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Abstrat

It is proved that, for any " > 0 and n > n

0

("), every set of n points in

the plane has at most n

11e�3

5e�1

+�

triples that indue isoseles triangles. (Here e

denotes the base of the natural logarithm, so the exponent is roughly 2:136.)

This easily implies the best urrently known lower bound, n

4e

5e�1

��

, for the

smallest number of distint distanes determined by n points in the plane, due

to Solymosi{C. T�oth and Tardos.

1 Introdution

In 1946, Erd}os [5℄ raised some notoriously diÆult questions about the distribution

of distanes determined by �nite point sets. In partiular, he asked what is the

smallest number of distint distanes determined by n points in the plane. Denoting

this number by g(n), he onjetured that g(n) � n=

p

logn. The best urrently

known lower bound follows by a ombination of the results of Solymosi{C. T�oth [12℄

and G. Tardos [18℄: for every " > 0 there exists a onstant 

"

> 0 suh that

g(n) � 

"

�

n

4e

5e�1

��

�

: (1)

Here and later in this note, e stands for the base of the natural logarithm.

In a series of papers, Erd}os and Purdy [6℄, [7℄ initiated the investigation of the

distribution of triangles (more generally, simplies) in �nite point sets. Pah and

Sharir [10℄ pointed out that it readily follows from a result of Szemer�edi and Trotter

[16℄, [17℄ that the maximum number of triples in a set of n points in the plane that

indue isoseles triangles is O(n

7=3

).
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The aim of this paper is to improve this bound.

Theorem 1. For any " > 0, the number of isoseles triangles spanned by three

points of an n-element point set in the plane is

O

"

�

n

11e�3

5e�1

+�

�

= O(n

2:137

):

The above two problems are intimately related. Indeed, if a point set P deter-

mines at most g distint distanes, then around eah point p 2 P the remaining n�1

points lie on g onentri irles. If the numbers of points sitting on these irles

are n

1

; n

2

; : : : ; n

g

, then there are preisely

P

g

i=1

�

n

i

2

�

� g

�

(n�1)=g

2

�

isoseles triangles

whose two equal sides meet at p. Thus, the total number of isoseles triangles is

at least

n

3

2g

+ O(n

2

). Therefore, any upper bound on the number of isoseles trian-

gles yields a lower bound on g(n). In partiular, Theorem 1 immediately implies

inequality (1). In this sense, our Theorem 1 an be regarded as a strengthening of

(1).

Theorem 1, in turn, follows from a general upper bound for the number of

inidenes between a set of points and a set of irles.

Theorem 2. Let P be a set of n distint points and let C be a set of ` distint irles

in the plane. Let Q denote the set of enters of the irles in C and let jQj = m.

Then, for any 0 < � < 1=e, the number I of inidenes between the points in P

and the irles of C is

O

�

�

n+ `+ n

2

3

`

2

3

+ n

4

7

m

1+�

7

`

5��

7

+ n

12+4�

21+3�

m

3+5�

21+3�

`

15�3�

21+3�

+ n

8+2�

14+�

m

2+2�

14+�

`

10�2�

14+�

�

:

Figure 1 and Table 1 give the best known upper bounds on the number of

inidenes between n points an ` irles around m enters in the plane. Figure

1 de�nes regions aording to the di�erent settings of the parameters n, m, and

`, and Table 1 gives the best known bounds for eah of these regions. We have

0 < � < 1=e and " > 0 in Table 1 and the onstans multiplyer in the O notation

depends on the hoie of � or ". As is illustrated by Figure 1, eah term of the

expression in Theorem 1 provides the best known bound in some nonempty region

of the parameters. For all but the �rst term, our bound is new in the orresponding

region or at least in some part of it. In two further regions, the trivial bound nm or

the estimate n

6=11+3�

`

9=11��

found by Aronov and Sharir [2℄ are the best urrently

known bounds for the number of inidenes.

It is worth ponting out a simple onsequene of Theorem 2, whih is a general-

ization of the main result (Theorem 1) in [13℄.
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Corollary 3. Let P be a set of n distint points and C be a set of ` distint irles

in the plane.

