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Abstract

A triangle is said to be Æ-fat if its smallest angle is at least Æ > 0. A connected component of the complement

of the union of a family of triangles is called hole. It is shown that any family of n Æ-fat triangles in the plane

determines at most O
�

n

Æ

log

2

Æ

�

holes. This improves on some earlier bounds of Efrat, Rote, Sharir and Matoušek

et al. Solving a problem of Agarwal and Bern, we also give a general upper bound for the number of holes

determined by n triangles in the plane with given angles. As a corollary, we obtain improved upper bounds for the

boundary complexity of the union of fat polygons in the plane, which, in turn, leads to better upper bounds for the

running times of some known algorithms for motion planning, for finding a separator line for a set of segments,

etc.

1. Introduction, main results

Many basic problems in computational geometry related to motion planning [SS83, SS89, SS90], range search-

ing [K97, GJ97], computer graphics [AK94], and geographic information systems [BK97] lead to questions about

the complexity of the boundary of the union of certain geometric objects. When the boundary is simple, these

problems can usually be solved more efficiently [GS93]. This was the motivation behind a lot of research during

the past fifteen years, establishing upper bounds for the complexity (or, equivalently, for the description size) of

the union of various objects.

Perhaps the first results of this kind were the following. Given n simply connected regions in the plane, any two

of which share at most 2 (resp., at most 3) boundary points, the boundary of their union consists of at most 6n�12

(resp., at most n�(n)) simple arcs, i.e., connected pieces whose interior belongs to the boundary of a single region

[KL86] (resp., [EG89]; here �(n) denotes the extremely slowly growing inverse of Ackermann’s function). In
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some sense, this result is best possible: if two regions are allowed to cross at 4 boundary points, then the boundary

of their union may consist of 
(n2) simple arcs. Indeed, consider n very “skinny” pairwise crossing triangles, no

three of which have a point in common.

However, it was discovered by Matoušek et al. [MP94] that if we restrict how skinny our triangles can be, we

can still establish a nearly linear upper bound on the complexity of their union. For any Æ > 0, a triangle is said to

be Æ-fat if each of its angles is at least Æ. (The reciprocal of the smallest angle of a triangle is often called its aspect

ratio.) It turned out that for any fixed Æ > 0, the boundary of the union of n Æ-fat triangles in the plane consists of

at most n log logn=Æ3 simple arcs.

The boundary complexity of the union of a family T of triangles (or simply connected regions) is defined as the

number of simple arcs along Bd([T ), the boundary of the union of T . A connected component of the complement

of [T is called a hole. The heart of the argument in [MP94] was the following statement.

Theorem 0. (Matoušek et al.) Any family of n Æ-fat triangles in the plane determines O
�

n=Æ

3

�

holes.

The concept of Æ-fatness, as well as the above theorem, has been extended to arbitrary polygons by van Kreveld

[K98]. For other extensions and generalizations, see [SH93],[S94],[ES97], [EK98], and [E99].

For wedges (i.e., cones) in place of triangles, a somewhat better upper bound was found by Efrat, Rote, and

Sharir [ER93]. They proved that the number of holes determined by n wedges in the plane (and the boundary

complexity of their union) is O
�

n

Æ

2

log

2

Æ

�

.

Our first theorem generalizes and strengthens this result.

Theorem 1. Any family of n Æ-fat triangles in the plane determines O
�

n

Æ

log

2

Æ

�

holes. This bound is tight up to

the logarithmic factor.

Theorem 1 can be used to establish a more general upper bound for the number of holes determined by a family

of triangles with given angles.

Theorem 2. Let T = fT

1

; : : : ; T

n

g be a family of n > 1 triangles in the plane, and let �
i

denote the smallest

angle of T
i

(1 � i � n). Suppose 0 < �

1

� �

2

� � � � � �

n

, and let k � n be the largest integer satisfying
P

k

i=1

�

i

< �.

Then T determines O(nk log k) holes. Furthermore, there exists a family T 0

= fT

0

1

: : : ; T

0

n

g, where T 0

i

and T
i

are congruent for all i, and T 0 determines 
(nk) holes.

Of course, the same result applies to wedges, provided that their angles are separated from �. Moreover, in this

case an almost identical upper bound holds for the boundary complexity of the union.

Theorem 3. Let T be a family of n wedges in the plane with angles 0 < �

1

� � � � � �

n

< �. Let k � n be the

largest integer satisfying
P

k

i=1

�

i

< �.

If k � 2, then the boundary complexity of [T is O(nk log k). Furthermore, there exists a family of n wedges

with angles �
1

; : : : ; �

n

, which determines 
((� � �

n

)nk) holes.

Notice that Theorem 3 bounds the boundary complexity instead of the number of holes. The bound in Theorem

2 for the number of holes in families of triangles cannot be extended to boundary complexity as there are families

of equilateral triangles (for which k = 2) with superlinear boundary complexities (at least 
(n�(n)), cf. [WS88]).

In some applications, e.g., the overlay of triangulated environments in geographic information systems (GIS),

we cannot assume that all of the participating triangles are fat (have bounded aspect ratios). However, very often

most of them satisfy this condition [ZS99]. To deal with these situations, Agarwal and Bern [AB99] asked whether

Theorem 0 can be generalized as follows. Let T be a family of n triangles in the plane, whose average aspect

ratio is bounded by a constant. That is,
P

n

i=1

1

�

i

= O(n), where �
i

denotes the smallest angle of the i-th triangle.

