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Abstra
t

It is proved that, for any " > 0 and n > n

0

("), every set of n points in

the plane has at most n

11e�3

5e�1

+�

triples that indu
e isos
eles triangles. (Here e

denotes the base of the natural logarithm, so the exponent is roughly 2:136.)

This easily implies the best 
urrently known lower bound, n

4e

5e�1

��

, for the

smallest number of distin
t distan
es determined by n points in the plane, due

to Solymosi{C. T�oth and Tardos.

1 Introdu
tion

In 1946, Erd}os [5℄ raised some notoriously diÆ
ult questions about the distribution

of distan
es determined by �nite point sets. In parti
ular, he asked what is the

smallest number of distin
t distan
es determined by n points in the plane. Denoting

this number by g(n), he 
onje
tured that g(n) � 
n=

p

logn. The best 
urrently

known lower bound follows by a 
ombination of the results of Solymosi{C. T�oth [12℄

and G. Tardos [18℄: for every " > 0 there exists a 
onstant 


"

> 0 su
h that

g(n) � 


"

�

n

4e

5e�1

��

�

: (1)

Here and later in this note, e stands for the base of the natural logarithm.

In a series of papers, Erd}os and Purdy [6℄, [7℄ initiated the investigation of the

distribution of triangles (more generally, simpli
es) in �nite point sets. Pa
h and

Sharir [10℄ pointed out that it readily follows from a result of Szemer�edi and Trotter

[16℄, [17℄ that the maximum number of triples in a set of n points in the plane that

indu
e isos
eles triangles is O(n

7=3

).
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The aim of this paper is to improve this bound.

Theorem 1. For any " > 0, the number of isos
eles triangles spanned by three

points of an n-element point set in the plane is

O

"

�

n

11e�3

5e�1

+�

�

= O(n

2:137

):

The above two problems are intimately related. Indeed, if a point set P deter-

mines at most g distin
t distan
es, then around ea
h point p 2 P the remaining n�1

points lie on g 
on
entri
 
ir
les. If the numbers of points sitting on these 
ir
les

are n

1

; n

2

; : : : ; n

g

, then there are pre
isely

P

g

i=1

�

n

i

2

�

� g

�

(n�1)=g

2

�

isos
eles triangles

whose two equal sides meet at p. Thus, the total number of isos
eles triangles is

at least

n

3

2g

+ O(n

2

). Therefore, any upper bound on the number of isos
eles trian-

gles yields a lower bound on g(n). In parti
ular, Theorem 1 immediately implies

inequality (1). In this sense, our Theorem 1 
an be regarded as a strengthening of

(1).

Theorem 1, in turn, follows from a general upper bound for the number of

in
iden
es between a set of points and a set of 
ir
les.

Theorem 2. Let P be a set of n distin
t points and let C be a set of ` distin
t 
ir
les

in the plane. Let Q denote the set of 
enters of the 
ir
les in C and let jQj = m.

Then, for any 0 < � < 1=e, the number I of in
iden
es between the points in P

and the 
ir
les of C is

O

�

�

n+ `+ n

2

3

`

2

3

+ n

4

7

m

1+�

7

`

5��

7

+ n

12+4�

21+3�

m

3+5�

21+3�

`

15�3�

21+3�

+ n

8+2�

14+�

m

2+2�

14+�

`

10�2�

14+�

�

:

Figure 1 and Table 1 give the best known upper bounds on the number of

in
iden
es between n points an ` 
ir
les around m 
enters in the plane. Figure

1 de�nes regions a

ording to the di�erent settings of the parameters n, m, and

`, and Table 1 gives the best known bounds for ea
h of these regions. We have

0 < � < 1=e and " > 0 in Table 1 and the 
onstans multiplyer in the O notation

depends on the 
hoi
e of � or ". As is illustrated by Figure 1, ea
h term of the

expression in Theorem 1 provides the best known bound in some nonempty region

of the parameters. For all but the �rst term, our bound is new in the 
orresponding

region or at least in some part of it. In two further regions, the trivial bound nm or

the estimate n

6=11+3�

`

9=11��

found by Aronov and Sharir [2℄ are the best 
urrently

known bounds for the number of in
iden
es.

