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Abstrat

J. Urrutia asked the following question. Given a family of pairwise disjoint ompat onvex

sets on a sheet of glass, is it true that one an always separate from one another a onstant

fration of them using edge-to-edge straight-line uts? We answer this question in the negative,

and establish some lower and upper bounds for the number of separable sets. We also onsider

the speial ase when the family onsists of intervals, axis-parallel retangles, `fat' sets, or `fat'

sets with bounded size.

1 Introdution

Let P be a subset of the plane, and let H

1

and H

2

be the two open half-planes bounded by a

straight line `. Cutting P along `, we obtain two piees P

1

= P \H

1

and P

2

= P \H

2

. We say

that m pairwise disjoint sets in the plane are separable if we an ut the plane into two parts, and

suessively ut eah part into smaller piees until we obtain m piees, eah ontaining preisely

one of our m sets. (See Figure 1.)

For two positive funtions de�ned on the positive integers, we use the notation f(n) = 
(g(n))

to express that f(n) > g(n) for some positive onstant .

Jorge Urrutia [U96℄ raised the following problem. Is it true that any family of n pairwise disjoint

ompat onvex sets in the plane has at least 
(n) separable members?

In the following speial ase, the answer is easily seen to be in the aÆrmative.
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Figure 1.

Proposition 1.1 Let R > r > 0 be �xed, and let F be a family of n pairwise disjoint ompat

onvex sets in the plane, eah ontaining a irle of radius r and ontained in another irle of

radius R.

Then F has at least n separable members, where  = (r;R) > 0.

Proof: Choose j at random, uniformly in [0; 8R℄, and ut the plane into squares along the lines

x = 8Ri+ j and y = 8Ri+ j for all integers i. The expeted number of members of F interseted

by these lines is at most n=2. Sine there are at most 64R

2

=(r

2

�) members of F ontained in the

same square, we an �nd a separable subfamily of size at least

�

r

2

�=(128R

2

)

�

n. 2

The above statement does not remain true without the assumption on the irumradii and

inradii of the members of F . That is, the answer to Urrutia's question, in full generality, is in the

negative.

Theorem 1.2 There exists a family of n pairwise disjoint straight-line segments in the plane suh

that all separable subfamilies are of size O(n

log 2= log 3

).

Proof: It is enough to show that for every positive integer k there is a family C

k

of 3

k

disjoint

intervals, suh that C

k

has at most 2

k

separable members.

We onstrut C

k

reursively. During the onstrution we make sure that the endpoints of the

intervals in C

k

are in general position: no three of them lie on the same straight line.
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The ase k = 1 is shown on Figure 2(a). Notie that, for an arbitrary segment pq and any

" > 0, the onstrution an be arried out in suh a way that eah of the three segments has one

of its endpoints in the disk of radius " around p and the other in the disk of radius " around q (see

Figure 2(b)). Denote suh a on�guration C

1

(p; q; ").

For k > 1, replae eah segment pq of C

k�1

by C

1

(p; q; "). If " > 0 is suÆiently small, the

resulting family C

k

onsists of disjoint segments. Consider a separable subfamily F . It ontains at

most two members from eah of the sets C

1

(p; q; "). Let F

0

be the members pq of C

k�1

suh that

F ontains at least one element from C

1

(p; q; "). Reall that the segments of C

k�1

are in general

position. Thus, if " is suÆiently small, then F

0

is also separable. Thus, jFj � 2jF

0

j � 2

k

. 2

(a) (b)

2ε

Figure 2.

Next we state some positive results.

Theorem 1.3 Any family of n pairwise disjoint ompat onvex sets in the plane has at least


(n

1=3

) separable members.

The onstrution proving Theorem 1.2 uses only segments. For families of segments, the esti-

mate in Theorem 1.3 an be improved.

Theorem 1.4 Any family of n pairwise disjoint straight-line segments in the plane has at least


(n

1=2

) separable members.

It seems plausible that, for families of axis-parallel retangles, the answer to Urrutia's question

is in the aÆrmative. We an only prove a somewhat weaker result.
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Theorem 1.5 Any family of n pairwise disjoint axis-parallel retangles in the plane has 
(n= log n)

separable members.

We believe that among the worst possible families of n onvex sets from the point of view

of separability, i.e., among those whih have the fewest number of separable members, there is

one whih ontains only straight-line segments. This onjeture is supported by the fat that for

families of not too `longish' sets, we an establish muh stronger results than Theorem 1.4.

A family F of plane onvex sets is alled "-fat if, for eah member of F , the ratio of the inradius

and the irumradius is at least " (f. [MMP91℄).

