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Abstra
t

J. Urrutia asked the following question. Given a family of pairwise disjoint 
ompa
t 
onvex

sets on a sheet of glass, is it true that one 
an always separate from one another a 
onstant

fra
tion of them using edge-to-edge straight-line 
uts? We answer this question in the negative,

and establish some lower and upper bounds for the number of separable sets. We also 
onsider

the spe
ial 
ase when the family 
onsists of intervals, axis-parallel re
tangles, `fat' sets, or `fat'

sets with bounded size.

1 Introdu
tion

Let P be a subset of the plane, and let H

1

and H

2

be the two open half-planes bounded by a

straight line `. Cutting P along `, we obtain two pie
es P

1

= P \H

1

and P

2

= P \H

2

. We say

that m pairwise disjoint sets in the plane are separable if we 
an 
ut the plane into two parts, and

su

essively 
ut ea
h part into smaller pie
es until we obtain m pie
es, ea
h 
ontaining pre
isely

one of our m sets. (See Figure 1.)

For two positive fun
tions de�ned on the positive integers, we use the notation f(n) = 
(g(n))

to express that f(n) > 
g(n) for some positive 
onstant 
.

Jorge Urrutia [U96℄ raised the following problem. Is it true that any family of n pairwise disjoint


ompa
t 
onvex sets in the plane has at least 
(n) separable members?

In the following spe
ial 
ase, the answer is easily seen to be in the aÆrmative.
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Figure 1.

Proposition 1.1 Let R > r > 0 be �xed, and let F be a family of n pairwise disjoint 
ompa
t


onvex sets in the plane, ea
h 
ontaining a 
ir
le of radius r and 
ontained in another 
ir
le of

radius R.

Then F has at least 
n separable members, where 
 = 
(r;R) > 0.

Proof: Choose j at random, uniformly in [0; 8R℄, and 
ut the plane into squares along the lines

x = 8Ri+ j and y = 8Ri+ j for all integers i. The expe
ted number of members of F interse
ted

by these lines is at most n=2. Sin
e there are at most 64R

2

=(r

2

�) members of F 
ontained in the

same square, we 
an �nd a separable subfamily of size at least

�

r

2

�=(128R

2

)

�

n. 2

The above statement does not remain true without the assumption on the 
ir
umradii and

inradii of the members of F . That is, the answer to Urrutia's question, in full generality, is in the

negative.

Theorem 1.2 There exists a family of n pairwise disjoint straight-line segments in the plane su
h

that all separable subfamilies are of size O(n

log 2= log 3

).

Proof: It is enough to show that for every positive integer k there is a family C

k

of 3

k

disjoint

intervals, su
h that C

k

has at most 2

k

separable members.

We 
onstru
t C

k

re
ursively. During the 
onstru
tion we make sure that the endpoints of the

intervals in C

k

are in general position: no three of them lie on the same straight line.
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The 
ase k = 1 is shown on Figure 2(a). Noti
e that, for an arbitrary segment pq and any

" > 0, the 
onstru
tion 
an be 
arried out in su
h a way that ea
h of the three segments has one

of its endpoints in the disk of radius " around p and the other in the disk of radius " around q (see

Figure 2(b)). Denote su
h a 
on�guration C

1

(p; q; ").

For k > 1, repla
e ea
h segment pq of C

k�1

by C

1

(p; q; "). If " > 0 is suÆ
iently small, the

resulting family C

k


onsists of disjoint segments. Consider a separable subfamily F . It 
ontains at

most two members from ea
h of the sets C

1

(p; q; "). Let F

0

be the members pq of C

k�1

su
h that

F 
ontains at least one element from C

1

(p; q; "). Re
all that the segments of C

k�1

are in general

position. Thus, if " is suÆ
iently small, then F

0

is also separable. Thus, jFj � 2jF

0

j � 2

k

. 2

(a) (b)

2ε

Figure 2.

Next we state some positive results.

Theorem 1.3 Any family of n pairwise disjoint 
ompa
t 
onvex sets in the plane has at least


(n

1=3

) separable members.

The 
onstru
tion proving Theorem 1.2 uses only segments. For families of segments, the esti-

mate in Theorem 1.3 
an be improved.

Theorem 1.4 Any family of n pairwise disjoint straight-line segments in the plane has at least


(n

1=2

) separable members.

It seems plausible that, for families of axis-parallel re
tangles, the answer to Urrutia's question

is in the aÆrmative. We 
an only prove a somewhat weaker result.
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Theorem 1.5 Any family of n pairwise disjoint axis-parallel re
tangles in the plane has 
(n= log n)

separable members.

We believe that among the worst possible families of n 
onvex sets from the point of view

of separability, i.e., among those whi
h have the fewest number of separable members, there is

one whi
h 
ontains only straight-line segments. This 
onje
ture is supported by the fa
t that for

families of not too `longish' sets, we 
an establish mu
h stronger results than Theorem 1.4.