It is worth ponting out a simple 
onsequen
e of Theorem 2, whi
h is a general-

ization of the main result (Theorem 1) in [13℄.
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Corollary 3. Let P be a set of n distin
t points and C be a set of ` distin
t 
ir
les

in the plane.

If among the 
enters of the 
ir
les in C there are at most n distin
t points, then

for any 0 < � < 1=e the number of in
iden
es between the points in P and the


ir
les in C is

O

�

�

n

5+3�

7+�

`

5��

7+�

�

:

Proof: Substituting m = n in Theorem 2, the �fth term be
omes the required

bound. It dominates the other �ve terms, whenever ` < n

(9��)=(5��)

. For ` �

n

(9��)=(5��)

, the trivial bound nm = n

2

is better than the one in Corollary 3. 2

The proof of Theorem 2 is based on the same ideas as [12℄ and [13℄. In parti
ular,

all our bounds 
ru
ially depend on the following lemma from [13℄, whi
h is a slight

generalization of a result of Tardos [18℄.

Given a real matrix A, let S(A) denote the set of all reals that 
an be written

as the sum of two distin
t entries from the same row of A.

Lemma 4 [13℄. For any 0 < � < 1=e; there exists an integer s > 1 with the

following property. For every N � k � 0 and for every N by s real matrix A whi
h

does not have two equal entries in the same row and in whi
h for all but at most

k � 1 of the indi
es i = 1; : : : ; N � 1; all entries of the i-th row are smaller than all

entries in the next row, we have

jS(A)j = 


�

�

N

k

1��

M

�

�

;

where M is the maximum multipli
ity of any entry in A.

It is not 
lear whether Lemma 4 holds for other values of �; larger than 1=e. I.

Ruzsa (personal 
ommuni
ation) showed that it is 
ertainly false for � � 1=2. If

Lemma 4 remains true for any � � 1=e, we obtain that the number of isos
eles trian-

gles indu
ed by triples of an n-element point set in the plane is O

�

(n

(11�3�)=(5��)

).
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region best known bound sour
e

A O(n) [4, 10℄

B O

�

n

2

3

`

2

3

�

[2℄

B' O

�

n

2

3

`

2

3

�

Theorem 1

C O

�

n

4

7

m

1+�

7

`

5��

7

�

Theorem 1

D O

�

n

12+4�

21+3�

m

3+5�

21+3�

`

15�3�

21+3�

�

Theorem 1

E O

�

n

8+2�

14+�

m

2+2�

14+�

`

10�2�

14+�

�

Theorem 1

F O

�

n

6

11

+3"

`

9

11

�"

�

[2℄

G O(`) [4, 10℄

G' O(`) Theorem 1

H nm trivial

Table 1.
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2 An important spe
ial 
ase

The aim of this se
tion is to establish the following important spe
ial 
ase of Theorem

2, where C 
onsists of the same number, k, of 
on
entri
 
ir
les around ea
h element

of Q.

Proposition 2.1. Let P be a set of n distin
t points, let Q be a set of m distin
t

points in the plane, and let C be a family of mk 
ir
les, 
onsisting of k 
on
entri



ir
les around ea
h point in Q.

Then, for any 0 < � < 1=e, the number of in
iden
es between the points in P

and the 
ir
les in C is

O

�

�

n+mk + n

2

3

m

2

3

k

2

3

+ n

4

7

m

6

7

k

5��

7

+ n

12+4�

21+3�

m

18+2�

21+3�

k

15�3�

21+3�

+ n

8+2�

14+�

m

12

14+�

k

10�2�

14+�

�

:

Let I be the set of all pairs (p; q) su
h that p 2 P , q 2 Q, and P is in
ident to

one of the 
ir
les around q. We have to give an upper bound on jIj.