Theorem 1.6 For any " > 0, there exists a onstant 

"

> 0 suh that every "-fat family of n

pairwise disjoint ompat onvex sets in the plane has at least 

"

n= log n separable members.

The proofs of Theorems 1.3{1.5 are presented in Setion 2. Setion 3 ontains the proof of the

last theorem and a orollary. In Setion 4, we improve Theorem 1.6 in the speial ase when the

ratio of the sizes of the largest vs. the smallest members of a family of size n is bounded, say, by a

polynomial of n. Unfortunately, the improved bound given in Theorem 4.1 is still sublinear in n,

unless the ratio is bounded by a onstant, in whih ase Theorem 4.1 redues to Proposition 1.1.

In Setion 5, we disuss analogous questions in higher dimensions, while the last setion ontains a

few onluding remarks.

2 Proofs of Theorems 1.3{1.5

In order to establish Theorem 1.3, we need four simple but useful observations. As usual, we �x an

orthogonal system of oordinates (x; y) in the plane, and all the diretions of the x-axis and the

y-axis horizontal and vertial, respetively.

Lemma 2.1 Given n ompat onvex sets in the plane and a positive integer k < n, there exists a

vertial line ` satisfying at least one of the following two onditions:

(i) ` intersets at least k + 1 sets;

(ii) both half-planes bounded by ` ontain at least (n� k)=2 sets.

Proof: For a ompat set F in the family onsider the largest x oordinate x

F

of a point in the

set and let x

0

be the d(n� k)=2e-th smallest of these values. Either (i) holds for the line x = x

0

or

the number of sets lying on the right-hand side of x = x

0

+ " for a small enough " > 0 is at least

n� d(n� k)=2e � k + 1 � d(n� k)=2e, in whih ase (ii) is true. 2

A set of intervals on the line is said to be nested, if any pair of its elements are omparable by

inlusion. In partiular, the intervals of a �nite nested set have a point in ommon.
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Lemma 2.2 Let F be a family of k pairwise disjoint ompat onvex sets in the plane, whose

orthogonal projetions onto the x-axis form a nested set of intervals.

Then F has at least (k + 3)=4 separable members.

Proof: The proof is by indution on k. For k � 2, the assertion is obviously true. Let k � 3,

and assume that we have already established the statement for all integers smaller than k. Let F

i

denote the member of F with the i-th largest projetion onto the x-axis, and let p

i

and q

i

be (one

of) the leftmost and rightmost points of F

i

, respetively (1 � i � k). Clearly, the line p

i

q

i

does not

interset any F

j

with j > i.

Assume �rst that, for some i � 3, both half-planes bounded by p

i

q

i

fully ontain at least one

member of F ; say, one of these half-planes ontains k

1

� 1, the other k

2

� 1 members, where

k

1

+ k

2

� k � 3. Applying the indution hypothesis to these k

1

and k

2

members, respetively, we

obtain that F has at least

k

1

+ 3

4

+

k

2

+ 3

4

=

k

1

+ k

2

+ 6

4

�

k + 3

4

separable members, as required.

Thus, we an suppose that, for every i � 3, at least one of the half-planes bounded by p

i

q

i

does

not ontain any member of F . In this ase any one of F

1

, F

2

and F

3

must be below all F

j

for

j > 3 or it must be above all F

j

for j > 3 in the ordering of F aording to the y-oordinates of

the intersetions of its members with a vertial line passing through all of them. In this ordering

either the highest two or the lowest two positions are oupied by members of fF

1

; F

2

; F

3

g. Any

line separating this onseutive pair may interset the third one but must avoid every other set

F

j

. Using the indution hypothesis again, we an onlude that F has at least 1 +

(k�2)+3

4

>

k+3

4

separable members. 2

Lemma 2.3 Let (F

1

; : : : ; F

k

) be a sequene of pairwise disjoint ompat onvex sets in the plane,

interseting a vertial line in this order. Let p

i

q

i

denote the orthogonal projetion of F

i

onto the

x-axis, and assume that p

1

< p

2

< : : : < p

k

< q

1

< q

2

< : : : < q

k

.

Then F

1

; : : : ; F

k

are separable.

Proof: Aording to our notation, for any i < j, F

i

lies `below' F

j

. For eah i, 1 � i < k, pik

a line `

i

that separates F

i

from F

i+1

. It is easy to hek that a line `

j

with minimum slope annot

interset any F

i

. Thus, `

j

separates fF

1

; : : : ; F

j

g from fF

j+1

; : : : ; F

k

g, and these two subfamilies

are separable, reursively. 2

The following well known statement an be regarded as a speial ase to Dilworth's theorem

[D50℄ on partially ordered sets.