A family F of plane 
onvex sets is 
alled "-fat if, for ea
h member of F , the ratio of the inradius

and the 
ir
umradius is at least " (
f. [MMP91℄).

Theorem 1.6 For any " > 0, there exists a 
onstant 


"

> 0 su
h that every "-fat family of n

pairwise disjoint 
ompa
t 
onvex sets in the plane has at least 


"

n= log n separable members.

The proofs of Theorems 1.3{1.5 are presented in Se
tion 2. Se
tion 3 
ontains the proof of the

last theorem and a 
orollary. In Se
tion 4, we improve Theorem 1.6 in the spe
ial 
ase when the

ratio of the sizes of the largest vs. the smallest members of a family of size n is bounded, say, by a

polynomial of n. Unfortunately, the improved bound given in Theorem 4.1 is still sublinear in n,

unless the ratio is bounded by a 
onstant, in whi
h 
ase Theorem 4.1 redu
es to Proposition 1.1.

In Se
tion 5, we dis
uss analogous questions in higher dimensions, while the last se
tion 
ontains a

few 
on
luding remarks.

2 Proofs of Theorems 1.3{1.5

In order to establish Theorem 1.3, we need four simple but useful observations. As usual, we �x an

orthogonal system of 
oordinates (x; y) in the plane, and 
all the dire
tions of the x-axis and the

y-axis horizontal and verti
al, respe
tively.

Lemma 2.1 Given n 
ompa
t 
onvex sets in the plane and a positive integer k < n, there exists a

verti
al line ` satisfying at least one of the following two 
onditions:

(i) ` interse
ts at least k + 1 sets;

(ii) both half-planes bounded by ` 
ontain at least (n� k)=2 sets.

Proof: For a 
ompa
t set F in the family 
onsider the largest x 
oordinate x

F

of a point in the

set and let x

0

be the d(n� k)=2e-th smallest of these values. Either (i) holds for the line x = x

0

or

the number of sets lying on the right-hand side of x = x

0

+ " for a small enough " > 0 is at least

n� d(n� k)=2e � k + 1 � d(n� k)=2e, in whi
h 
ase (ii) is true. 2

A set of intervals on the line is said to be nested, if any pair of its elements are 
omparable by

in
lusion. In parti
ular, the intervals of a �nite nested set have a point in 
ommon.

4



Lemma 2.2 Let F be a family of k pairwise disjoint 
ompa
t 
onvex sets in the plane, whose

orthogonal proje
tions onto the x-axis form a nested set of intervals.

Then F has at least (k + 3)=4 separable members.

Proof: The proof is by indu
tion on k. For k � 2, the assertion is obviously true. Let k � 3,

and assume that we have already established the statement for all integers smaller than k. Let F

i

denote the member of F with the i-th largest proje
tion onto the x-axis, and let p

i

and q

i

be (one

of) the leftmost and rightmost points of F

i

, respe
tively (1 � i � k). Clearly, the line p

i

q

i

does not

interse
t any F

j

with j > i.

Assume �rst that, for some i � 3, both half-planes bounded by p

i

q

i

fully 
ontain at least one

member of F ; say, one of these half-planes 
ontains k

1

� 1, the other k

2

� 1 members, where

k

1

+ k

2

� k � 3. Applying the indu
tion hypothesis to these k

1

and k

2

members, respe
tively, we

obtain that F has at least

k

1

+ 3

4

+

k

2

+ 3

4

=

k

1

+ k

2

+ 6

4

�

k + 3

4

separable members, as required.

Thus, we 
an suppose that, for every i � 3, at least one of the half-planes bounded by p

i

q

i

does

not 
ontain any member of F . In this 
ase any one of F

1

, F

2

and F

3

must be below all F

j

for

j > 3 or it must be above all F

j

for j > 3 in the ordering of F a

ording to the y-
oordinates of

the interse
tions of its members with a verti
al line passing through all of them. In this ordering

either the highest two or the lowest two positions are o

upied by members of fF

1

; F

2

; F

3

g. Any

line separating this 
onse
utive pair may interse
t the third one but must avoid every other set

F

j

. Using the indu
tion hypothesis again, we 
an 
on
lude that F has at least 1 +

(k�2)+3

4

>

k+3

4

separable members. 2

Lemma 2.3 Let (F

1

; : : : ; F

k

) be a sequen
e of pairwise disjoint 
ompa
t 
onvex sets in the plane,

interse
ting a verti
al line in this order. Let p

i

q

i

denote the orthogonal proje
tion of F

i

onto the

x-axis, and assume that p

1

< p

2

< : : : < p

k

< q

1

< q

2

< : : : < q

k

.

Then F

1

; : : : ; F

k

are separable.