First, we outline the proof of Proposition 2.1.

We use three parameters, a; b; s � 2, to partition I as follows. The value of s

will solely depend on the 
hoi
e of 0 < � < 1=e; so it will be regarded as a 
onstant.

The values of a and b will depend on n, m, and k.

For any (p; q) 2 I; we 
onsider the number of points in P on the line l

pq


onne
t-

ing p and q, whi
h are in
ident to a 
ir
le in C around q. We use the Szemer�edi{

Trotter theorem (Lemma 2.3 below) to bound the number of pairs, for whi
h this

is greater than our parameter a. By losing just a few more pairs from I, we parti-

tion the remaining pairs into s-tuples and bound their number. The elements of an

s-tuple will 
orrespond to s distin
t points of P , in
ident to the same 
ir
le in C.

If we 
an 
hoose two of these points so that their perpendi
ular bise
tor 
ontains

less than b elements of Q, we 
onne
t them along the 
ir
le C. In this way, we

obtain a so-
alled topologi
al graph, a graph � drawn by (possibly 
rossing) 
on-

tinuous ar
s. Then we apply Sz�ekely's lemma on 
rossing numbers (Lemma 2.2)

to bound the number of edges of � and thus the number of s-tuples satisfying this


ondition. To bound the number of remaining s-tuples, we use Lemma 4 and again

the Szemer�edi{Trotter theorem.

Next, we work out the details. Let

I

0

= f(p; q) 2 I : jfp

0

2 l

pq

\ P j (p

0

; q) 2 Igj � ag:

For any q 2 Q; let P

q

= fp 2 P j (p; q) 2 I

0

g; and identify a set D

q

of pairwise

disjoint 
ir
ular ar
s on the 
ir
les in C around q so that ea
h ar
 
ontains pre
isely

s elements of P

q

and together they 
over all but at most k(s � 1) points of P

q

.
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We 
an assume without loss of generality that none of these ar
s interse
ts a �xed

half-line l

q

emanating from q.

Call a line l ri
h if jl\Qj � b. We say that an ar
 in D

q

is good, if it 
ontains two

points p; p

0

2 P

q

su
h that the perpendi
ular bise
tor of pp

0

is not ri
h. Denote by

G the set of good ar
s in [

q2Q

D

q

, and let B = [

q2Q

D

q

nG be the set of all bad ar
s.

Constru
t a topologi
al graph � on the vertex set P , by 
onne
ting a single pair of

points for ea
h good ar
 � 2 G. If � 2 D

q

; 
hoose these two points p; p

0

2 � \P

q

so

that their perpendi
ular bise
tor is not ri
h and 
onne
t them along �. The graph

� is not ne
essarily simple, i.e., it may 
ontain parallel edges 
onne
ting the same

pair of points. However, it is not hard to bound the multipli
ity of these edges, as

follows. All edges between two verti
es p and p

0

are drawn along separate 
ir
les

in C, whose 
enters lie on the perpendi
ular bise
tor of pp

0

. If this line is not ri
h,

there are fewer than b su
h edges. If this line is ri
h, then by our 
onstru
tion p

and p

0

are not 
onne
ted at all. Thus, the maximum edge-multipli
ity, m(�), of �

satis�es

m(�) < b:

Let 
(�) denote the 
rossing number of �. Sin
e ea
h 
rossing between two edges

of � o

urs at an interse
tion point of two 
ir
les in C, we 
learly have


(�) � 2

 

jCj

2

!

< m

2

k

2

:

On the other hand, the following useful generalization of a well known theorem

of Ajtai et al. [1℄ and Leighton [8℄, due to L. Sz�ekely [15℄, provides a lower bound

for 
rossing numbers.

Lemma 2.2. [15℄. Let � be a topologi
al multigraph with vertex set V (�) and edge

set E(�), in whi
h every pair of verti
es is 
onne
ted by at most m(�) edges.