Lemma 2.4 [ES35℄ Let k

1

and k

2

be positive integers. Any sequene of k

1

k

2

+ 1 reals ontains a

monotone inreasing subsequene of length k

1

+ 1 or a monotone dereasing subsequene of length

k

2

+ 1: 2

5



Now we are in a position to omplete the

Proof of Theorem 1.3: Let m(n) denote the maximum number m suh that every family of n

pairwise disjoint ompat onvex sets in the plane hasm separable members. We prove by indution

that m(n) � n

1=3

=2.

The base ase n = 2 is trivial. Suppose that n > 2 and that we have already proved the laim

for all positive integers smaller than n. Fix any family F of n pairwise disjoint ompat onvex

sets in the plane.

Assume �rst that there is a vertial line ` interseting at least k := dn=2e members F

1

; : : : ; F

k

2

F . Let p

i

q

i

be the orthogonal projetion of F

i

(p

i

< q < i; 1 � i � k): Renumbering the sets, if

neessary, we an assume that p

1

< p

2

< � � � < p

k

. Aording to Lemma 2.4,

(a) there is a stritly inreasing sequene i

j

, j = 1; 2; : : : ; k

1

:= dn

2=3

=4e, suh that q

i

j

is monotone

inreasing; or

(b) there is a stritly inreasing sequene i

j

, j = 1; 2; : : : ; k

2

:= d2n

1=3

e, suh that q

i

j

is monotone

dereasing.

In ase (a), applying Lemma 2.4 again, we obtain that (i

j

) has a subsequene i

j(1)

< i

j(2)

< : : :

of length dn

1=3

=2e with the property that ` meets F

i

j(1)

; F

i

j(2)

; : : : in this (or in the opposite) order.

In view of Lemma 2.3, these sets are separable.

In ase (b), the orthogonal projetions of F

i

j

onto the x-axis, j = 1; 2; : : : ; k

2

, form a nested

family of intervals. Lemma 2.2 implies that there are at least (k

2

+ 3)=4 � n

1=3

=2 separable

members.

Thus, we an assume that no vertial line intersets k = dn=2e members of F . In this ase, by

Lemma 2.1, there are two subfamilies F

1

;F

2

� F , eah of size at least n=4, whih an be separated

by a vertial line. Applying the indution hypothesis to F

1

and F

2

, we obtain that F has at least

2m (dn=4e) � 2(n=4)

1=3

=2 > n

1=3

=2

separable members, as required. 2

Proof of Theorem 1.4: Let F be a family of n pairwise disjoint losed segments in the plane.

We prove by indution on n that F has at least

p

n=2 separable members.

For n = 1; 2, there is nothing to prove. So we an suppose that n > 2 and that we have already

proved the laim for all families having fewer than nmembers. If there is no vertial line interseting

at least k := dn=2e members of F , then F has two dn=4e-membered subfamilies separated by a

line, and the proof an be ompleted in exatly the same way as that of Theorem 1.3.

Thus, we an assume that there is a vertial line ` interseting at least k members, F

1

; : : : ; F

k

2

F , numbered from bottom to top in the order of their intersetions with `. By Lemma 2.4,

there is a stritly inreasing sequene i

j

, j = 1; 2; : : : ; h := d

p

ke, suh that the slopes of the

lines ontaining F

i

1

; : : : ; F

i

h

form a monotone inreasing or monotone dereasing sequene. If this

sequene is monotone inreasing (dereasing), onsider the segment F

i

j

extending farthest to the left

6



(right), and notie that the line ontaining it annot meet any other member of G = fF

i

1

; : : : ; F

i

h

g.

Therefore, a line running parallel and very lose to F

i

j

will still be disjoint from all members of G

and will separate them into two non-empty groups. Reursively, both of these groups are separable,

and so is G. Thus, F has jGj = h = d

p

ke �

p

n=2 separable members. 2

Proof of Theorem 1.5: Let m(n) denote the largest numberm suh that any family of n pairwise

disjoint axis-parallel retangles in the plane has m separable members. In view of the fat that any

family of pairwise disjoint axis-parallel retangles interseting the same vertial line is separable by

horizontal uts, Lemma 2.1 yields the reurrene relation

m(n) � max

0<k<n

min

�

k; 2m

��

n� k

2

���

:

This immediately implies that m(n) � n=(2 log

2

n). 2

3 Proof of Theorem 1.6

We say that a family of sets permits a line transversal, if all of its members an be interseted by a

line. The proof of Theorem 1.5 works for any family of sets, F , satisfying the ondition that every

subfamily G � F with a vertial line transversal has at least jGj separable members (where  > 0

is a onstant). Therefore, to prove Theorem 1.6, it is suÆient to establish the following.