Proof: A

ording to our notation, for any i < j, F

i

lies `below' F

j

. For ea
h i, 1 � i < k, pi
k

a line `

i

that separates F

i

from F

i+1

. It is easy to 
he
k that a line `

j

with minimum slope 
annot

interse
t any F

i

. Thus, `

j

separates fF

1

; : : : ; F

j

g from fF

j+1

; : : : ; F

k

g, and these two subfamilies

are separable, re
ursively. 2

The following well known statement 
an be regarded as a spe
ial 
ase to Dilworth's theorem

[D50℄ on partially ordered sets.

Lemma 2.4 [ES35℄ Let k

1

and k

2

be positive integers. Any sequen
e of k

1

k

2

+ 1 reals 
ontains a

monotone in
reasing subsequen
e of length k

1

+ 1 or a monotone de
reasing subsequen
e of length

k

2

+ 1: 2
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Now we are in a position to 
omplete the

Proof of Theorem 1.3: Let m(n) denote the maximum number m su
h that every family of n

pairwise disjoint 
ompa
t 
onvex sets in the plane hasm separable members. We prove by indu
tion

that m(n) � n

1=3

=2.

The base 
ase n = 2 is trivial. Suppose that n > 2 and that we have already proved the 
laim

for all positive integers smaller than n. Fix any family F of n pairwise disjoint 
ompa
t 
onvex

sets in the plane.

Assume �rst that there is a verti
al line ` interse
ting at least k := dn=2e members F

1

; : : : ; F

k

2

F . Let p

i

q

i

be the orthogonal proje
tion of F

i

(p

i

< q < i; 1 � i � k): Renumbering the sets, if

ne
essary, we 
an assume that p

1

< p

2

< � � � < p

k

. A

ording to Lemma 2.4,

(a) there is a stri
tly in
reasing sequen
e i

j

, j = 1; 2; : : : ; k

1

:= dn

2=3

=4e, su
h that q

i

j

is monotone

in
reasing; or

(b) there is a stri
tly in
reasing sequen
e i

j

, j = 1; 2; : : : ; k

2

:= d2n

1=3

e, su
h that q

i

j

is monotone

de
reasing.

In 
ase (a), applying Lemma 2.4 again, we obtain that (i

j

) has a subsequen
e i

j(1)

< i

j(2)

< : : :

of length dn

1=3

=2e with the property that ` meets F

i

j(1)

; F

i

j(2)

; : : : in this (or in the opposite) order.

In view of Lemma 2.3, these sets are separable.

In 
ase (b), the orthogonal proje
tions of F

i

j

onto the x-axis, j = 1; 2; : : : ; k

2

, form a nested

family of intervals. Lemma 2.2 implies that there are at least (k

2

+ 3)=4 � n

1=3

=2 separable

members.

Thus, we 
an assume that no verti
al line interse
ts k = dn=2e members of F . In this 
ase, by

Lemma 2.1, there are two subfamilies F

1

;F

2

� F , ea
h of size at least n=4, whi
h 
an be separated

by a verti
al line. Applying the indu
tion hypothesis to F

1

and F

2

, we obtain that F has at least

2m (dn=4e) � 2(n=4)

1=3

=2 > n

1=3

=2

separable members, as required. 2

Proof of Theorem 1.4: Let F be a family of n pairwise disjoint 
losed segments in the plane.

We prove by indu
tion on n that F has at least

p

n=2 separable members.

For n = 1; 2, there is nothing to prove. So we 
an suppose that n > 2 and that we have already

proved the 
laim for all families having fewer than nmembers. If there is no verti
al line interse
ting

at least k := dn=2e members of F , then F has two dn=4e-membered subfamilies separated by a

line, and the proof 
an be 
ompleted in exa
tly the same way as that of Theorem 1.3.

Thus, we 
an assume that there is a verti
al line ` interse
ting at least k members, F

1

; : : : ; F

k

2

F , numbered from bottom to top in the order of their interse
tions with `. By Lemma 2.4,

there is a stri
tly in
reasing sequen
e i

j

, j = 1; 2; : : : ; h := d

p

ke, su
h that the slopes of the

lines 
ontaining F

i

1

; : : : ; F

i

h

form a monotone in
reasing or monotone de
reasing sequen
e. If this

sequen
e is monotone in
reasing (de
reasing), 
onsider the segment F

i

j

extending farthest to the left

6



(right), and noti
e that the line 
ontaining it 
annot meet any other member of G = fF

i

1

; : : : ; F

i

h

g.

Therefore, a line running parallel and very 
lose to F

i

j

will still be disjoint from all members of G

and will separate them into two non-empty groups. Re
ursively, both of these groups are separable,

and so is G. Thus, F has jGj = h = d

p

ke �

p

n=2 separable members. 2

Proof of Theorem 1.5: Let m(n) denote the largest numberm su
h that any family of n pairwise

disjoint axis-parallel re
tangles in the plane has m separable members. In view of the fa
t that any

family of pairwise disjoint axis-parallel re
tangles interse
ting the same verti
al line is separable by

horizontal 
uts, Lemma 2.1 yields the re
urren
e relation

m(n) � max

0<k<n

min

�

k; 2m

��

n� k

2

���

:

This immediately implies that m(n) � n=(2 log

2

n). 2

3 Proof of Theorem 1.6

We say that a family of sets permits a line transversal, if all of its members 
an be interse
ted by a

line. The proof of Theorem 1.5 works for any family of sets, F , satisfying the 
ondition that every

subfamily G � F with a verti
al line transversal has at least 
jGj separable members (where 
 > 0

is a 
onstant). Therefore, to prove Theorem 1.6, it is suÆ
ient to establish the following.