Is it then true that T determines only O(n) (or nearly a linear number of) holes? Theorems 2 and 3 answer this

question in the negative. Indeed, let

�

i

=

(

1

p

n

if 1 � i �

p

n

1 if
p

n < i � n.
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Then we have
P

n

i=1

1

�

i

< 2n, but, according to the second statement of Theorem 2, the number of holes can be

as large as 
(n3=2). This is true even for wedges (Theorem 3). The first statement of Theorem 2 shows that this

bound is tight, apart from the logarithmic factor.

In the case when some of the wedges have angles very close to �, Theorem 3 is not sufficiently tight. A more

careful analysis can account more precisely for the contribution of the convex wedges with angles close to �:

Theorem 4. Let T be a family of n wedges in the plane with angles 0 < �

1

� � � � � �

n

< 2�. Let l 2 [0; n℄ be

the largest integer satisfying �
l

< 3�=4, and let m 2 [l; n℄ be the largest integer satisfying �
m

< �. (We set l = 0

if �
1

� 3�=4, and l = m = 0 if �
1

� �.) Let k be the largest integer with
P

k

j=1

�

j

< �, and, for any 1 � i � m,

let k
i

2 [0; i) be the largest integer such that
P

k

i

j=1

�

j

< � � �

i

.

Then the boundary complexity of [T is O(n +

P

l

i=1

k

i

log k

i

+

P

m

i=l+1

k

i

) = O(n+ lk log k +

P

m

i=l+1

k

i

),

where the sum is taken over all i with k
i

6= 0. Furthermore, there is a family of n wedges with angles �
1

; : : : ; �

n

,

which determines
P

m

0

i=1

k

i

+m

0

+ 1 holes, where m0

= minfm;n� 1g.

The rest of the paper is organized as follows. The proofs of Theorems 1, 2-3, and 4 are presented in Sections

2-3, 4, and 5, respectively. The last section contains some combinatorial and algorithmic consequences of the

main results.

2. Reduction to rhombs and assignment of holes

By a polygon we mean a simply connected (bounded or unbounded) region in the plane, whose boundary

consists of a finite number of straight-line segments and possibly two half-lines. A family of polygons is said to

be in general position, if no three lines supporting different sides of the polygons pass through the same point. We

say that a point is incident to a hole H , if it lies on the boundary of H .

Given a family P of polygons in the plane, let h(P) and H(P) denote the number of holes determined by P

and the minimum number of non-overlapping convex polygons the union of these holes can be partitioned into,

respectively. Furthermore, let (P) stand for the number of concave angles of <2

n [P , the union of the holes.

Lemma 2.1. For any family P of polygons in the plane, we have

h(P) � H(P) � h(P) + (P):

Proof: The lower bound on H(P) follows from the fact that to cover each hole we need at least one convex set. To

establish the upper bound, we show that every hole with k concave vertices can be partitioned into k + 1 convex

sets. In the case k = 0, the hole itself is convex. For k > 0, it is enough to observe that the total number of

concave vertices decreases by cutting the hole into two along the angular bisector at a concave vertex. 2

Lemma 2.2. Let P and P

0 be two families of polygons in the plane such that [P 0

� [P and any segment

connecting two points of <2

n [P which intersects [P also intersects [P 0.

Then H(P) � H(P

0

).

Proof: For any partition of <2

n [P

0 into a family C of convex sets, fC n [P j C 2 Cg forms a partition of

<

2

n [P into convex sets. Note that we needed the condition in the lemma to guarantee that each member of the

latter family is convex. 2

For the rest of this section we fix an angle Æ � �=3 and set k := d2�=Æe. Clearly, we have k � 6. Fix any

straight line `
0

in the plane. We say that a segment (line, half-line) is canonical if the angle between its supporting

line and `
0

is an integer multiple of �=k. A rhomb is called canonical if (a) all of its sides are canonical, and (ii)

two of its angles are equal to �=k.
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Next we show that Theorem 1 can be reduced to

Theorem 2.3. Any family R of n canonical rhombs in the plane determines O(nk log k) holes.

Proof of Theorem 1 (using Theorem 2.3): Let T be a family of n Æ-fat triangles in the plane. Consider a vertex A

of a triangle ABC 2 T . By the choice of k, there are at least two canonical half-lines emanating from A, whose

initial segments belong to ABC . Therefore, we can pick a point A0 on the segment BC and two other points, D

and D0, in ABC such that R
A

= ADA

0

D

0 is a canonical rhomb whose angles at A and A0 are equal to �=k. Let

R

A

denote such a rhomb. Similarly, we can define two other canonical rhombs, R
B

and R

C

, within the triangle

ABC . (See Figure 1.)

A

B

C

D

D’

A’

Substituting three canonical rhombs for a triangle

Figure 1

Let T 0 denote the family obtained from T by replacing every triangle ABC 2 T by the three correspond-

ing canonical rhombs, R
A

; R

B

; and R

C

. By Theorem 2.3, T 0 determines O(nk log k) holes, i.e., h(T 0

) =

O(nk log k): Now Lemmas 2.1 and 2.2 imply that

h(T ) � H(T ) � H(T

0

) � h(T

0

) + (T

0

):

In other words, the number of holes determined by T may be larger than the number of holes determined by T 0

;

but the difference cannot exceed the total number of concave corners (vertices) in all holes determined by T

0.