Theorem 3.1 For any " > 0, there exists a onstant d = d(") > 0 suh that every family of n

pairwise disjoint onvex ompat "-fat sets in the plane, whih permits a line transversal, has at

least dn separable members.

Proof: Let 0 < " < 1=10 be �xed, and let F be a family of n pairwise disjoint ompat onvex

"-fat sets in the plane, all of whih interset the y-axis, say.

For any F 2 F , let r(F ) and R(F ) denote the inradius and irumradius of F , respetively.

By the assumption, r(F )=R(F ) � ". The intersetion of F with the y-axis is a segment a

F

b

F

whose lower endpoint is a

F

and upper endpoint is b

F

. Choose two tangent lines to F at a

F

and

b

F

, and denote the (smallest) ounter-lokwise angles from the y-axis to these lines by �

F

and

�

F

, respetively (�

F

; �

F

2 (0; �)). In ase all of F has non-negative (respetively non-positive)

x-oordinates we set �

F

= 0, �

F

= � (respetively �

F

= �, �

F

= 0. Notie that, if �

F

= �

F

,

then F must lie in a parallel strip whose vertial ross-setion is of length b

F

� a

F

, and so 2r(F ) �

(b

F

� a

F

) sin�

F

. In general, we have

r(F ) �

b

F

� a

F

2

sin�

F

+R(F ) sin j�

F

� �

F

j (1)

7



Partition the elements F 2 F into a onstant number (at most d100�="e

2

) of lasses, aording

to the values b100�

F

=" and b100�

F

=". Let F

0

be one of the largest lasses, i.e., jF

0

j = 
(n). We

distinguish two ases.

Case A: There is an interval I � [0; �) of length "=10 suh that, for every F 2 F

0

, we have

�

F

; �

F

2 I.

Case B: There are two intervals, I

1

and I

2

, eah of length "=100, whih are at least 9"=100 apart,

and �

F

2 I

1

and �

F

2 I

2

for every F 2 F

0

.

It is suÆient to prove that, if jF

0

j � 2, then in both ases we an �nd a separating line (i.e.,

a straight line having at least one member of F

0

on both of its sides) whih meets at most �ve

members of F

0

. Indeed, utting along suh a line `

0

, and reursing on the subfamilies lying in the

two omplementary half-planes bounded by `

0

, we obtain that F

0

has at least (jF

0

j+5)=6 separable

members, whih will omplete the proof of the lemma. (We applied exatly the same argument in

the proof of Lemma 2.2.) Notie that the existene of the separating line is trivial for 2 � n � 7 so

we may suppose n � 8.

In Case A, (1) implies that, for every F 2 F

0

,

"R(F ) � r(F ) �

b

F

� a

F

2

sin�

F

+R(F ) sin

"

10

: (2)

Using the fat that sin

"

10

<

"

10

, we have

R(F ) �

5

9"

(b

F

� a

F

) sin�

F

:

Plugging the relation b

F

� a

F

� 2R(F ) into (2), we also obtain that

sin�

F

�

9

10

";

whih shows that in Case A the interval I annot be loser to 0 or to � than (9=10)"� (1=10)" =

(4=5)".

Fix a line ` that an be reahed from the y-axis by a ounter-lokwise turn through an angle

belonging to I, and projet every member of F to the y-axis parallel to `. Let the projetion of F

be a

0

F

b

0

F

, where a

0

F

� b

0

F

. Obviously, a

F

b

F

� a

0

F

b

0

F

. It follows from the last two inequalities, using

the law of sines, that

max(a

F

� a

0

F

; b

0

F

� b

F

) <

b

F

� a

F

10

: (3)

Let F

1

be the family onsisting of those three members F 2 F

0

, whose intersetions with the

y-axis, a

F

b

F

, are the longest (break ties arbitrarily). (3) implies that no member of F

0

n F

1

an

interset any of the three straight lines parallel to `, passing through the midpoints of the segments

8



a

F

b

F

; F 2 F

1

: If one of these three lines is a separating line, we are done. Otherwise, there are

two possibilities:

(i) two members of F

1

oupy the two highest positions, or

(ii) two members of F

1

oupy the two lowest positions in the ordering of the members of F

0

aording to the y-oordinates of their intersetions with the y-axis.