If among the enters of the irles in C there are at most n distint points, then

for any 0 < � < 1=e the number of inidenes between the points in P and the

irles in C is

O

�

�

n

5+3�

7+�

`

5��

7+�

�

:

Proof: Substituting m = n in Theorem 2, the �fth term beomes the required

bound. It dominates the other �ve terms, whenever ` < n

(9��)=(5��)

. For ` �

n

(9��)=(5��)

, the trivial bound nm = n

2

is better than the one in Corollary 3. 2

The proof of Theorem 2 is based on the same ideas as [12℄ and [13℄. In partiular,

all our bounds ruially depend on the following lemma from [13℄, whih is a slight

generalization of a result of Tardos [18℄.

Given a real matrix A, let S(A) denote the set of all reals that an be written

as the sum of two distint entries from the same row of A.

Lemma 4 [13℄. For any 0 < � < 1=e; there exists an integer s > 1 with the

following property. For every N � k � 0 and for every N by s real matrix A whih

does not have two equal entries in the same row and in whih for all but at most

k � 1 of the indies i = 1; : : : ; N � 1; all entries of the i-th row are smaller than all

entries in the next row, we have

jS(A)j = 


�

�

N

k

1��

M

�

�

;

where M is the maximum multipliity of any entry in A.

It is not lear whether Lemma 4 holds for other values of �; larger than 1=e. I.

Ruzsa (personal ommuniation) showed that it is ertainly false for � � 1=2. If

Lemma 4 remains true for any � � 1=e, we obtain that the number of isoseles trian-

gles indued by triples of an n-element point set in the plane is O

�

(n

(11�3�)=(5��)

).
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region best known bound soure

A O(n) [4, 10℄

B O

�

n

2

3

`

2

3

�

[2℄

B' O

�

n

2

3

`

2

3

�

Theorem 1

C O

�

n

4

7

m

1+�

7

`

5��

7

�

Theorem 1

D O

�

n

12+4�

21+3�

m

3+5�

21+3�

`

15�3�

21+3�

�

Theorem 1

E O

�

n

8+2�

14+�

m

2+2�

14+�

`

10�2�

14+�

�

Theorem 1

F O

�

n

6

11

+3"

`

9

11

�"

�

[2℄

G O(`) [4, 10℄

G' O(`) Theorem 1

H nm trivial

Table 1.
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2 An important speial ase

The aim of this setion is to establish the following important speial ase of Theorem

2, where C onsists of the same number, k, of onentri irles around eah element

of Q.

Proposition 2.1. Let P be a set of n distint points, let Q be a set of m distint

points in the plane, and let C be a family of mk irles, onsisting of k onentri

irles around eah point in Q.

Then, for any 0 < � < 1=e, the number of inidenes between the points in P

and the irles in C is

O

�

�

n+mk + n

2

3

m

2

3

k

2

3

+ n

4

7

m

6

7

k

5��

7

+ n

12+4�

21+3�

m

18+2�

21+3�

k

15�3�

21+3�

+ n

8+2�

14+�

m

12

14+�

k

10�2�

14+�

�

:

Let I be the set of all pairs (p; q) suh that p 2 P , q 2 Q, and P is inident to

one of the irles around q. We have to give an upper bound on jIj.

First, we outline the proof of Proposition 2.1.

We use three parameters, a; b; s � 2, to partition I as follows. The value of s

will solely depend on the hoie of 0 < � < 1=e; so it will be regarded as a onstant.

The values of a and b will depend on n, m, and k.

For any (p; q) 2 I; we onsider the number of points in P on the line l

pq

onnet-

ing p and q, whih are inident to a irle in C around q. We use the Szemer�edi{

Trotter theorem (Lemma 2.3 below) to bound the number of pairs, for whih this

is greater than our parameter a. By losing just a few more pairs from I, we parti-

tion the remaining pairs into s-tuples and bound their number. The elements of an

s-tuple will orrespond to s distint points of P , inident to the same irle in C.

If we an hoose two of these points so that their perpendiular bisetor ontains

less than b elements of Q, we onnet them along the irle C. In this way, we

obtain a so-alled topologial graph, a graph � drawn by (possibly rossing) on-

tinuous ars. Then we apply Sz�ekely's lemma on rossing numbers (Lemma 2.2)

to bound the number of edges of � and thus the number of s-tuples satisfying this

ondition. To bound the number of remaining s-tuples, we use Lemma 4 and again

the Szemer�edi{Trotter theorem.

