claim.

Claim 3.3 Let f : F? — {0,1} be a function which
has exactly the same number of zeros and ones in its
outpout. For such a function, there is at most one value
x € F such that a spotcheck of f in direction x holds
with probability greater than 3/4.

Proof: Let z # y be two values in F'. Consider the
following experiment: We pick unifromly and indepen-
dently at random two points A, B € F?, and consider
the point C' in which the line through B in direction y
meets the line through A in direction z. The point C
is a randomly chosen point on the line of A in direc-
tion x. Thus, comparing the value of f on A and on C
is actually a uniform random spotcheck in direction z.
Similarly, comparing the value of f on B and C is actu-
ally a random spotcheck of direction y. By the balance
property of the function, we know that for the random
points A and B it holds that with probability exactly 1/2
that f(A) # f(B). In this case, one of the spotchecks
must fail. So with probability at least 1/2 one of the
directions fail, then one of these directions must have its
spotchecks fail with probability at least 1/4. [l

Now fix any lock L € L. It contains the functions f; :
F? — {0,1} for every d € D and all of these functions
have as many zeros as ones. Let g : D — F be a function
where g(d) is the direction in which a spotcheck of fy is
most likely to pass (we break ties arbitrarily). By claim
3.3, any spotcheck on f; with direction different than
g(d), fails with probability at least 1/4. Recall that a
key is a polynomial of degree smaller than 2¢q. Thus, two
different keys must agree on less than 2¢ points in D, and
thus they disagree on more than 2q points. Therefore,
there could be only one polynomial (i.e., only one key)
which disagrees with g(d) on at most ¢ points. We claim
that for all other keys, i.e., for each key p € K which
differs from g on more than g values of D, the checker
accepts the key p on the lock L with probability less
than 15/16.

Since the checker chooses a function fy to check uni-
formly in d € D, then with probability over 1/4 we have
g(d) # p(d). Then it performs a spotcheck of fy in direc-
tion p(d), and since p(d) # g(d), we get that the checker

rejects with probability at least 1/4. Thus there is only
one key for which the probability that the checker rejects
is at most 1/16.

Remark 3.4 We have shown that the error parameter
here is € < 15/16. We remark that one can decrease the
value of this constant to 7/8 but with the checker reading
only a constant number of bits of the lock the error must
be a constant. Performing h independent checks one can
decrease the error to €" for the price of multiplying the
number of bits read by the checker by h.

3.4.4 Indistinguishibility:

Let Lg to be the distribution on locks output by the
locker on a secret S € S. In this section we are go-
ing to show that for any two secrets S, S’ € S, the two
distributions Lg and Lg' are statistically indistinguish-
able by any probabilistic machine that reads at most
U(n) < +/|F|/n bits from a sampled lock.

Recall that the distribution Lg is output on a secret, S
by the locker conducting the following procedure. The
locker picks uniformly at random a polynomial p € K
such that p|C = S. This polynomial is the key. Then,
the locker selects | D| uniform random functions rq4 : F —
{0,1} satisfying r4(b) = rq(b+ 1) for any b € F, one
function for each d € D,. Finally, the locker sets the
lock to be the set of functions fy(a,b) = rq(a - p(d) — b)
for alld € D.

Fix the value m = U(n) (the robustness of the sys-
tem). We are going to show that the distributions Lg
and Lg are statistically indistinguishable even if we al-
low the machine to be more powerful then just reading
bits from the lock. Suppose instead of letting the ma-
chine read m bits of the lock, we let it ask m? queries
of the following type: The machine writes a pair (d,),
where d € D and = € F, on a special query tape, and
then it gets an answer whether p(d) = z. After mak-
ing m? (adaptive) queries of this type and running some
unbounded computation, the machine produces an out-
put. We call this machine the query machine. Let us
first show that the query machine is stronger. Later,
we show that even a query machine cannot distinguish
well between Lg and Lg/. To show this, we show that
a query machine which makes m? queries can perfectly
simulate the output distribution of a (regular) machine
which reads at most m bits of the lock.

Let M be a machine reading at most m values of a
lock L. We build a query machine M’ that makes at
most m? queries and produce the same distribution of
outputs as M. (The distribution is on the choice of a
lock L € Lg and on the choice of a random tape for M)
M’ will run M and use its m? queries to simulate the
bits read by M from the lock. M’ also keeps track of M’s
readings so that if a bit of the lock is read more than once

by M, then M’ returns the same value each time. M’ is
going to let M get random bits for all its queries unless it
reads two bits fy(a,b) and fy(a', ") for two points (a,b)
and (a',b") lying on the unique direction p(d). In this
case, the machine M’ feeds M with the same bit in both
cases. Since f(a,b) # f(a,b+ 1) we also must check the
relation of (a,b) and (a’, b’ + 1).