Suppose without loss of generality that (i) holds, and let F

1

and F

2

denote the members of F

1

oupying the highest and the seond highest positions, respetively. One an �nd a straight line `

0

in a diretion in I separating F

1

from F

2

. To see this blow up the the two sets, eah from one of its

points, until they touh eah other. One an �nd `

0

through the intersetion of the enlarged sets.

Using (3) for the projetions in the diretion of `

0

, one an verify again that `

0

annot interset

any member of F

0

exept perhaps the third member of F

1

. This ompletes the proof in Case A.

In Case B, suppose without loss of generality that I

1

= [�

0

; �℄, I

2

= [�; �

0

℄, where 0 � �

0

<

� < � < �

0

� �. Let I := [�; �℄. Note that in this ase, for any F 2 F

0

, the tangents to F at a

F

and b

F

must interset in the left half-plane x � 0. It is easy to see that, if the diretion of a line `

is in I, then in the left half-plane ` an interset at most one member of F

0

.

For any F 2 F

0

, let p

F

be a rightmost point of F . The distane of p

F

from the y-axis is alled

the depth of F . Assign a line `

F

to F , as follows.

1. Let `

F

be any line through p

F

, whose angle with the y-axis belongs to I and whih intersets

the segment a

F

b

F

, if suh a line exists.

2. If no suh line exists, then either the line `

�

through a

F

in diretion � passes above p

F

or

the line `

�

through b

F

in diretion � passes below p

F

. Set `

F

:= `

�

or `

F

:= `

�

, respetively.

Sine `

F

intersets F in the left half-plane x � 0, it annot interset any other member of F

0

in

the left half-plane. If `

F

intersets some other member G 6= F of F

0

in the right half-plane, then

the depth of G must be larger than the depth of F . If `

F

passes through p

F

, then this is obvious,

otherwise, it follows from the fat that F is "-fat.

Let F

1

be the family onsisting of those �ve members of F

0

, whose depths are the largest (break

ties arbitrarily). By the above observation, the lines `

F

for F 2 F

1

annot interset any member

of F

0

n F

1

. Thus, if any of them is a separating line (i.e., has at least one member of F

0

on both

of its sides), then we are done. Otherwise, we an �nish the proof similarly as in Case A. That is,

we an assume that

(i) three members of F

1

oupy the three highest positions, or

(ii) three members of F

1

oupy the three lowest positions in the ordering of the members of F

0

aording to the y-oordinates of their intersetions with the y-axis.

Assume with no loss of generality that (i) holds, and denote the three members at the highest

positions by F

1

; F

2

; and F

3

, in this order. We may also suppose that the depth of F

2

is greater

than that of F

3

as otherwise `

F

3

would be separating. From the fat that F

2

is "-fat it follows that

9



there is a straight line separating F

1

from F

3

, whose diretion is in the interval (0; �℄, and that any

suh line is disjoint from all members of F

0

n F

1

.

This settles Case B and �nishes the proof of Theorem 3.1 and hene Theorem 1.6. 2

The following result is a diret orollary of Theorem 1.6.

Theorem 3.2 Any family of n pairwise disjoint homotheti opies of a ompat onvex set F in

the plane has at least n= log n separable members, where  is a positive onstant not depending on

F .

Proof: If F is a segment, the entire family is separable. Otherwise, there is an aÆne transformation

of the plane whih takes F into a onvex body, whose irumradius is at most twie larger than

its inradius (onsider the L�owner-Johns ellipse [G63℄). The proof now follows from the observation

that the separability problem is invariant under aÆne transformations. 2

4 Separation of fat sets with bounded size

As we noted in the Introdution, it seems plausible that any family of n pairwise disjoint axis-

parallel retangles in the plane has 
(n) separable members. However, we were unable to verify

this even for axis-parallel squares. We inlude the following modest improvement on Theorem 1.6

in ase the sizes of the sets do not vary too muh.

In order to ahieve this improvement, we need to bound the variane of the sizes of our sets,

i.e., to put an upper bound V on the ratio of the irumradii of the largest and smallest members

of the family.

Theorem 4.1 For any " > 0, there exists a onstant C

"

> 0 with the following property.

Any family F of n pairwise disjoint ompat onvex "-fat sets in the plane ontains at least

C

"

n log log V= log V separable members, where V > 2 is an upper bound of the ratio of the irum-

radii of any two sets in F .