Next, we work out the details. Let

I

0

= f(p; q) 2 I : jfp

0

2 l

pq

\ P j (p

0

; q) 2 Igj � ag:

For any q 2 Q; let P

q

= fp 2 P j (p; q) 2 I

0

g; and identify a set D

q

of pairwise

disjoint irular ars on the irles in C around q so that eah ar ontains preisely

s elements of P

q

and together they over all but at most k(s � 1) points of P

q

.
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We an assume without loss of generality that none of these ars intersets a �xed

half-line l

q

emanating from q.

Call a line l rih if jl\Qj � b. We say that an ar in D

q

is good, if it ontains two

points p; p

0

2 P

q

suh that the perpendiular bisetor of pp

0

is not rih. Denote by

G the set of good ars in [

q2Q

D

q

, and let B = [

q2Q

D

q

nG be the set of all bad ars.

Construt a topologial graph � on the vertex set P , by onneting a single pair of

points for eah good ar � 2 G. If � 2 D

q

; hoose these two points p; p

0

2 � \P

q

so

that their perpendiular bisetor is not rih and onnet them along �. The graph

� is not neessarily simple, i.e., it may ontain parallel edges onneting the same

pair of points. However, it is not hard to bound the multipliity of these edges, as

follows. All edges between two verties p and p

0

are drawn along separate irles

in C, whose enters lie on the perpendiular bisetor of pp

0

. If this line is not rih,

there are fewer than b suh edges. If this line is rih, then by our onstrution p

and p

0

are not onneted at all. Thus, the maximum edge-multipliity, m(�), of �

satis�es

m(�) < b:

Let (�) denote the rossing number of �. Sine eah rossing between two edges

of � ours at an intersetion point of two irles in C, we learly have

(�) � 2

 

jCj

2

!

< m

2

k

2

:

On the other hand, the following useful generalization of a well known theorem

of Ajtai et al. [1℄ and Leighton [8℄, due to L. Sz�ekely [15℄, provides a lower bound

for rossing numbers.

Lemma 2.2. [15℄. Let � be a topologial multigraph with vertex set V (�) and edge

set E(�), in whih every pair of verties is onneted by at most m(�) edges.

If jE(�)j � 5m(�)jV (�)j, then the rossing number of � satis�es

(�) = 


 

jE(�)j

3

m(�)jV (�)j

2

!

:

Plugging the last two inequalities into Lemma 2.2, we onlude that the number

of good ars satis�es

jGj = jE(�)j = O

�

jV (�)jm(�) + 

1

3

(�)m

1

3

(�)jV (�)j

2

3

�

= O

�

nb+ n

2

3

m

2

3

k

2

3

b

1

3

�

: (2)

Now we fous on the set B of bad ars and estimate their number. Fix 0 < � <

1=e and s so that they satisfy the onditions in Lemma 4. Construt an N

q

by s
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real matrix A

q

, where N

q

is the number of bad ars in D

q

and eah row orresponds

to a bad ar. Let the row of A

q

assigned to a bad ar � 2 B \ D

q

onsist of the

entries 

1

; : : : ; 

s

; where � \ P

q

= fp

1

; : : : ; p

s

g and 

i

is the angle of the smallest

ounter-lokwise rotation that takes the referene half-line l

q

to the half-line qp

i

.

If the rows orresponding to the bad ars on a irle follow eah other in the

natural order, the matrix A

q

meets the requirements of Lemma 4. By the de�nition

of I

0

and P

q

, we have that the maximum multipliity of any entry in A

q

is M

q

� a.

All values in S(A

q

) are twie the angles of rih lines going through q, thus Lemma

4 implies that q is inident to 


�

(N

q

=(k

1��

a

�

)) rih lines. Hene, the total number

of inidenes between the points in Q and the rih lines is 


�

(jBj=(k

1��

a

�

):

On the other hand, the Szemer�edi-Trotter theorem gives an upper bound on the

same quantity.

Lemma 2.3 [16℄,[17℄. (i) The number of lines passing through at least b � 2

elements of a set of m points in the plane is O(m=b+m

2

=b

3

).

(ii) The number of inidenes between m points in the plane and all lines passing

through at least b � 2 of them is O(m+m

2

=b

2

).