This is implemented in the following manner. When-
ever M asks for a new bit fy(a,b) of the lock, machine
M' checks all points (a',b") on which M has queried fy
previously. If (a,b) = (a’,b") for some previous point,
then M’ gives M the same answer as before (denote by
qa(a',b") previous answers given to M by M'). Simi-
larly if (a,b + 1) = (a’,b') for a previous point, then
M' gives qq(a,b) = qq(a',b’) to M. Otherwise, for
all these points in which a # a' M' makes queries to
check if one of them satisfies p(d) = (b —b')/(a — a’) or
p(d) = (b—b'+1)/(a—a'). If all queries are false, then ma-
chine M’ chooses uniformly at random a bit, sets q4(a, b)
to contain this bit for future use, and feeds this new bit
as an answer to M. Otherwise, if there is a point (a’,d’)
for which p(d) = (b—10")/(a — a'), then machine M’ sets
qa(a,b) = qa(a’,b") and feeds q4(a,b) to M, or if there is
a point (a’, ") for which p(d) = (b—b'+1)/(a—a’), then
machine M’ sets gq4(a,b) = gq(a’, ') and feeds gq(a,b) to
M. (Note that in case a = a' and b # b’ queries are not
needed, the points are not on the same line.)

We go on with verifying the indistinguishibility by any
query machine (making at most m? queries). Let S, S’
be any two secrets in S. We would like to show that
Lg and Lg are indistinguishable by any query machine.
For a secret S € S let Kg be the set of keys p € K
corresponding to secret S, i.e. the set of all poynomials
p of degree smaller than 2¢ having p|C = S. We have
|Ks| = |F|4. Consider now a query machine M. We
make two simplifying assumptions. First, since M is
not computationally bounded, we may assume that M is
deterministic (pick the best random tape for M). Thus,
the run of M is determined by the sequence of answers
it receives for the queries it makes. Second, we assume
that M “wins” as a distinguisher (or really recovers the
secret S) in case M gets to learn the value of the key p
on ¢ different elements of D.

(Clearly with one more query, he could tell between
two different secrets.) Thus, in what follows, we assume
that runs have at most ¢ “yes” answers in them. After
q values have been guessed correctly, the run terminates
(successfully).

We would like to compute the probability that M
accepts for a random key in Kg and for a random key
in Kg. Think of a run of M as a series of m? queries
and answers made by M and answered by the oracle
followed by M’s accepting or rejecting. The run of M is
completely determined by the answers that M gets for

his queries since M does not toss coins. Let T be a run,
let S be a secret, and denote by K7 g the set of all keys
for S which are consistent with the answers given in the
run. The probability that the run T occurs, given that
the secret is S, is |Kr,g|/|Ks|. The distribution space
is that of the locker choosing a random key in Kg. The
probability that M distinguishes S from S’ is:

> |K7,s| |K7s|
|Ks| | K|

accepting T

<y |Kr,s| |Kr,s|
T IKs| K

We note that |Kg| = |F|? independently of S, and in
what follows, we compute for each run 7', a bound on
the magnitude of |Kr,s| — |Kr,s]-

Consider a particular run T of the machine M. By
the end of the run, M’s view contains the value of p on
the places d € D' for a set D' C D, |D'| < ¢. Tt also
contains inequalities of the form p(d) # x for some pairs
(d,x) € E, where E C (D — D') x F and |E| < m?.
To compute |Krg|, we start with the set Kp of all
keys p € Ks having the required values on D’, and use
the inclusion-exclusion formula to remove those who are
inconsistent with the inequalities discovered in the run:

||

|Krs| = (=1)'

=0

Z {p € Kp/|p(d) = = for every (d,z) € E'}|
E'CE|F|=i

Notice that the summand is zero if E' contains two val-
ues with the same first coordinate d, and otherwise it is
|F|o=1P'I= if § < ¢ — |D'|. In particular the summand
for i < g —|D’| is independent of the secret S. As the
partial sums alternate in being lower and higher than
|K7,s| this means that the difference ||Kr s| — |K7,5||
is below the absolute value of the term with i = g —|D’|.