The bound given in the above theorem is sublinear, unless the variane V of the family is

bounded from above by some onstant. For onstant V , Theorem 4.1 redues to Proposition 1.1. If

V grows polynomially in n, Theorem 4.1 gives a slightly better bound than Theorem 1.6. However,

for large variane V , Theorem 1.6 is stronger, as its statement is independent of V .

The somewhat weaker bound C

"

n= log V an be easily dedued from Proposition 1.1. Indeed,

notie that saling shows that the onstant  = (r;R) in Proposition 1.1 depends only on the

ratio r=R. If F satis�es the onditions in Theorem 4.1, it an be partitioned into dlog V e `uniform'

subfamilies suh that within eah subfamily the variane is at most 2, therefore the irumradius

of any member is at most 2=" times the inradius of any other member. Applying Proposition 1.1 to

10



the largest uniform subfamily, the weaker bound follows. (Throughout this setion, all logarithms

will be base 2.)

The idea of the proof is that we �rst ut the plane into appropriate size squares so that many

members of F are fully ontained in one of these ells, but not too many lie in the same ell. Then

we apply Theorem 1.6 within eah ell, separately.

Proof: Let us denote the irumradius of a set F by R(F ). Without loss of generality we may

assume that V = 2

k

, for a positive integer k, and 1 � R(F ) < 2

k

, for any set F 2 F . We partition

F into k subfamilies, as follows. For every i, 1 � i � k, let

F

i

= fF 2 F j 2

i�1

� R(F ) < 2

i

g:

Claim A. There exists an integer 1 � a � k suh that

(i)

P

a

i=1

jF

i

j � n=2,

(ii)

P

a

i=b+1

jF

i

j �

a�b

2k

n for every 1 � b < a.

De�ne reursively a sequene a

0

> a

1

> a

2

> : : :, as follows. Set a

0

:= k. If a

j�1

has already

been de�ned for some j, hoose a

j

to be a non-negative integer smaller than a

j�1

suh that

a

j�1

X

i=a

j

+1

jF

i

j <

a

j�1

� a

j

2k

n:

If there is no suh integer, we stop. Let a

t

be the last element of this sequene.

Clearly, a := a

t

satis�es (ii). As for ondition (i), notie that

a

X

i=1

jF

i

j = jFj �

t

X

j=1

a

j�1

X

i=a

j

+1

jF

i

j � n�

t

X

j=1

a

j�1

� a

j

2k

n = n�

k � a

2k

n � n=2:

This inequality proves Claim A.

Fix an integer a satisfying the onditions of Claim A. Let F

0

= [

a

i=1

F

i

. Assign weights to the

elements of F

0

in the following way. For i = 1; : : : ; a, assign the weight

w(F ) :=

1

a+ 1� i

to every member F 2 F

i

.

Claim B. The total weight assigned to the elements of F

0

is at least

n log k

4k

, provided that n is

suÆiently large.

Let W denote the total weight of the elements in F

0

. By Claim A, we have

W =

a

X

i=1

jF

i

j

a+ 1� i

=

P

a

i=1

jF

i

j

a

+

a�1

X

b=1

0

�

a

X

i=b+1

jF

i

j

�

1

a� b

�

1

a+ 1� b

�

1

A

11



�

n=2

a

+

a�1

X

b=1

�

a� b

2k

n

�

1

a� b

�

1

a+ 1� b

��

=

n

2a

+

n

2k

a�1

X

b=1

1

a+ 1� b

>

n

2a

+

n(log a� 1)

3k

:

For small values of a, the �rst term of the last expression exeeds the bound stated for W , for large

values of A, the seond term does. This proves Claim B.

We proeed similarly as in the proof of Proposition 1.1. Cut the plane along all horizontal and

vertial lines x = i2

a+3

+ j and y = i2

a+3

+ j, where i runs over the integers and j is seleted at

random, uniformly from the interval [0; 2

a+3

℄. The probability that a given member of F

0

is not

met by any of these lines is at least 1=2, sine the irumradius of the sets in F

0

is bounded by

2

a

. Hene, by the linearity of the expetation, the expeted total weight of the intat (i.e., unut)

members of F

0

is at least half of the total weight of all members. There is a partiular hoie of

j, for whih the total weight of the family G of all intat members of F

0

is at least as large as its

expetation. Aording to Claim B, we have

X

F2G

w(F ) �

n log k

8k

: (4)

After this �rst round of uts, the plane falls into squares of side-length 2

a+3

. Fix one suh piee,

and denote by G

0

the family of all members of G belonging to it. Let W

0

:=

P

F2G

0

w(F ) be the

total weight of the elements in G

0

.