If jE(�)j � 5m(�)jV (�)j, then the 
rossing number of � satis�es


(�) = 


 

jE(�)j

3

m(�)jV (�)j

2

!

:

Plugging the last two inequalities into Lemma 2.2, we 
on
lude that the number

of good ar
s satis�es

jGj = jE(�)j = O

�

jV (�)jm(�) + 


1

3

(�)m

1

3

(�)jV (�)j

2

3

�

= O

�

nb+ n

2

3

m

2

3

k

2

3

b

1

3

�

: (2)

Now we fo
us on the set B of bad ar
s and estimate their number. Fix 0 < � <

1=e and s so that they satisfy the 
onditions in Lemma 4. Constru
t an N

q

by s

6



real matrix A

q

, where N

q

is the number of bad ar
s in D

q

and ea
h row 
orresponds

to a bad ar
. Let the row of A

q

assigned to a bad ar
 � 2 B \ D

q


onsist of the

entries 


1

; : : : ; 


s

; where � \ P

q

= fp

1

; : : : ; p

s

g and 


i

is the angle of the smallest


ounter-
lo
kwise rotation that takes the referen
e half-line l

q

to the half-line qp

i

.

If the rows 
orresponding to the bad ar
s on a 
ir
le follow ea
h other in the

natural order, the matrix A

q

meets the requirements of Lemma 4. By the de�nition

of I

0

and P

q

, we have that the maximum multipli
ity of any entry in A

q

is M

q

� a.

All values in S(A

q

) are twi
e the angles of ri
h lines going through q, thus Lemma

4 implies that q is in
ident to 


�

(N

q

=(k

1��

a

�

)) ri
h lines. Hen
e, the total number

of in
iden
es between the points in Q and the ri
h lines is 


�

(jBj=(k

1��

a

�

):

On the other hand, the Szemer�edi-Trotter theorem gives an upper bound on the

same quantity.

Lemma 2.3 [16℄,[17℄. (i) The number of lines passing through at least b � 2

elements of a set of m points in the plane is O(m=b+m

2

=b

3

).

(ii) The number of in
iden
es between m points in the plane and all lines passing

through at least b � 2 of them is O(m+m

2

=b

2

).

(iii) The number of in
iden
es between m points and ` lines in the plane is

O(m

2=3

`

2=3

+m+ `).

Comparing Lemma 2.3 (ii) with the above lower bound for the same quantity,

we obtain

jBj = O

�

�

mk

1��

a

�

+m

2

k

1��

a

�

=b

2

�

: (3)

As ea
h ar
 in D

q


overs a 
onstant number s of the points in P

q

, and at most

(s� 1)k points are not 
overed, in view of the inequalities (2) and (3), we get

jI

0

j =

X

q2Q

jP

q

j � sjGj+ sjBj+ (s� 1)mk

= O

�

�

nb+mk +m

2

k

1��

a

�

=b

2

+ k

2

3

m

2

3

n

2

3

b

1

3

�

: (4)

The term mk

1��

a

�

in the upper bound on jBj is dominated by mk, if we 
hoose our

parameter a so that it satis�es 2 � a � k. (Su
h a 
hoi
e is impossible if k = 1, but

in that 
ase the bound in Proposition 2.1 is signi�
antly worse than the previously

known bounds, 
f. [4℄, [10℄, [2℄.)

It remains to bound the number of pairs (p; q) 2 InI

0

. Now we use the Szemer�edi-

Trotter theorem separately for P and Q. By Lemma 2.3 (i), for any t � 2, the

number of straight lines passi1ng through more than t points of P is O(n=t+n

2

=t

3

).