However, every such corner corresponds to a vertex of one of the 3n rhombs defined above, so the difference is at

most 12n. 2

In the rest of this and the next section, we establish Theorem 2.3. We may and will assume without loss of

generality that the rhombs in R are in general position. We use the term edge only for the sides of the rhombs in

R. We call two edges homothetic if they are corresponding sides of two homothetic rhombs. We orient every edge

e of a rhomb toward its vertex of angle �=k. This vertex is called the apex of e. The subsegments of e inherit the

orientation of e.

Let e be an edge and let S be a homothecy class of edges not containing e. There may be several holes whose

boundaries contain a piece of e next to a piece of some element of S. The first and last such holes along e are said

to be extreme. Since there are 4n edges in at most 4k homothecy classes, the number of extreme holes is at most

32kn. We call the non-extreme holes intermediate. Clearly, it is sufficient to bound the number of intermediate

holes. As every hole incident to a vertex of a rhomb is extreme, the intermediate holes are convex.

Let H be an intermediate hole. Consider two consecutive segments, a and b, on the boundary of H , belonging

to the edges e and f , respectively, and denote their common endpoint by X . Let P and Q denote the apices of e

4



and f , respectively. Suppose that b is oriented away from X . We say that H is a hole assigned to e if we have

jX � P j � jX �Qj. The distance jX � P j is called the depth of H along e or, if it leads to no confusion, simply

the depth of H . We say that H is an in-hole or an out-hole assigned to e, depending on whether a is oriented

toward X or away from X . See Figure 2.

In-hole       assigned to edge     

X

P

Q

Ha
b

e

f

Out-hole       assigned to edge    H e H e

H
X

a

Q

e

b

f

P

Figure 2

Lemma 2.4. Every intermediate hole is assigned to at least one edge.

Proof: Let H be an intermediate hole. If the segments bounding H are not cyclically oriented, we find two

consecutive segments, both oriented away from their common endpoint. In this case, H is an out-hole assigned to

one of the edges containing these two segments.

Suppose that the segments forming the boundary ofH are cyclically oriented. LetX
1

;X

2

; : : : ;X

k

= X

0

denote

the vertices of H in this cyclic order, and let P
i

denote the apex of the edge containing X

i�1

X

i

(1 � i � k). Set

P

k+1

:= P

1

. For every 1 � i � k, if H is not an in-hole assigned to the edge containing X
i�1

X

i

, then we have

jX

i

� P

i

j > jX

i

� P

i+1

j = jX

i

�X

i+1

j+ jX

i+1

� P

i+1

j:

Summing up these inequalities, we obtain

k

X

i=1

jX

i

� P

i

j >

k

X

i=1

jX

i

� P

i

j+ Per(H);

where Per(H) stands for the perimeter of H . This contradiction proves that H is an in-hole assigned to an edge

supporting one of its sides. 2

Next we show that the depths of the in-holes along an edge are 
(1=k) apart in a logarithmic scale, and the

same is true for the depths of the out-holes. (The depth of an in-hole can be arbitrarily close to the depth of an

out-hole though.) More precisely, we have:

Lemma 2.5. Let H be an in-hole (out-hole) assigned to an edge e, whose depth is d. Then the depth of no other

hole assigned to e is between d and
�

1�

1

k

�

d (respectively. between d and
�

1 +

1

k

�

d).

Proof: Let a and b be two consecutive segments of the boundary of H causing H to be assigned to e. Let X be

their common endpoint, f the edge containing b, and let P and Q be the apices of e and f , respectively. Clearly,

a is on e oriented towards X and b is oriented away from X . The depth of H is d = jX � P j. Since H is not an
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extremal hole, e must cut through the rhomb belonging to the edge f . The length of the piece of XP covered by

this rhomb is at least

jX �Qj sin

�

k

� jX � P j sin

�

k

>

d

k

:

Thus, the depth of no hole along e can belong to the interval ((1 � 1=k)d; d). The corresponding statement for

out-holes can be proved similarly. 2

3. Base points

Theorem 2.3 would immediately follow from Lemma 2.5, if we could show that the ratio of the largest and

smallest depths of an in-hole (and out-hole) along the same edge is bounded by a polynomial of k. It is not hard

to see that this holds for wedges rather than rhombs (and this can be used to give a direct proof of Theorem 3), but

the general statement is false. We prove instead that the depths of the intermediate holes (in-holes and out-holes)

assigned to a given edge fall into a small number of short intervals.

To formulate our result precisely, we need some preparation. We assign at most three so-called base points to

each edge, according to the following definition.

Definition 3.1. (Base points) Let e = NP be an edge of a rhomb � = NPSU 2 R, and let e be oriented towards

P . Let Y denote the point of e closest to N that does not belong to the interior of any member of R. Let both P

and Y be assigned to e as base points. Further, let h denote the oriented half-line (ray) starting at N and passing

through U . Consider all edges homothetic to e that either intersect h beyond U , or intersect both h and the edge

SP . If there is no such edge, then no other base point is assigned to e. Otherwise, let e0 denote the edge with

this property that intersects h closest to N . If e0 intersects h beyond U , then we say that e0 is far from e, and set

Y

0

:= e

0

\ h. If e0 intersects the segment PS, then we say that e0 is close to e, and set Y 0

:= e

0

\ PS. In both

cases, Y 0 is the third base point assigned to e, which will be referred to as the base point forced by e. Note that

this third point is not on e. (See Figure 3.)