Reall that all members of F (and thus of G

0

) are "-fat with some onstant " > 0, and that

k = log V , where V was the upper bound for the `variane' of the set sizes in F .

We an now �nish the proof of Theorem 4.1 by ombining (4) with the following

Claim C. G

0

has a separable subfamily whose size is at least �W

0

= �

P

F2G

0

w(F ), for some

onstant � = �

"

> 0 depending only on ".

To verify the laim, let m := jG

0

j and notie that, if m > 1, then Theorem 1.6 guarantees the

existene of a separable subfamily of size 

"

(m= logm) in G

0

. It remains to show that

m

logm

� W

0

,

for a suitable onstant  > 0 depending on ".

Sine G

0

onsists of pairwise disjoint sets paked into a square of side-length 2

a+3

, and the area

of an "-fat set F is at least ("R(F ))

2

� � "

2

�4

a�2=w(F )

, we have

4

a+3

� "

2

�

X

F2G

0

4

a�2=w(F )

:

On the other hand, using the onvexity of the funtion 4

a�2=w

over the interval w = w(F ) 2 (0; 1℄,

we obtain that the right-hand side of the above inequality is at least "

2

�m4

a�2m=W

0

. Thus, we

have

4

a+3

� "

2

�m4

a�2m=W

0

:
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Taking logarithms, it follows that for large enough m

W

0

�

4m

logm+ 2 log "+ log � � 6

= O(m= logm);

as required. 2

5 Higher dimensions

The de�nition of a separable family an be naturally extended to higher dimensions d > 2. We

say that m pairwise disjoint sets in d-spae are separable, if we an ut the spae by a hyperplane

into two parts, and suessively ut eah part into smaller piees until we obtain m piees, eah

ontaining preisely one of our m sets.

In general, it is not true even in 3-spae that every in�nite family of pairwise disjoint onvex sets

has three separable members. Indeed, as noted in [T79℄, given a family of in�nitely many disjoint

straight lines in 3-spae, no three of whih are parallel to the same plane, any plane separating two

members of the family must ross the remaining lines. To obtain a family of ompat onvex sets

with this property, one an lip eah member in a �nite subfamily of the above onstrution by a

ball around the origin, whose radius is suÆiently large.

However, for fat sets and axis-parallel boxes, it is not hard to establish some positive results.

Theorem 5.1 Any family of n pairwise disjoint ompat onvex �-fat sets in d-spae has a separable

subfamily of at least n=(log n)

d

members, where  = (�; d) > 0 is a onstant depending only on �

and d.

The proof is based on the following

Lemma 5.2 Let F be a family of n pairwise disjoint ompat onvex �-fat sets in d-spae suh that

eah of them intersets all the d oordinate hyperplanes.

Then F has a separable subfamily of at least 

0

n members, where 

0

= 

0

(�; d) > 0 is a onstant

depending only on � and d.

Proof: First, note that, if a set F in d-spae intersets all oordinate hyperplanes and it has a

point at distane r from the origin O, then the diameter of F is at least r=

p

d. Next, notie that, if

F is an �-fat onvex set of diameter d > s, and x is a point of F , then F \B(x; s), the intersetion

of F with the ball of radius s entered at x, ontains a ball of radius �s=2. Indeed, we obtain suh

a ball by shrinking the insribed ball of F from x to a fration s=d of its original size.

Hene, any member of F , whih has a point at distane r from the origin, ontains a ball of

radius �r=(2

p

d), lying entirely within B(O; 2r). As the sets F 2 F are pairwise disjoint, no more

than (4

p

d)

d

of these balls �t into B(O; 2r). Consequently, F has at most (4

p

d)

d

members that
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have at least one point at distane r from the origin. This immediately implies the existene of a

subfamily F

0

= fF

1

; : : : ; F

m

g � F with m � n=(4

p

d)

d

, suh that every point of F

i

is loser to the

origin than any point of F

i+1

(i = 1; : : : ;m�1). To see that F

0

is separable, it is enough to observe

that, if the largest ball B

i

around the origin that does not overlap F

i

touhes F

i

at a point p

i

, then

the tangent hyperplane to B

i

at the point p

i

separates F

i

from every F

j

; j < i. 2

Proof of Theorem 5.1: We establish the stronger laim that, for any � > 0 and for any d �

i � 0, there is a onstant 

00

= 

00

(�; d; i) > 0 suh that every family of n pairwise disjoint ompat

onvex �-fat sets in the plane, all of whose members interset the �rst i oordinate hyperplanes,

has a separable subfamily with at least 

00

n=(log n)

d�i

members.