Theorem 3.1 For any " > 0, there exists a 
onstant d = d(") > 0 su
h that every family of n

pairwise disjoint 
onvex 
ompa
t "-fat sets in the plane, whi
h permits a line transversal, has at

least dn separable members.

Proof: Let 0 < " < 1=10 be �xed, and let F be a family of n pairwise disjoint 
ompa
t 
onvex

"-fat sets in the plane, all of whi
h interse
t the y-axis, say.

For any F 2 F , let r(F ) and R(F ) denote the inradius and 
ir
umradius of F , respe
tively.

By the assumption, r(F )=R(F ) � ". The interse
tion of F with the y-axis is a segment a

F

b

F

whose lower endpoint is a

F

and upper endpoint is b

F

. Choose two tangent lines to F at a

F

and

b

F

, and denote the (smallest) 
ounter-
lo
kwise angles from the y-axis to these lines by �

F

and

�

F

, respe
tively (�

F

; �

F

2 (0; �)). In 
ase all of F has non-negative (respe
tively non-positive)

x-
oordinates we set �

F

= 0, �

F

= � (respe
tively �

F

= �, �

F

= 0. Noti
e that, if �

F

= �

F

,

then F must lie in a parallel strip whose verti
al 
ross-se
tion is of length b

F

� a

F

, and so 2r(F ) �

(b

F

� a

F

) sin�

F

. In general, we have

r(F ) �

b

F

� a

F

2

sin�

F

+R(F ) sin j�

F

� �

F

j (1)

7



Partition the elements F 2 F into a 
onstant number (at most d100�="e

2

) of 
lasses, a

ording

to the values b100�

F

="
 and b100�

F

="
. Let F

0

be one of the largest 
lasses, i.e., jF

0

j = 
(n). We

distinguish two 
ases.

Case A: There is an interval I � [0; �) of length "=10 su
h that, for every F 2 F

0

, we have

�

F

; �

F

2 I.

Case B: There are two intervals, I

1

and I

2

, ea
h of length "=100, whi
h are at least 9"=100 apart,

and �

F

2 I

1

and �

F

2 I

2

for every F 2 F

0

.

It is suÆ
ient to prove that, if jF

0

j � 2, then in both 
ases we 
an �nd a separating line (i.e.,

a straight line having at least one member of F

0

on both of its sides) whi
h meets at most �ve

members of F

0

. Indeed, 
utting along su
h a line `

0

, and re
ursing on the subfamilies lying in the

two 
omplementary half-planes bounded by `

0

, we obtain that F

0

has at least (jF

0

j+5)=6 separable

members, whi
h will 
omplete the proof of the lemma. (We applied exa
tly the same argument in

the proof of Lemma 2.2.) Noti
e that the existen
e of the separating line is trivial for 2 � n � 7 so

we may suppose n � 8.

In Case A, (1) implies that, for every F 2 F

0

,

"R(F ) � r(F ) �

b

F

� a

F

2

sin�

F

+R(F ) sin

"

10

: (2)

Using the fa
t that sin

"

10

<

"

10

, we have

R(F ) �

5

9"

(b

F

� a

F

) sin�

F

:

Plugging the relation b

F

� a

F

� 2R(F ) into (2), we also obtain that

sin�

F

�

9

10

";

whi
h shows that in Case A the interval I 
annot be 
loser to 0 or to � than (9=10)"� (1=10)" =

(4=5)".

Fix a line ` that 
an be rea
hed from the y-axis by a 
ounter-
lo
kwise turn through an angle

belonging to I, and proje
t every member of F to the y-axis parallel to `. Let the proje
tion of F

be a

0

F

b

0

F

, where a

0

F

� b

0

F

. Obviously, a

F

b

F

� a

0

F

b

0

F

. It follows from the last two inequalities, using

the law of sines, that

max(a

F

� a

0

F

; b

0

F

� b

F

) <

b

F

� a

F

10

: (3)

Let F

1

be the family 
onsisting of those three members F 2 F

0

, whose interse
tions with the

y-axis, a

F

b

F

, are the longest (break ties arbitrarily). (3) implies that no member of F

0

n F

1


an

interse
t any of the three straight lines parallel to `, passing through the midpoints of the segments

8



a

F

b

F

; F 2 F

1

: If one of these three lines is a separating line, we are done. Otherwise, there are

two possibilities:

(i) two members of F

1

o

upy the two highest positions, or

(ii) two members of F

1

o

upy the two lowest positions in the ordering of the members of F

0

a

ording to the y-
oordinates of their interse
tions with the y-axis.