The depth of a base point Y sitting on an edge e is defined as the distance between Y and the apex of e.
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Y        eon       and

far frome’                  e

on        forced byY’        e’                    e

Y        eon       and

e’

h

Y’

e

S

U

e’

Y’

h

P

e

P

S

U

N

Y

N=Y

on        forced byY’        e’                    e

close toe’                  e

Figure 3

Using the above notation, no point of the open interval Y N can be incident to a hole. Thus, the depth of a hole

assigned to e cannot exceed the depth of the base point Y on e. Consequently, the depth of each hole assigned to

e is between the depths of some pair of consecutive base points on e. Although there may be many base points

along the same edge, the total number of base points is at most 12n.

Lemma 3.2. If there are two consecutive base points on an edge e with depths d
1

and d
2

> k

2

d

1

, then there is at

most one intermediate hole assigned to e with depth belonging to the interval (d
1

; d

2

=k

2

).

Proof: Let e = NP be an edge oriented toward P . Choose two consecutive base points on e with depths d
1

< d

2

;

respectively. Let H be an (intermediate) hole assigned to e with depth d satisfying d > d

1

. We prove that for

every other hole assigned to e, whose depth d0 is larger than d, d0 � d

2

=k

2 holds.

As before, let a and b be the two consecutive segments on the boundary of H causing H to be assigned to e.

Let the segment b belong to the edge f with apex Q. Let X be the common endpoint of a and b. Clearly, a is on e

and b is oriented away from X .

The proof is based on the following claim:

Claim: There is a base point Y on e of depth at least the depth of H such that the angle PY Q is at least �

2k

.

Proof: We assume without loss of generality that e is vertical and that its upper endpoint is P . As b is oriented

away from X , and H is not an extreme hole, we find another edge e

0

, homothetic to e, which intersects XQ.

Consider the sequence of edges e
0

; e

1

; e

2

; : : : ; e

t

, where e
i

is the edge homothetic to e, containing the base point

forced by e

i�1

(1 � i � t). The last edge of this sequence, e
t

, forces no base point. (See Figure 4.) Let e
i

be the edge of the rhomb �

i

= N

i

P

i

S

i

U

i

2 R with e

i

= N

i

P

i

oriented toward P

i

, and let h
i

be the half-line

starting at N
i

and passing through U

i

(0 � i � t). Notice that h
i

intersects e
i+1

for i < t, and denote this point

7



of intersection by X

i+1

. The intersection of f and e

0

is denoted by X

0

. Let � be the directed polygonal path

QX

0

N

0

X

1

N

1

: : : X

t

N

t

followed by the half-line h
t

. Since all segments of � (except maybe QX
0

) are pointing

downward and are at least as steep as f , X must lie above �.

f

e0

2

e

e

e=e3

P

P

0

0

1

1

1

2

P

1

X

N

N

P

X2

N2
X3

Y

N

0X

X

H

b
aQ

The construction of the path � (the bold path)

Figure 4

We distinguish two cases.

Case I: e = e

i

0

for some 1 � i

0

� t.

The point X
i

0

2 � lies below X on the same vertical edge e. Let Y denote the base point on e forced by e
i

0

�1

.

If e is far from e

i

0

�1

, the point Y coincides with X

i

0

, so it is below X . If e is close to e

i

0

�1

, the open interval

8



X

i

0

Y belongs to the interior of �
i

0

�1

, and the point X incident to H cannot lie on this interval. Therefore, in this

case Y cannot be above X either.

For 0 � i � t, denote by �
i

the strip between the parallel lines containing P

i

S

i

and N

i

U

i

. Notice that if e
i

is

close to e
i�1

(1 � i � t), then �
i

contains �
i�1

.

Let 1 � j

1

< j

2

< � � � < j

s

be the sequence of indices 1 � j � i

0

, for which e

j

is far from e

j�1

, and let

j

0

= 0. For 1 � i � s; the portion of � between X

j

i�1

and X

j

i

is contained in �
j

i

�1

. Thus, X
j

i�1

is below the

line P
j

i

�1

U

j

i

�1

, while X
j

i

is above the same line. This implies that the angle X
j

i�1

X

j

i

P

j

i

is larger than �=(2k).

If j
s

= i

0

, we have X
j

s

= X

i

0

= Y . Otherwise, X
j

s

2 �

i

0

�1

, while Y is on the upper boundary of this strip, so

the angle X
j

s

Y P is at least �=k. Since we have bounded the slope of each portion of �, combining these bounds,

it follows that the angle PY Q is at least �=(2k). This completes the proof of the Claim in Case I.

Case II: e 62 fe

i

: 1 � i � tg.

The path � now cannot cross e. Otherwise, let X 0 be this point of intersection and suppose X 0 lies on the half

line h
i

(i � t). When determining the base point forced by e

i

we must consider the edge e, since the interval

X

0

P contains the point X incident to the hole H , and thus cannot be entirely covered by �

i

. So we either have

e = e

i+1

or X
i+1

lies between N
i

and X 0. Both are contradictory to our assumptions, the letter since X 0 is not on

� in this case.

So e must lie entirely above �. Let l denote the line containing e, and let Z be the intersection point l \ �.