Namely,
m2
<(o"on)
q—1|D'|

This means that for any run in which the number of
“yes” answers given by the oracle (i.e., the size of D') is
i, the differnce || K7 s| — |K71,5|| is bounded by a value
that is independent of the secrets S, S’ and of the run
T. We are now going to sum over all runs, partitioning
them by the size of D'. Note that our estimate also holds
for |D'| = ¢. In this case, 0 < |K7g|,| K7 s| < 1, and
thus the difference is at most 1.

||K7,s| — K15

Since the run T is determined by the answers for the
2
queries, there are at most ("}) runs T with i “yes” an-
swers, that is with |D'| = i. Therefore,

3 |Kr,s| |Krs|

1
WZHKTM - |[Krs||
T

= | [Ks| |Ks
1 & (m? m?
<
< w2 (1))
m2
)
|F'|?
(i)
< _
||

Since m < \/|F|/n, this fraction is negligible. Thus, we
get that a negligible fraction is an upper bound on the
distinguishibility of any two secrets S, S’ by any query
machine M that makes at most m? queries and we are
done.

3.5 Simulatability

Let us further prove that for our specific locking sys-
tem indistinguishibility implies simulatability. We look
at the user invoking the simulator as a query machine as
in the previous paragraph. Note that this is OK since
the query machine can perfectly simulate the output of
a regular user. The simulator works as follows. It begins
by setting the secret to be the all zeros secret. Then, it
uses the checker to produce a lock for this specific secret,
and lets the user make U2 queries to the key output by
the locker. Later, the user comes up with a secret S and
the simulator replies whith a lock and key for that secret
such that the lock matches the user’s view so far.

After querying the lock U? times, the user has some
information on the key which includes some values that
the polynomial must evaluate to (“yes” answers) and
some values that the polynomial does not evaluate to
(“no” answers). The simulator now chooses a random
polynomial that matches both the information given so
far on the key and the values of the polynomial as deter-
mined by the given secret S. The simulator outputs this
polynomial as the key for the secret S. and produces the
yet unseen part of the lock randomly according to this
key.

Let us first show that such a polynomial can be chosen
in probabilistic polynomial time with a very high prob-
ability of success. If the user has seen ¢ “yes” answers,
thus he knows the value of the polynomial at ¢ different
locations, then the simulation fails. This happens with
negligible probability (on a random key for the all zero
secret) as shown in the previous subsection. So suppose
the user sees less than ¢ values of the polynomial. To
choose a proper polynomial, the simulator first chooses

a random polynomial which matches the values of the
polynomial known to him. If this polynomial contra-
dicts the inequalities he knows, he tries again and again
until he succeeds. Let us argue that there is a prob-
ability 1 — 1/n to succeed in each of these tries, thus
repeating this process more than a constant times fails
with negligible probability. Since the value of the poly-
nomial is predetermined in less than 2¢ places, choosing
a random polynomial that matches these less than 2g¢
values leaves the value at any specific other point ran-
dom. The user has seen at most U? inequalities (“no”
answers). Each one of these inequalities is falsified by
a random polynomial with probability at most 1/|F]|.
Thus the probability that a random polynomial hits a
forbidden value is at most U?/|F| < 1/n.

Next, we claim that the distribution output by the
simulator is indistinguishable from a “real” distribution
the locker produces on the secret S. Suppose a user A
could tell the difference. We think of A as a querry ma-
chine which can also look at the entire lock and key after
his U? queries. Surely, this last stage does not help him,
as in both cases the same thing happens: he receives a
uniform random lock-key pair describing S and fitting
his view so far. But if he distinguished the two cases
before this last stage, then he actually distinguished the
all zero secret from S. We know that he can do this with
negligible probability only.

This completes the analysis of the locking system and
the proof of Theorem 3. [l

4 Proofs of Theorems 1 and 2

In this section, we describe a technique for using locks
to convert PCPs robust against random queries into
PCPs robust against directed queries. This technique
is then applied to the PCP of Section 2 to prove Theo-
rems 1 and 2.

4.1 The new PCP

The structure of the new zero knowledge PCP that
we build consists of three tables, PCP, PERM and MIX.
We first describe how they are generated and then show
how to verify them. The prover executes the following
steps.

1. Locking the PCP: The prover generates a PCP
according to Lemma 2.1. This PCP consists of an
array of bits, by, ..., b,. For each bit b; the prover
generates a lock/key pair (L;, K;) and sets PCP(i) =
L;.