Suppose without loss of generality that (i) holds, and let F

1

and F

2

denote the members of F

1

o

upying the highest and the se
ond highest positions, respe
tively. One 
an �nd a straight line `

0

in a dire
tion in I separating F

1

from F

2

. To see this blow up the the two sets, ea
h from one of its

points, until they tou
h ea
h other. One 
an �nd `

0

through the interse
tion of the enlarged sets.

Using (3) for the proje
tions in the dire
tion of `

0

, one 
an verify again that `

0


annot interse
t

any member of F

0

ex
ept perhaps the third member of F

1

. This 
ompletes the proof in Case A.

In Case B, suppose without loss of generality that I

1

= [�

0

; �℄, I

2

= [�; �

0

℄, where 0 � �

0

<

� < � < �

0

� �. Let I := [�; �℄. Note that in this 
ase, for any F 2 F

0

, the tangents to F at a

F

and b

F

must interse
t in the left half-plane x � 0. It is easy to see that, if the dire
tion of a line `

is in I, then in the left half-plane ` 
an interse
t at most one member of F

0

.

For any F 2 F

0

, let p

F

be a rightmost point of F . The distan
e of p

F

from the y-axis is 
alled

the depth of F . Assign a line `

F

to F , as follows.

1. Let `

F

be any line through p

F

, whose angle with the y-axis belongs to I and whi
h interse
ts

the segment a

F

b

F

, if su
h a line exists.

2. If no su
h line exists, then either the line `

�

through a

F

in dire
tion � passes above p

F

or

the line `

�

through b

F

in dire
tion � passes below p

F

. Set `

F

:= `

�

or `

F

:= `

�

, respe
tively.

Sin
e `

F

interse
ts F in the left half-plane x � 0, it 
annot interse
t any other member of F

0

in

the left half-plane. If `

F

interse
ts some other member G 6= F of F

0

in the right half-plane, then

the depth of G must be larger than the depth of F . If `

F

passes through p

F

, then this is obvious,

otherwise, it follows from the fa
t that F is "-fat.

Let F

1

be the family 
onsisting of those �ve members of F

0

, whose depths are the largest (break

ties arbitrarily). By the above observation, the lines `

F

for F 2 F

1


annot interse
t any member

of F

0

n F

1

. Thus, if any of them is a separating line (i.e., has at least one member of F

0

on both

of its sides), then we are done. Otherwise, we 
an �nish the proof similarly as in Case A. That is,

we 
an assume that

(i) three members of F

1

o

upy the three highest positions, or

(ii) three members of F

1

o

upy the three lowest positions in the ordering of the members of F

0

a

ording to the y-
oordinates of their interse
tions with the y-axis.

Assume with no loss of generality that (i) holds, and denote the three members at the highest

positions by F

1

; F

2

; and F

3

, in this order. We may also suppose that the depth of F

2

is greater

than that of F

3

as otherwise `

F

3

would be separating. From the fa
t that F

2

is "-fat it follows that

9



there is a straight line separating F

1

from F

3

, whose dire
tion is in the interval (0; �℄, and that any

su
h line is disjoint from all members of F

0

n F

1

.

This settles Case B and �nishes the proof of Theorem 3.1 and hen
e Theorem 1.6. 2

The following result is a dire
t 
orollary of Theorem 1.6.

Theorem 3.2 Any family of n pairwise disjoint homotheti
 
opies of a 
ompa
t 
onvex set F in

the plane has at least 
n= log n separable members, where 
 is a positive 
onstant not depending on

F .

Proof: If F is a segment, the entire family is separable. Otherwise, there is an aÆne transformation

of the plane whi
h takes F into a 
onvex body, whose 
ir
umradius is at most twi
e larger than

its inradius (
onsider the L�owner-Johns ellipse [G63℄). The proof now follows from the observation

that the separability problem is invariant under aÆne transformations. 2

4 Separation of fat sets with bounded size

As we noted in the Introdu
tion, it seems plausible that any family of n pairwise disjoint axis-

parallel re
tangles in the plane has 
(n) separable members. However, we were unable to verify

this even for axis-parallel squares. We in
lude the following modest improvement on Theorem 1.6

in 
ase the sizes of the sets do not vary too mu
h.

In order to a
hieve this improvement, we need to bound the varian
e of the sizes of our sets,

i.e., to put an upper bound V on the ratio of the 
ir
umradii of the largest and smallest members

of the family.

Theorem 4.1 For any " > 0, there exists a 
onstant C

"

> 0 with the following property.

Any family F of n pairwise disjoint 
ompa
t 
onvex "-fat sets in the plane 
ontains at least

C

"

n log log V= log V separable members, where V > 2 is an upper bound of the ratio of the 
ir
um-

radii of any two sets in F .