Suppose that Z belongs to the non-vertical segment of � starting at the point N
i

0

; for some i
0

� t.

Let j be the largest index between (and including) 1 and i

0

, for which e

j

is far from e

j�1

. If there is no such

index, set j = 0. It follows in exactly the same way as in the previous case that the angle QX

j

P

j

is at least

�=(2k). Let Y denote the point of e closest to N that does not belong to the interior of any rhomb in R. Recall

that, according to Definition 3.1, Y is a base point, and notice that it does not lie above X .

If l intersects �
i

0

, the point X
j

is below the line P
i

0

S

i

0

, while Y 0 is on this line or above it. Therefore, in this

case the angle X
j

Y P is at least �=k. If l does not intersect �
i

0

, consider the portion of � between X
j

to Z , and

notice that it lies in the strip between the lines P
i

0

S

i

0

and N

i

0

U

i

0

. Thus, X
j

is below the line P
i

0

U

i

0

but Z and

thus Y is above the same line. This implies that in this case the angle X
j

Y P is also at least �=(2k). Combining

this with the same lower bound for the angle QX

j

P

j

, we obtain that the angle PY Q is at least �=(2k). This

completes the proof of the Claim. 2

Now we finish the proof of Lemma 3.2:

The depth of the base point Y is larger than d
1

thus we have jP�Y j � d

2

. Using the law of sines for the triangle

QYX , we obtain jY � Xj � jQ � Xj= sin

�

2k

. Since H was assigned to e, we have that jP � Xj � jQ � Xj.

Therefore,

d

2

� jP � Y j = jP �Xj+ jX � Y j �

�

 

1 +

1

sin

�

2k

!

jQ�Xj � kjQ�Xj:

Note that the rhomb inR belonging to the edge f covers an interval of e, whose length is at least jQ�Xj sin(�=k) �

d

2

=k

2. As X is an endpoint of this interval, any hole assigned to e, whose depth d

0 is larger than the depth

d = jP �Xj of H , must satisfy the inequality d

0

> d

2

=k

2, hence the lemma is true. 2

Proof of Theorem 2.3: According to Lemma 2.5, the depths of the intermediate holes assigned to an edge are

separated from each other by 
(1=k) in a logarithmic scale. By Lemma 3.2, if an edge has +1 base points, then

the depths of all holes assigned to this edge, except for at most  of them fit in  intervals, each of length 2 log k

in logarithmic scale. Thus this dege has O(k log k) holes assigned to it. Thus by Lemma 2.4 the total number of

intermediate holes is O(nk log k). Since the number of extreme holes is O(nk), Theorem 2.3 follows. 2
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4. Generalizations—Proofs of Theorems 2 and 3

Proof of Theorem 2: Obviously, the triangles T
k+1

; : : : ; T

n

are �=(k + 1)-fat. By Theorem 1, they determine

O(nk log k) holes. By adding the first k triangles, we increase the number of intersection points and, therefore,

the number of holes by O(nk).

As for the construction, let l = bk=2 and arrange T 0

1

; : : : ; T

0

l

so that any two intersect in a single point v, and all

of them are contained in a right angle wedge W with apex v. This is possible, because we have
P

l

i=1

�

i

< �=2.

Let " be the distance of v from the nearest other vertex of T 0

1

; : : : ; T

0

l

. We place T 0

i

for i > l so that

� T

0

i

meets both rays bounding W but does not contain v;

� T

0

i

\W is contained in the ball of radius " around v;

� the sets T 0

i

\W are pairwise disjoint for i > l.

All of these conditions can be satisfied by placing the triangles one by one so that we put a vertex of the next

triangle, corresponding to an acute angle, sufficiently close to v. The obtained configuration has (l� 1)(n� l+1)

holes inside W . This quantity is 
(nk), as required, unless l = 1. In the latter case, we arrange the triangles

T

0

i

(i > 1) so that all of them have a point in common outside T 0

1

, and their intersections with T 0

1

are distinct single

points. These triangles determine at least n� 1 holes. 2

We continue with Theorem 3. (Notice that it is a simple special case of Theorem 4.)

Proof of Theorem 3: First we prove O(nk log k) bound for the number of holes determined by the convex wedges

in T . As we have indicated before, the direct proof of this bound along the lines described in Section 2 is simpler

than the proof of Theorem 1. However, at this point it is more convenient to deduce it from Theorem 2. Let h be

the number of holes determined by the wedges. First we split each wedge with an obtuse angle into two congruent

wedges. Then we replace each wedge by a triangle, intersecting it with a half-plane that contains all intersection

points between the boundaries of the original wedges. We make sure that all new angles introduced exceed �=4.

Following this procedure, we obtain a family of at most 2n triangles that determine at least h � n+ 1 holes. The

value k for this new family (as defined in Theorem 2) is at most 3 larger than the corresponding value for the

original family of wedges. Applying Theorem 2 to the triangles, we obtain the desired bound for wedges.