2. Locking a random permutation of the keys:
Let R denote the space of random coin tosses used

by the original verifier. The prover generates a
random permutation m on R. For each r € R,
the prover generates a lock/key pair (L,, K,) for
te value m(r) and sets PERM(r) = L,.

3. Allowing random access to the PCP: The
prover generates MIX by

MIX(7(r)) = (r, Ko, Ky, K., K),

where, the original verifier would look at bits a,b
and ¢ given random string r.

We leave unspecified the parameters of the locks,
which will vary depending on which theorem we wish
to prove.

To verify the new PCP, the new verifier V' executes
the following steps.

1. V chooses ' € R at random,
MIX() = (r, Ko, Ky, Ko, Ko).

and queries

2. V uses K, to unlock PERM(r) and checks that the
resulting value is indeed 7'.

3. V computes the locations (a,b,c) of the 3 bits the
original verifier V5 would have checked given r, and
uses K,, Kj and K, to unlock PCP(a), PCP(b) and
PCP(c), obtaining b,, b, and b,.

4. V checks that V4 would have accepted (r, b, by, b.).

Finally, V rejects if any unlocking operation or any check
fails, and accepts otherwise.

4.2 Analysis of the new PCP

We now bound the relevant parameters of the new
PCP in terms of the parameters of the original PCP
and the parameters used in the locks.

Perfect Completeness: It is easy to verify that if the
original PCP had perfect completeness then the new
PCP has perfect completeness.

Complexity: Suppose that the PCP wused by
Lemma 2.1 was of size n and the verifier uses logn ran-
dom bits. Then the PCP constructed by Lemma 2.1 will
be of size O((kmn)©(")), where m and k are parameters
to be set later. Thus PCP will have O((kmn)°™")) locks.
Similarly, MIX will have O((kmn)®™)) entries, each con-
sisting of string of length O(log n+logk+logm) (to rep-
resent) and 4 keys, and PERM will have O((kmn)°(1))
locks. Each key is of length O(gt) and each lock is of
length O(2%!q). Hence, the size of the proof will be
0(2%q(kmn)®M). Here ¢ and t are the parameters used
in the locks.

In each iteration of the protocol, The verifier queries
an entry of MIX(r'), which is of length O(qt) + O(log n+

log k 4+ logm). It then checks O(1) locks requiring O(1)
probes each.

Soundness: We argue that if the original PCP had
error at most 1 — s, i.e., the verifier accepts € L with
probability at most 1 — s, then the new PCP will have
error at most 1 — s/16. First recall that a lock may
be opened at most one way without incurring a 1/16
probability of rejection. By inspection of the protocol,
there is never any advantage to constructing a lock that
can’t be opened, so we assume without loss of generality
that every lock has a well-defined content. Let P be the
PCP obtained by taking the contents of PCP’s locks,
and define 7(r) as the contents of PERM(r) (7 is not
necessarily a permutation).

Denote by V[r] the run of verifier V' using random
coin tosses r. We say that r' € R is good if there exists
an r € R such that ' = w(r) and Vy[r] accepts P, and
bad otherwise. There are at least s|R| bad ', since Vj
accepts on at most (1 — s)|R| tapes. We now argue that
if V' chooses a bad ' he will reject with probability at
least 1/16; this will complete the soundness analysis.
Let MIX(r") = (r,K,, Ky, K., K,). If n(r) # 7' then
V' will reject with probability at least 1/16 in Step 2. If
m(r) = r’ then Vp[r] must reject P (or ' would be good),
in which case V' will either reject with probability at least
1/16 in Step 3 (if K,, K or K. try to unlock incorrect
values) or reject with probability 1 in Step 4 (since Vr]
rejects P).

The soundness of the PCP may be amplified by rep-

etitions in the standard manner.
Robustness: We give only a brief sketch of this analy-
sis. We first argue that if (a possibly malicious) V' makes
less than min(m, U) queries to (PCP, PERM, MIX) then,
unless a “bad event” happens, V’s view can be simulated
statistically closely. Here, U (= 4/2t/n) is a parameter
of the lock box. We then show that such bad events
occur with negligible probability.

First, we simplify matters in a manner that only helps
the adversary. If V' queries any bit of MIX(7) then we give
it the entire contents of MIX(i) = (r, K., Ky, K., K;),
the values for the original PCP at locations a,b and ¢
(i.e. by, by and b.) and the values of the locks L, Ly, L.
and L,. We assume that V' queries MIX(7) only once for
each i.