The proof is by indution on d� i. The base ase, i = d, was settled in Lemma 5.2. The ase

i = 0 gives the theorem.

Let f(n; �; d; i) be the minimum size of the largest separable subfamily in a family of n pairwise

disjoint ompat onvex �-fat sets in d-spae, all of whih meet the �rst i oordinate hyperplanes.

Assume we have already veri�ed the laim for some i (d � i > 0), and next we wish to prove it for

i� 1. Let F be a family of n pairwise disjoint ompat onvex �-fat sets in d-spae, all meeting the

�rst i�1 oordinate hyperplanes, and assume that F ha only f(n; �; d; i�1) separable members. As

in Lemma 2.1, for every 1 � j � n=2, one an �nd a hyperplane x

i

= z suh that either it intersets

at least n � 2j + 2 members of F , or both half-spaes bounded by it ontain at least j members

of F . In the former ase, we an translate this hyperplane to the ith oordinate hyperplane (not

a�eting the number of separable members) and obtain that f(n; �; d; i� 1) � f(n� 2j +2; �; d; i).

In the latter ase, �rst utting along the hyperplane x

i

= z and then dealing separately with the

families on either side of it, we obtain f(n; �; d; i� 1) � 2f(j; �; d; i � 1). Thus, we have

f(n; �; d; i� 1) � min (f(n� 2j + 2; �; d; i); 2f(j; �; d; i � 1)) :

To �nish the proof of the laim, set j = bn=2 � n= log n and use the indution hypothesis on

f(n� 2j + 2; �; d; i). 2

Theorem 5.3 Any family of n pairwise disjoint axis-parallel boxes in d-spae has a separable

subfamily with at least 

000

n=(log n)

d�1

members, where 

000

= 

000

(�; d) > 0 is a onstant depending

only on � and d.

Proof: The proof an be arried out along the lines of the last argument. Alternatively, one an

also prove Theorem 5.3 by indution on d, as separating a family of d-dimensional boxes interseting

a oordinate hyperplane redues to a similar d� 1-dimensional problem. 2

6 Remarks

6.1 It is a natural �rst approah to our problem to try to �nd a line utting through relatively few

members of the family F and separating the others into two large subfamilies. Then, reursively,
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we ould repeat this proedure for the subfamilies, and �nd many separable members in eah of

them.

It may happen that already at the �rst non-trivial ut we are fored to destroy (i.e. ut

through) a large fration of the members of F . Consider the following family. Let p

1

; p

2

; : : : ; p

2n

be the verties of a regular 2n-gon of diameter 1 in the plane. For every i, 1 � i � n, let F

i

be

the segment of length K starting at p

2i

and passing through p

2i�1

. If K is suÆiently large, then

any straight line ` with the property that both half-planes bounded by ` fully ontain at least one

member of F = fF

1

; F

2

; : : : ; F

n

g must ut through roughly half of the F

i

-s (see Figure 3). On

the other hand, having performed suh a ut, the remaining members are separable. A similar

onstrution was desribed by R. Hope [H84℄ (see also [HK90℄).

Figure 3.

There is a more serious diÆulty with the above approah. It is not hard to modify the previous

onstrution so that there is no straight-line whih has at least two members on both of its sides.

(See [T79℄, [PT00℄.)

6.2 In the proof of Theorem 4.1, it seems tempting to replae the appliation of Theorem 1.5 by an

iterative argument. The diÆulty is that after the �rst round of uts we an no longer guarantee

that the ratio between the sizes of the sets is bounded from above in terms of the number of sets

in the family. In ase we ould use the tehniques of this proof without having suh a bound, we

ould iterate our proedure and obtain a larger separable set.

6.3 We say that a family of pairwise disjoint sets in the plane is strongly separable, if any two

members an be separated from eah other by a straight line whih does not ut through any of

the remaining sets. It is not true that every large family of pairwise disjoint ompat onvex sets

in the plane has many strongly separable members. Indeed, it is not hard to onstrut a family of

in�nitely many pairwise disjoint straight-line segments in the plane, no three of whih are strongly
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separable. For some positive results, onsult [PT00℄.

6.4 As mentioned in the Introdution, we onjeture that the worst possible onstrutions for

separability (i.e. those whih have the smallest number of separable members) an be realized by

segments.

Another optimization problem for plane onvex bodies whose solution is probably also realizable

by straight-line segments was studied in [G94℄,[CP98℄. It is a ommon feature of these problems

that all non-trivial results known for them were obtained by introduing ertain partial orders on

the family of onvex bodies and then applying some form of Dilworth's theorem.
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