To prove the same upper bound for the boundary complexity, notice that �
i

� �=(k + 1) for i > k. As in the

proof of Theorem 2, we can disregard the first k wedges, because their contribution to the boundary complexity is

at most 4kn. We proceed as in [MP94]. We partition the remaining wedges into 2k + 2 classes so that all wedges

belonging to the ith class contain in their interior a half-line having a 2�=(2k +2) positive angle from a reference

direction. Now every vertex of the union of all wedges in a given class is either the apex of a wedge or is the

last vertex along one of the open half-lines bounding the wedges. Thus, the boundary complexity of this union is

linear in the number of wedges in the class. Using the Combination Lemma of [EG90] (see also Lemma 2.1 in

[MP94]) to merge the classes in a binary tree-like fashion, it follows that the boundary complexity of the union of

all wedges in all classes is O(nk log2 k). To get rid of the extra log k factor, we consider the family of wedges T 0

we obtain at an intermediate step through the combination process. It is the union of some j of the original 2k+2

families. We can make sure, that these are j consecutive families. Applying an affine transformation, if necessary,

we can achieve that the angle of every wedge belonging to these families is 
(1=j). Since such a transformation

does not change the number of holes, we obtain the better bound O(mj log j) for the number of holes determined

by T 0, where m is the number of wedges in T 0. Using the combination lemma with this better bound, we conclude

that the boundary complexity of T is O(nk log k).

To verify the last statement of Theorem 3, we use almost the same construction as in the proof of Theorem 2.

The only difference is that now we have to start with a wedge W whose angle is smaller than � � �

n

, otherwise

10



no wedge of angle �
n

could intersect it in the required manner. Let l 2 [0; n=2℄ be the largest integer satisfying
P

l

i=1

�

i

< ���

n

. Clearly, we have l � minfb(1��

n

=�)k; n=2g. Select l wedges in W with angles �
1

; : : : ; �

l

such that the intersection of any two is the apex v of W . Then choose n� l wedges of angles �
l+1

; : : : ; �

n

such

that

� each of them intersects both boundary half-lines of W ;

� none of them contains v;

� their intersections with W are pairwise disjoint bounded sets.

The resulting family determines (l� 1)(n� l+1) holes in W . This is 
((���

n

)nk), unless l � 1. In the latter

case, we use a trivial construction similar to the one described at the end of the proof of Theorem 2: we pick n� 1

wedges that intersect the remaining wedge in distinct single points. This family determines at least n � 1 holes.

2

5. Wedges of angles close to �—Theorem 4

This section is devoted to the proof of Theorem 4.

First we establish the upper bound O(B) for the number of holes in T , where B = m+ lk log k +

P

m

i=l+1

k

i

.

The same bound on the boundary complexity then follows directly from the Combination Lemma of [EG90]: by

Theorem 3, the boundary complexity of the subfamily consisting of the l smallest wedges in T is O(lk log k), the

boundary complexity of the subfamily consisting of the next m � l wedges of T is O(m), while the boundary

complexity of the family of the n �m largest wedges of T (whose angles are at least �) is clearly O(m), as it

determines a single convex hole.

We proceed as in the proof of Theorem 1, but now we have to deal with different angles.

Fix a reference direction and say that a wedge is small if its angle is �=2s for some integer s � 2 and if the

angles between its boundary rays and the reference direction are integer multiples of �=2s. A wedge is large if its

angle is �� 2�=2

s for some integer s � 2 and if the angles between its boundary rays and the reference direction

are integer multiples of �=2s.

Let W
i

be the wedge in T of angle �
i

and let P
i

its apex. For i � l define W 0

i

to be the maximal small wedge

with apex P

i

that is contained in W

i

. For l < i � m let W 0

i

be the maximal large wedge with apex P

i

that is

contained in W
i

. Let T 0

= fW

0

ij1 � i � mg. By Lemmas 2.1 and 2.2, we have

h(T ) � H(T ) � H(T

0

) � h(T

0

) +m:

Thus, when passing from T to T 0

; the number of holes cannot decrease by more than m.

Let �0
i

denote the angle of the wedge W 0

i

(i � m), and let k0 and k0
i

be defined for T 0 in exactly the same way,

as k and k
i

were defined for T (1 � i � m). Notice that �
i

=4 < �

0

i

� �

i

, so k0 � 4k + 3. Furthermore, we have

���

0

i

< 4(�� �

i

), which implies that k0
i

� 16k

i

+15. Thus, it is sufficient to prove the desired upper bound on

the number of holes determined by the modified family T 0. For notational convenience, from now on we assume

that T 0

= T ; i.e., that T consists of l small and m� l large wedges.

We use the terms wedge, apex, ray, and hole only for the wedges in T , their apices, their rays, and for the holes

determined by them. Assume without loss of generality that no three rays have a point in common. We say that

two rays are homothetic if they are corresponding sides of two wedges that are translates of each other.

A triplet (X; r
1

; r

2

) is called a vertex if X is the intersection point of two distinct rays, r
1

and r

2

, and it lies

on the boundary of a hole. Our plan is to define several special types of vertices, to bound the number of vertices

of each type separately, and finally to bound the number of holes by showing that each hole has a point on its

boundary that appears in a vertex of some special type. A vertex (X; r

1

; r

2

) is said to be small (large), if both

11



of the wedges supporting r

1

and r

2

are small (resp., large) wedges. The number of small and large vertices can

be bounded by the boundary complexity of the family consisting of all small or all large wedges in T , and, by

Theorem 3, we have:

Claim 5.1. There are O(lk log k) small and O(m) large vertices.