Our simulator works as follows. Whenever V' queries
MIX(r"), the simulator S performs the following steps:

1. S randomly chooses r € R, r not previously chosen,
and sets 7(r) = r'.

2. S computes a, b and ¢, the indices queried by Vy[r]

3. S invokes the simulator for the original PCP to ob-
tain simulated b,, b, and b.. Note that this simula-
tion depends on the values of b; that may already

have been specified; indeed, some or all of (b,, by, b..)
may already have been determined.

4. S invokes the locker simulator to produce
(Ka7 La)a (Kba Lb)7 (Kca LC): and (KTa Lr)

This simulation is performed based on the now de-
termined b, by, b, and m(r) and on the previously
determined (by the simulation) bits of L, Ly, L.
and L,.

Whenever V' queries bits of PERM(r) = L, or PCP(i) =
L;, S calls the lock simulator to simulate the values of
these bits. In some cases, L, or L; may have been en-
tirely determined by the simulation, due to the simula-
tion of a MIX(r") query.

If the simulators for the locking system and the orig-
inal PCP were always statistically close, then by a
straightforward argument the resulting simulation would
be statistically close. However, sometimes the lower-
level simulations would abort, detecting a situation in
which they could no longer guarantee a close simulation.
We now bound the probability of such bad events. First,
the simulation of the original PCP is performed essen-
tially independent from the other simulations. We first
note that whenever it is invoked it is on a random string
r that is new but otherwise random. By Lemma 2.1,
up to m simulations can be performed with a bad event
occuring with probability at most 1/m*.

Similarly, the simulator for each locker can handle up
to U queries, and the difference between the output of
the simulation and the view obtained by using actual
lock boxes will be less than 1/n¢ for any ¢, as n grows
sufficiently large. Since at most U simulations are in-
voked, the difference will be at most U/n°.

4.3 Setting the Parameters

To prove Theorems 1 and 2, we give appropriate set-
tings for the parameters m and k used in Lemma 2.1
and for ¢ and ¢ used in the locker construction. Recall
that n is the size of the original PCP (though we may
artificially make it larger, as discussed below). For The-
orem 1, we can set k =t = g = clogn for ¢ a sufficiently
large constant, so that /2t/n > U. We set m to be at
least U. Note that m~* is negligible. Also, note that
for large ¢, as n grows sufficiently large, the deviations
due to the lock box simulators (U/n°) will be less than
n~¢ as n grows sufficiently large.

Note that we are being archaic in our notion of se-
curity, typically one allows for a security parameter so
greater security can be obtained for the proof of a fixed-
sized statment. We can obtain the same effect by delib-
erately padding n, the size of the original PCP. Details
are omitted.

For Theorem 2 we assume without loss of generality
that the original PCP proving L has size n = 2I*I"" for
¢q sufficiently large (if not, we can pad the PCP). We
then can set U = 2%/, and set k =t = ¢ = ||, for ¢
large enough so that 1/2t/n > U. Details are omitted.

5 Acknowledgments

We thank Sanjeev Arora, Noam Nisan, and Mike Saks
for helpful discussions.

References

[1] S. Arora, C. Lund, R. Motwani, M. Sudan, and
M. Szegedy. Proof verification and intractability of
approximation problems. In Proc. 33rd IEEE Symp.
on Foundations of Computer Science, pages 13-22,
1992.

[2] M. Ben-Or, S. Goldwasser, J. Kilian, and A.
Wigderson. Multi-Prover Interactive Proofs: How
to Remove Intractability Assumptions, Proc. of
STOCSS.

[3] C. Dwork, U. Feige, J. Kilian, M. Naor, S. Safra,
“Low Communication, 2-Prover Zero-Knowledge
Proofs for NP” Advances in Cryptology: Crypto 92,
pages 217-229.

[4] U. Feige and J. Kilian. “Zero-Knowledge and the
Chromatic Number” In Proceedings, 1996 Confer-
ence on Computational Complexity.

[5] S. Goldwasser, S. Micali, and C. Rackoff. The
Knowledge Complexity of Interactive Proof Sys-
tems. SIAM J. Comput., 18 (1):186-208, 1989.

[6] J. Hastad. Testing of the long code and hardness
for clique Proc. 28th ACM Symp. on Theory of
Computing, pages 11-19,1996.

[7] J. Kilian. Uses of randomness in algorithms and
protocols. Ph.D. thesis.

[8] J. Kilian and M. Naor. On the Complexity of Statis-
tical Reasoning. In Proceedings, Israeli Symposium

on Theory of Computing and Systems, pages 209—
217, 1995.