By Lemma 2.3 (iii), the number of in
iden
es between these lines and the m points

of Q is

O(m+ n=t+ n

2

=t

3

+ n

2=3

m

2=3

=t

2=3

+ n

4=3

m

2=3

=t

2

):
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Let I

t

denote the number of pairs (p; q) 2 I su
h that t < jfp

0

2 l

pq

\ P : (p

0

; q) 2

Igj � 2t. Clearly, ea
h in
iden
e 
ounted above is responsible for at most 2t pairs

in I

t

, when
e

jI

t

j = O(mt+ n+ n

2

=t

2

+ n

2=3

m

2=3

t

1=3

+ n

4=3

m

2=3

=t):

Using the fa
t that I n I

0

= [

blog(k=a)


i=0

I

2

i

a

, we obtain

jI n I

0

j = O

�

mk + n log k + n

2

=a

2

+ n

2=3

m

2=3

k

1=3

+ n

4=3

m

2=3

=a

�

:

It is not hard to get rid of the logarithmi
 fa
tor in the last formula. To see

this, noti
e that the n + n

2

=t

2

terms in the bounds on jI

t

j a
tually bound a value

proportional to the number of in
iden
es between P and some lines going through

at least t points of P . By Lemma 2.3 (ii), the total number of su
h in
iden
es for

any t � a is O(n+ n

2

=a

2

). (Alternatively, one 
an get rid of the extra logarithmi


fa
tor by using the result of [2℄, whi
h provides better bounds for I in all 
ases where

n logn would be the leading term.) Thus, we have

jI n I

0

j = O

�

n+mk + n

2

=a

2

+ n

2=3

m

2=3

k

1=3

+ n

4=3

m

2=3

=a

�

: (5)

Putting (4) and (5) together, we get

jIj = O

�

 

nb+mk + n

2=3

m

2=3

k

2=3

b

1=3

+

n

2

a

2

+

n

4=3

m

2=3

a

+

m

2

k

1��

a

�

b

2

!

: (6)

Noti
e that the above bound holds all k � a � 2 and b � 2. To minimize this

expression, set

a = min

�

k;max

�

2; n

10

14+�

m

�6

14+�

k

�5+�

14+�

; n

16

21+3�

m

�4

21+3�

k

�15+3�

21+3�

��

;

b = max

�

2; n

�2

7

m

4

7

k

1�3�

7

a

3�

7

�

:

In 
ase a = k, we have I = I

0

and Proposition 2.1 follows from (4). In all other


ases, the result is true by (6).

3 Proof of Theorem 2

Partition Q into the sets

Q

0

= fq 2 Q : jf
 2 C : the 
enter of 
 is qgj � `=mg;

Q

i

= fq 2 Q : 2

i�1

`=m < jf
 2 C : the 
enter of 
 is qgj � 2

i

`=mg;

8



for i � 1. We also partition C into the sets

C

i

= f
 2 C : the 
enter of 
 is in Q

i

g;

for i � 0. Let C

0

i

denote the sets obtained from C

i

by adding dummy 
ir
les to

bring the number of 
ir
les around ea
h q 2 Q

i

up to k

i

= b2

i

`=m
. Clearly, we

have m

i

:= jQ

i

j � m=2

i�1

, and the values `

i

:= jC

0

i

j add up to O(`).

Applying Proposition 2.1 to the system (P;Q

0

; C

0

0

), we get that the number of

in
iden
es between the points in P and the 
ir
les in C

0

0

does not ex
eed the bound

in Theorem 2. For the systems (P;Q

i

; C

0

i

), we obtain similar bounds, but their last

three terms are multiplied by some 
onstant negative power of 2

i

. Noti
e that we


an assume Q

i

= ; for i > logn, for a 
on
entri
 family of 
ir
les has at most n

elements in
ident to at least one point in P . Hen
e, adding up the upper bounds

that follow from Proposition 2.1, we readily obtain a weaker version of the bound

in Theorem 2, in whi
h the �rst three terms are multiplied by log n.