In what follows, when we consider a vertex (X; r

1

; r

2

), the wedges supporting r
1

and r
2

will be denoted by W
1

and W
2

, respectively. The apices of W
1

and W
2

, will be denoted by P
1

and P
2

, respectively. If a vertex is neither

small nor large, then it is said to be hybrid. For a hybrid vertex (X; r

1

; r

2

), one of W
1

and W

2

is small and the

other is large. In this case, let i and j denote the indices of the corresponding small and large elements of T , resp.,

with angles �
i

= �=2

s and �
j

= � � 2�=2

t, resp., where 1 � i � l, l + 1 � j � m, s � 2 and t � 2.

A vertex (X; r

1

; r

2

) is called strongly extremal if it is the first or last vertex along r
1

or r
2

. Obviously, we have

Claim 5.2. There are at most 4m strongly extremal vertices.

A hybrid vertex (X; r

1

; r

2

) is said to be blunt if s < t. Considering the canonical properties of the wedges in

T , we see that if a blunt vertex (X; r

1

; r

2

) is not strongly extremal, then the boundaries of the wedges meet in

three vertices, and X is the middle one (along either boundary). Furthermore, if W
1

is large we find that r
2

is

perpendicular to the angular bisector of W
1

(see Figure 5).

P

P

r

r
X

X’
P’

r’

1

1

2

2

2

2

Blunt vertices

Figure 5

We claim that along a ray bounding a large vertex there is at most one blunt vertex that is not strongly extremal.

Suppose, for contradiction, that (X; r
1

; r

2

) and (X; r

1

; r

0

2

) are both blunt and not strongly extremal and W

1

is a

large wedge with apex P
1

. We may also assume that X belongs to the interval X 0

P

1

. Here the ray r0
2

is parallel to

r

2

, so the wedges W
1

and W
2

together cover the part of r0
2

on one side of X 0 (see Figure 5). Therefore, (X 0

; r

1

; r

0

2

)

must be strongly extremal, a contradiction. Therefore, the number of blunt vertices that are not strongly extremal

is at most 2m, which implies

Claim 5.3. The total number of blunt vertices is O(m).

A hybrid vertex (X; r

1

; r

2

) is said to be sharp if s > t+ log k.

Claim 5.4. The number of sharp vertices is O(
P

m

j=l+1

k

j

).
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Proof: Let (X; r
1

; r

2

) be sharp. We have i � k

j

, for otherwise none of the angles of the first k
j

+ 1 wedges in

T would exceed �=2s < �=2

t+log k, and their sum would be less than ���

j

= 2�=2

t , contradicting the definition

of k
j

. Thus, there are at most O(k
j

) sharp vertices involving the jth wedge in T (j > l), and Claim 5.4 follows.

2

A vertex (X; r

1

; r

2

) is called extremal, if it is the first or the last vertex along r
1

among all vertices of the form

(X

0

; r

1

; r

0

2

) with r0
2

being homothetic to r
2

.

Claim 5.5. The number of extremal vertices is O(B).

Proof: It is sufficient to establish this bound for those hybrid extremal vertices which are neither strongly

extremal, nor blunt, nor sharp. Fix such a vertex (X; r

1

; r

2

). We distinguish two cases.

Case i: W
1

is small and W
2

is large. For a given small wedge W
1

(which determines s), there are at most log k+1

possible values for t, without the vertex being sharp or blunt. For a given t, there are at most four homothecy

classes possible for W
2

without the vertex being strongly extremal. Thus, each ray of a small wedge is involved

in at most 8 log k + 8 extremal vertices satisfying the condition of Case i. Therefore, the total number of extremal

vertices of this type is O(l log k).

Case ii: W

1

is large and W

2

is small. Fix W

1

to be the jth wedge in T . This determines the value of t. For

a given value s > t, there are less than 2

s�t+2 possible homothecy classes for W
2

without the vertex being

strongly extremal. Notice that if z among these classes for all s > t are nonempty then the sum of dz=2e of the

smallest angles is less than � � �

j

= 2�=2

t . This implies z = O(k

j

). The total number of extremal vertices

involving r
1

that satisfy the condition in Case ii is O(k
j

), and the total number of all extremal vertices of type 2 is

O(

P

m

i=l+1

k

i

). 2

A vertex (X; r

1

; r

2

) is called covered, if the interval XP

1

is at least as long as the interval XP

2

and P
1

and W
2

lie on different sides of r
2

.

Claim 5.6. The number of covered vertices is O(B).

Proof: It is enough to consider those hybrid covered vertices that are neither extremal, nor sharp, nor blunt.

Let (X; r
1

; r

2

) be such a covered vertex. As (X; r
1

; r

2

) is not extremal, there exists another vertex (X

0

; r

1

; r

0

2

) for

which X 0 belongs to the interval XP

1

and the ray r0
2

is homothetic to r
2

. Here the wedge W 0

2

, whose boundary ray

is r0
2

, covers all of r
2

except an interval P
2

Q. Our goal is to show that W
1

covers a sufficiantly large subinterval

XY of P
2

Q. Considering these intervals XY for different covered vertices involving r

2

, we find that they cover

any point at most twice. Therefore, any lower bound on the lengths of these intervals yields an upper bound on

their number. As in the proof of the previos claim, we distinguish two cases.

Case i: W
1

is small and W
2

is large. By the relative position of the wedges W
1

, W
2

, and W 0

2

, we have jP
2

Qj =

O(jXY j=2

s�t

). This implies that r
2

appears in O(k

j

+ 1) covered vertices that satisfy the condition of Case i.