The bound given in the above theorem is sublinear, unless the varian
e V of the family is

bounded from above by some 
onstant. For 
onstant V , Theorem 4.1 redu
es to Proposition 1.1. If

V grows polynomially in n, Theorem 4.1 gives a slightly better bound than Theorem 1.6. However,

for large varian
e V , Theorem 1.6 is stronger, as its statement is independent of V .

The somewhat weaker bound C

"

n= log V 
an be easily dedu
ed from Proposition 1.1. Indeed,

noti
e that s
aling shows that the 
onstant 
 = 
(r;R) in Proposition 1.1 depends only on the

ratio r=R. If F satis�es the 
onditions in Theorem 4.1, it 
an be partitioned into dlog V e `uniform'

subfamilies su
h that within ea
h subfamily the varian
e is at most 2, therefore the 
ir
umradius

of any member is at most 2=" times the inradius of any other member. Applying Proposition 1.1 to

10



the largest uniform subfamily, the weaker bound follows. (Throughout this se
tion, all logarithms

will be base 2.)

The idea of the proof is that we �rst 
ut the plane into appropriate size squares so that many

members of F are fully 
ontained in one of these 
ells, but not too many lie in the same 
ell. Then

we apply Theorem 1.6 within ea
h 
ell, separately.

Proof: Let us denote the 
ir
umradius of a set F by R(F ). Without loss of generality we may

assume that V = 2

k

, for a positive integer k, and 1 � R(F ) < 2

k

, for any set F 2 F . We partition

F into k subfamilies, as follows. For every i, 1 � i � k, let

F

i

= fF 2 F j 2

i�1

� R(F ) < 2

i

g:

Claim A. There exists an integer 1 � a � k su
h that

(i)

P

a

i=1

jF

i

j � n=2,

(ii)

P

a

i=b+1

jF

i

j �

a�b

2k

n for every 1 � b < a.

De�ne re
ursively a sequen
e a

0

> a

1

> a

2

> : : :, as follows. Set a

0

:= k. If a

j�1

has already

been de�ned for some j, 
hoose a

j

to be a non-negative integer smaller than a

j�1

su
h that

a

j�1

X

i=a

j

+1

jF

i

j <

a

j�1

� a

j

2k

n:

If there is no su
h integer, we stop. Let a

t

be the last element of this sequen
e.

Clearly, a := a

t

satis�es (ii). As for 
ondition (i), noti
e that

a

X

i=1

jF

i

j = jFj �

t

X

j=1

a

j�1

X

i=a

j

+1

jF

i

j � n�

t

X

j=1

a

j�1

� a

j

2k

n = n�

k � a

2k

n � n=2:

This inequality proves Claim A.

Fix an integer a satisfying the 
onditions of Claim A. Let F

0

= [

a

i=1

F

i

. Assign weights to the

elements of F

0

in the following way. For i = 1; : : : ; a, assign the weight

w(F ) :=

1

a+ 1� i

to every member F 2 F

i

.

Claim B. The total weight assigned to the elements of F

0

is at least

n log k

4k

, provided that n is

suÆ
iently large.

Let W denote the total weight of the elements in F

0

. By Claim A, we have

W =

a

X

i=1

jF

i

j

a+ 1� i

=

P

a

i=1

jF

i

j

a

+

a�1

X

b=1

0

�

a

X

i=b+1

jF

i

j

�

1

a� b

�

1

a+ 1� b

�

1

A

11



�

n=2

a

+

a�1

X

b=1

�

a� b

2k

n

�

1

a� b

�

1

a+ 1� b

��

=

n

2a

+

n

2k

a�1

X

b=1

1

a+ 1� b

>

n

2a

+

n(log a� 1)

3k

:

For small values of a, the �rst term of the last expression ex
eeds the bound stated for W , for large

values of A, the se
ond term does. This proves Claim B.

We pro
eed similarly as in the proof of Proposition 1.1. Cut the plane along all horizontal and

verti
al lines x = i2

a+3

+ j and y = i2

a+3

+ j, where i runs over the integers and j is sele
ted at

random, uniformly from the interval [0; 2

a+3

℄. The probability that a given member of F

0

is not

met by any of these lines is at least 1=2, sin
e the 
ir
umradius of the sets in F

0

is bounded by

2

a

. Hen
e, by the linearity of the expe
tation, the expe
ted total weight of the inta
t (i.e., un
ut)

members of F

0

is at least half of the total weight of all members. There is a parti
ular 
hoi
e of

j, for whi
h the total weight of the family G of all inta
t members of F

0

is at least as large as its

expe
tation. A

ording to Claim B, we have

X

F2G

w(F ) �

n log k

8k

: (4)

After this �rst round of 
uts, the plane falls into squares of side-length 2

a+3

. Fix one su
h pie
e,

and denote by G

0

the family of all members of G belonging to it. Let W

0

:=

P

F2G

0

w(F ) be the

total weight of the elements in G

0

.

Re
all that all members of F (and thus of G

0

) are "-fat with some 
onstant " > 0, and that

k = log V , where V was the upper bound for the `varian
e' of the set sizes in F .