In the rest of this proof, we get rid of these unwanted logarithmi
 fa
tors. In the


ase of the �rst term, n, of the expression, this 
an be a
hieved by noti
ing that for

all settings of the parameters, when n logn would be the leading term, the upper

bound

O(n+ `+ n

2=3

`

2=3

+ n

6=11+3�

`

9=11��

)

established by Aronov and Sharir [2℄ is better and gives O(n+ n

2=3

`

2=3

) in
iden
es.

It is even easier to argue for the se
ond term, as not only ea
h m

i

k

i

= `

i

is

bounded by O(`), but we also have

P

i

`

i

= O(`).

We have to work most for the third term, n

2=3

m

2=3

i

k

2=3

i

= O(n

2=3

`

2=3

). In this


ase, we have to look into the proof of Proposition 2.1. This 
an be the dominant

term for some i only if we 
hoose the parameter b to be 2, and in this 
ase the

term appears in our bound, be
ause the number of edges of a 
ertain topologi
al

graph �

i

is at most O(n+ n

2=3

m

2=3

i

k

2=3

i

). Noti
e, however, that the union � of all

topologi
al graphs �

i

; for whi
h the parameter b was set to be equal to 2, is still

a topologi
al graph on n verti
es, it still does not have any parallel edges, and its


rossing number is at most `

2

(there are at most two 
rossing pairs for ea
h pair of


ir
les in C). Thus, by Lemma 2.2, � has O(n+ n

2=3

`

2=3

) edges. Using this bound,

instead of bounding the number of edges in ea
h of the graphs �

i

separately, we 
an

repla
e the O(n

2=3

`

2=3

logn) term with O(n

2=3

`

2=3

).

4 Proof of Theorem 1

The 
ommon endpoint of two equal sides of an isos
eles triangle is 
alled its apex.

(An equilateral triangle has three api
es.) Consider an n-element point set P in the

9



plane, and let T be the set of ordered triples pqr that indu
e an isos
eles triangle in

P , with apex q. Thus, jT j is equal to the number of isos
eles triangles indu
ed by

P , 
ounted with multipli
ities (equilateral triangles are 
ounted six times, all other

isos
eles triangles twi
e).

For any pqr 2 T , let 
(pqr) denote the 
ir
le 
entered at q, whi
h passes through

p and r. We 
lassify the elements of T a

ording to the order of magnitude of

j
(pqr) \ P j, and bound the sizes of the 
lasses separately. Setting a threshold

t := n

(1��)=(5��)

, let

T

0

= fpqr 2 T : j
(pqr) \ P j � tg;

T

i

= fpqr 2 T : 2

i

t � j
(pqr) \ P j � 2

i+1

tg;

for i = 0; 1; : : : ; blog n
:

For any points p; q 2 P there are at most t� 1 
hoi
es for r su
h that pqr 2 T

0

.

Thus, we have

jT

0

j < n

2

t = n

11�3�

5��

:

Let C

i

= f
(pqr) : pqr 2 T

i

g, for 0 � i � logn. Letting `

i

:= jC

i

j, we have at

least 2

i

t`

i

in
iden
es between the n points in P and the `

i


ir
les in C

i

. Moreover,

the 
enter of ea
h 
ir
le in C

i

is among the n points of P , so we 
an apply Corollary

3, whi
h yields

2

i

t`

i

= O

�

�

n

5+3�

7+�

`

5��

7+�

i

�

;

for an arbitrary 0 < � < 1=e. Rearranging the terms, we get for every i that

`

i

= O

�

0

�

n

5+3�

2+2�

(2

i

t)

7+�

2+2�

1

A

:

Using the fa
t that jT

i

j < (2

i+1

t)

2

`

i

, we obtain

jT

i

j = O

�

0

�

n

5+3�

2+2�

(2

i

t)

3�3�

2+2�

1

A

= O

�

0

�

n

11�3�

5��

2

i

3�3�

2+2�

1

A

:

Adding up these bounds, it follows that

jT j = jT

0

j+

blog n


X

i=0

jT

i

j = O

�

�

n

11�3�

5��

�

;

as required.
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