Therefore, the total number of covered vertices of this type is O(m+

P

m

j=l+1

k

j

).

Case ii: W
2

is small and W

1

is large. Here we have to use that (X; r
1

; r

2

) is not sharp, so that s � t + log k.

As in Case i, one can show that jP
2

Qj = O(kjXY j). Hence, r
2

appears in O(k) covered vertices satisfying the

condition of Case ii, and the total number of covered vertices of this type is O(lk). 2

The proof of the upper bound in Theorem 4 can now be completed by showing that each hole determined by T

has a point on its boundary that appears as the leading term of a strongly extremal or a covered vertex. Indeed, if no

such strongly extremal vertex exists, then the hole must be a (bounded) convex polygon. Consider the orientation

of the edges inherited from the rays oriented toward their apices. If it is not cyclic, we find a vertex X with two

outgoing edges. Obviously, either (X; r
1

; r

2

) or (X; r
2

; r

1

) is covered, where r
1

and r
2

are the two rays containing

X . We deal with the cyclically oriented case in exactly the same way as in the proof of Theorem 1: assuming

that no vertex around the hole is covered, we obtain several inequalities, whose sum gives a contradiction. This
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concludes the proof of the upper bound in Theorem 4 on the number of holes as well as on the boundary complexity

of T .

It remains to describe a construction for the lower bound. Choose an � > 0 such that � < (���

i

�

P

k

i

j=1

�

j

)=n

for all i, and let `
0

be a fixed horizontal line. By the direction of a half-line h from a point P on `
0

we mean the

angle between the half-lines h and the part of `
0

to the right of P . We place the wedges W
i

with angles �
i

(i = 1; : : : ;m

0

) one by one, according to the following rules.

1. The apex of W
i

is on `

0

sufficiently to the right, so that all intersection points of boundaries of wedges

already placed are outside W
i

and to the left of it;

2. W
i

is above `
0

;

3. the direction of the right ray of W
i

is � larger than the direction of the left ray of W
k

i

, or it is simply � if

k

i

= 0.

By the choice of k
i

and �, all the above requirements can be satisfied. The value H = H(fW

1

; : : : ;W

m

0

g) of

the resulting family (see the beginning of Section 2 for the definition) is the bound in Theorem 4 for the number

of holes. For i > m

0, we place a wedge of angle �
i

such that it does not contain any intersection point between

boundaries of W
j

for j � m

0, but one of its boundary rays is on `
0

and contains the apices of all W
j

(j � m

0

).

6. Concluding remarks, applications

As in [MP94], Theorems 1 and 2 yield the following upper bounds for the boundary complexity of a family of

triangles.

Corollary 6.1. The boundary complexity of any family of n Æ-fat triangles in the plane is O
�

n

Æ

(log log n log

2

Æ

+

log

2
2

Æ

)

�

. Moreover, the boundary of the union can be computed in time O
�

n log n

Æ

(log log n log

2

Æ

+ log

2
2

Æ

)

�

.

Corollary 6.2. Let T = fT

1

; : : : ; T

n

g be a family of n > 1 triangles in the plane, and let �
i

denote the smallest

angle of T
i

(1 � i � n). Suppose 0 < �

1

� �

2

� � � � � �

n

, and let k � n be the largest integer such that
P

k

i=1

�

i

< �.

Then the boundary complexity of T cannot exceed O(nk(log logn log k + log

2

k)).

Plugging Theorem 3 into the analysis of the running time of the algorithm described in [ER93], we obtain the

following two results.

Corollary 6.3. The union of a family of n Æ-fat wedges in the plane can be computed in timeO
�

n

Æ

log

2
2

Æ

+ n logn

�

.

A line ` is called a separator for a family S of pairwise disjoint segments in the plane, if ` avoids all members

of S , and there is at least one member of S on both of its sides.

Corollary 6.4. Given a family S of n line segments in the plane such that the ratio between the length of the

shortest segment in S and the diameter of [S is at least Æ > 0, there is an algorithm which determines whether S

admits a separator, and finds one if it exists, in O
�

n

Æ

log

n

Æ

log

2
1

Æ

�

time and O
�

n

Æ

log

2
1

Æ

�

space.

M. van Kreveld [K98] extended the definition of fatness to (not necessarily convex) simple polygon. He proved

that every Æ-fat simple polygon of k vertices can be covered by O(k) Æ-fat triangles, and such a covering can be

constructed in O(k log k) time. Therefore, Theorem 1 generalizes to Æ-fat simple polygons whose total number of

sides is n.

A. Efrat [E99] introduced another generalization of the notion of fatness to compact connected regions of ‘con-

stant description complexity’ depending on two real parameters. He established an upper bound on the boundary

complexity of a system of ‘fat’ objects according to this definition. The dependence of his bounds on the parame-

ters can be improved by using Theorem 1 instead of the results in [MP94].
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[AK94] P. K. Agarwal, M. J. Katz, and M. Sharir: Computing depth orders and related problems, in: Algorithm

Theory – SWAT ’94, Lecture Notes in Computer Science 824, Springer-Verlag, Berlin, 1994, 1–12.

[AF92] H. Alt, R. Fleischer, M. Kaufmann, K. Mehlhorn, S. Näher, S. Shirra, and C. Uhrig: Approximate motion
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