We 
an now �nish the proof of Theorem 4.1 by 
ombining (4) with the following

Claim C. G

0

has a separable subfamily whose size is at least �
W

0

= �


P

F2G

0

w(F ), for some


onstant �
 = �


"

> 0 depending only on ".

To verify the 
laim, let m := jG

0

j and noti
e that, if m > 1, then Theorem 1.6 guarantees the

existen
e of a separable subfamily of size 


"

(m= logm) in G

0

. It remains to show that

m

logm

� 
W

0

,

for a suitable 
onstant 
 > 0 depending on ".

Sin
e G

0


onsists of pairwise disjoint sets pa
ked into a square of side-length 2

a+3

, and the area

of an "-fat set F is at least ("R(F ))

2

� � "

2

�4

a�2=w(F )

, we have

4

a+3

� "

2

�

X

F2G

0

4

a�2=w(F )

:

On the other hand, using the 
onvexity of the fun
tion 4

a�2=w

over the interval w = w(F ) 2 (0; 1℄,

we obtain that the right-hand side of the above inequality is at least "

2

�m4

a�2m=W

0

. Thus, we

have

4

a+3

� "

2

�m4

a�2m=W

0

:
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Taking logarithms, it follows that for large enough m

W

0

�

4m

logm+ 2 log "+ log � � 6

= O(m= logm);

as required. 2

5 Higher dimensions

The de�nition of a separable family 
an be naturally extended to higher dimensions d > 2. We

say that m pairwise disjoint sets in d-spa
e are separable, if we 
an 
ut the spa
e by a hyperplane

into two parts, and su

essively 
ut ea
h part into smaller pie
es until we obtain m pie
es, ea
h


ontaining pre
isely one of our m sets.

In general, it is not true even in 3-spa
e that every in�nite family of pairwise disjoint 
onvex sets

has three separable members. Indeed, as noted in [T79℄, given a family of in�nitely many disjoint

straight lines in 3-spa
e, no three of whi
h are parallel to the same plane, any plane separating two

members of the family must 
ross the remaining lines. To obtain a family of 
ompa
t 
onvex sets

with this property, one 
an 
lip ea
h member in a �nite subfamily of the above 
onstru
tion by a

ball around the origin, whose radius is suÆ
iently large.

However, for fat sets and axis-parallel boxes, it is not hard to establish some positive results.

Theorem 5.1 Any family of n pairwise disjoint 
ompa
t 
onvex �-fat sets in d-spa
e has a separable

subfamily of at least 
n=(log n)

d

members, where 
 = 
(�; d) > 0 is a 
onstant depending only on �

and d.

The proof is based on the following

Lemma 5.2 Let F be a family of n pairwise disjoint 
ompa
t 
onvex �-fat sets in d-spa
e su
h that

ea
h of them interse
ts all the d 
oordinate hyperplanes.

Then F has a separable subfamily of at least 


0

n members, where 


0

= 


0

(�; d) > 0 is a 
onstant

depending only on � and d.

Proof: First, note that, if a set F in d-spa
e interse
ts all 
oordinate hyperplanes and it has a

point at distan
e r from the origin O, then the diameter of F is at least r=

p

d. Next, noti
e that, if

F is an �-fat 
onvex set of diameter d > s, and x is a point of F , then F \B(x; s), the interse
tion

of F with the ball of radius s 
entered at x, 
ontains a ball of radius �s=2. Indeed, we obtain su
h

a ball by shrinking the ins
ribed ball of F from x to a fra
tion s=d of its original size.

Hen
e, any member of F , whi
h has a point at distan
e r from the origin, 
ontains a ball of

radius �r=(2

p

d), lying entirely within B(O; 2r). As the sets F 2 F are pairwise disjoint, no more

than (4

p

d)

d

of these balls �t into B(O; 2r). Consequently, F has at most (4

p

d)

d

members that
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have at least one point at distan
e r from the origin. This immediately implies the existen
e of a

subfamily F

0

= fF

1

; : : : ; F

m

g � F with m � n=(4

p

d)

d

, su
h that every point of F

i

is 
loser to the

origin than any point of F

i+1

(i = 1; : : : ;m�1). To see that F

0

is separable, it is enough to observe

that, if the largest ball B

i

around the origin that does not overlap F

i

tou
hes F

i

at a point p

i

, then

the tangent hyperplane to B

i

at the point p

i

separates F

i

from every F

j

; j < i. 2

Proof of Theorem 5.1: We establish the stronger 
laim that, for any � > 0 and for any d �

i � 0, there is a 
onstant 


00

= 


00

(�; d; i) > 0 su
h that every family of n pairwise disjoint 
ompa
t


onvex �-fat sets in the plane, all of whose members interse
t the �rst i 
oordinate hyperplanes,

has a separable subfamily with at least 


00

n=(log n)

d�i

members.

The proof is by indu
tion on d� i. The base 
ase, i = d, was settled in Lemma 5.2. The 
ase

i = 0 gives the theorem.

Let f(n; �; d; i) be the minimum size of the largest separable subfamily in a family of n pairwise

disjoint 
ompa
t 
onvex �-fat sets in d-spa
e, all of whi
h meet the �rst i 
oordinate hyperplanes.

Assume we have already veri�ed the 
laim for some i (d � i > 0), and next we wish to prove it for

i� 1. Let F be a family of n pairwise disjoint 
ompa
t 
onvex �-fat sets in d-spa
e, all meeting the

�rst i�1 
oordinate hyperplanes, and assume that F ha only f(n; �; d; i�1) separable members. As

in Lemma 2.1, for every 1 � j � n=2, one 
an �nd a hyperplane x

i

= z su
h that either it interse
ts

at least n � 2j + 2 members of F , or both half-spa
es bounded by it 
ontain at least j members

of F . In the former 
ase, we 
an translate this hyperplane to the ith 
oordinate hyperplane (not

a�e
ting the number of separable members) and obtain that f(n; �; d; i� 1) � f(n� 2j +2; �; d; i).

In the latter 
ase, �rst 
utting along the hyperplane x

i

= z and then dealing separately with the

families on either side of it, we obtain f(n; �; d; i� 1) � 2f(j; �; d; i � 1). Thus, we have

f(n; �; d; i� 1) � min (f(n� 2j + 2; �; d; i); 2f(j; �; d; i � 1)) :

To �nish the proof of the 
laim, set j = bn=2 � n= log n
 and use the indu
tion hypothesis on

f(n� 2j + 2; �; d; i). 2

Theorem 5.3 Any family of n pairwise disjoint axis-parallel boxes in d-spa
e has a separable

subfamily with at least 


000

n=(log n)

d�1

members, where 


000

= 


000

(�; d) > 0 is a 
onstant depending

only on � and d.

Proof: The proof 
an be 
arried out along the lines of the last argument. Alternatively, one 
an

also prove Theorem 5.3 by indu
tion on d, as separating a family of d-dimensional boxes interse
ting

a 
oordinate hyperplane redu
es to a similar d� 1-dimensional problem. 2

6 Remarks

6.1 It is a natural �rst approa
h to our problem to try to �nd a line 
utting through relatively few

members of the family F and separating the others into two large subfamilies. Then, re
ursively,
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we 
ould repeat this pro
edure for the subfamilies, and �nd many separable members in ea
h of

them.

It may happen that already at the �rst non-trivial 
ut we are for
ed to destroy (i.e. 
ut

through) a large fra
tion of the members of F . Consider the following family. Let p

1

; p

2

; : : : ; p

2n

be the verti
es of a regular 2n-gon of diameter 1 in the plane. For every i, 1 � i � n, let F

i

be

the segment of length K starting at p

2i

and passing through p

2i�1

. If K is suÆ
iently large, then

any straight line ` with the property that both half-planes bounded by ` fully 
ontain at least one

member of F = fF

1

; F

2

; : : : ; F

n

g must 
ut through roughly half of the F

i

-s (see Figure 3). On

the other hand, having performed su
h a 
ut, the remaining members are separable. A similar


onstru
tion was des
ribed by R. Hope [H84℄ (see also [HK90℄).

Figure 3.

There is a more serious diÆ
ulty with the above approa
h. It is not hard to modify the previous


onstru
tion so that there is no straight-line whi
h has at least two members on both of its sides.

(See [T79℄, [PT00℄.)

6.2 In the proof of Theorem 4.1, it seems tempting to repla
e the appli
ation of Theorem 1.5 by an

iterative argument. The diÆ
ulty is that after the �rst round of 
uts we 
an no longer guarantee

that the ratio between the sizes of the sets is bounded from above in terms of the number of sets

in the family. In 
ase we 
ould use the te
hniques of this proof without having su
h a bound, we


ould iterate our pro
edure and obtain a larger separable set.

6.3 We say that a family of pairwise disjoint sets in the plane is strongly separable, if any two

members 
an be separated from ea
h other by a straight line whi
h does not 
ut through any of

the remaining sets. It is not true that every large family of pairwise disjoint 
ompa
t 
onvex sets

in the plane has many strongly separable members. Indeed, it is not hard to 
onstru
t a family of

in�nitely many pairwise disjoint straight-line segments in the plane, no three of whi
h are strongly
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separable. For some positive results, 
onsult [PT00℄.

6.4 As mentioned in the Introdu
tion, we 
onje
ture that the worst possible 
onstru
tions for

separability (i.e. those whi
h have the smallest number of separable members) 
an be realized by

segments.

Another optimization problem for plane 
onvex bodies whose solution is probably also realizable

by straight-line segments was studied in [G94℄,[CP98℄. It is a 
ommon feature of these problems

that all non-trivial results known for them were obtained by introdu
ing 
ertain partial orders on

the family of 
onvex bodies and then applying some form of Dilworth's theorem.
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