(iii) The number of inidenes between m points and ` lines in the plane is

O(m

2=3

`

2=3

+m+ `).

Comparing Lemma 2.3 (ii) with the above lower bound for the same quantity,

we obtain

jBj = O

�

�

mk

1��

a

�

+m

2

k

1��

a

�

=b

2

�

: (3)

As eah ar in D

q

overs a onstant number s of the points in P

q

, and at most

(s� 1)k points are not overed, in view of the inequalities (2) and (3), we get

jI

0

j =

X

q2Q

jP

q

j � sjGj+ sjBj+ (s� 1)mk

= O

�

�

nb+mk +m

2

k

1��

a

�

=b

2

+ k

2

3

m

2

3

n

2

3

b

1

3

�

: (4)

The term mk

1��

a

�

in the upper bound on jBj is dominated by mk, if we hoose our

parameter a so that it satis�es 2 � a � k. (Suh a hoie is impossible if k = 1, but

in that ase the bound in Proposition 2.1 is signi�antly worse than the previously

known bounds, f. [4℄, [10℄, [2℄.)

It remains to bound the number of pairs (p; q) 2 InI

0

. Now we use the Szemer�edi-

Trotter theorem separately for P and Q. By Lemma 2.3 (i), for any t � 2, the

number of straight lines passi1ng through more than t points of P is O(n=t+n

2

=t

3

).

By Lemma 2.3 (iii), the number of inidenes between these lines and the m points

of Q is

O(m+ n=t+ n

2

=t

3

+ n

2=3

m

2=3

=t

2=3

+ n

4=3

m

2=3

=t

2

):
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Let I

t

denote the number of pairs (p; q) 2 I suh that t < jfp

0

2 l

pq

\ P : (p

0

; q) 2

Igj � 2t. Clearly, eah inidene ounted above is responsible for at most 2t pairs

in I

t

, whene

jI

t

j = O(mt+ n+ n

2

=t

2

+ n

2=3

m

2=3

t

1=3

+ n

4=3

m

2=3

=t):

Using the fat that I n I

0

= [

blog(k=a)

i=0

I

2

i

a

, we obtain

jI n I

0

j = O

�

mk + n log k + n

2

=a

2

+ n

2=3

m

2=3

k

1=3

+ n

4=3

m

2=3

=a

�

:

It is not hard to get rid of the logarithmi fator in the last formula. To see

this, notie that the n + n

2

=t

2

terms in the bounds on jI

t

j atually bound a value

proportional to the number of inidenes between P and some lines going through

at least t points of P . By Lemma 2.3 (ii), the total number of suh inidenes for

any t � a is O(n+ n

2

=a

2

). (Alternatively, one an get rid of the extra logarithmi

fator by using the result of [2℄, whih provides better bounds for I in all ases where

n logn would be the leading term.) Thus, we have

jI n I

0

j = O

�

n+mk + n

2

=a

2

+ n

2=3

m

2=3

k

1=3

+ n

4=3

m

2=3

=a

�

: (5)

Putting (4) and (5) together, we get

jIj = O

�

 

nb+mk + n

2=3

m

2=3

k

2=3

b

1=3

+

n

2

a

2

+

n

4=3

m

2=3

a

+

m

2

k

1��

a

�

b

2

!

: (6)

Notie that the above bound holds all k � a � 2 and b � 2. To minimize this

expression, set

a = min

�

k;max

�

2; n

10

14+�

m

�6

14+�

k

�5+�

14+�

; n

16

21+3�

m

�4

21+3�

k

�15+3�

21+3�

��

;

b = max

�

2; n

�2

7

m

4

7

k

1�3�

7

a

3�

7

�

:

In ase a = k, we have I = I

0

and Proposition 2.1 follows from (4). In all other

ases, the result is true by (6).

3 Proof of Theorem 2

Partition Q into the sets

Q

0

= fq 2 Q : jf 2 C : the enter of  is qgj � `=mg;

Q

i

= fq 2 Q : 2

i�1

`=m < jf 2 C : the enter of  is qgj � 2

i

`=mg;
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for i � 1. We also partition C into the sets

C

i

= f 2 C : the enter of  is in Q

i

g;

for i � 0. Let C

0

i

denote the sets obtained from C

i

by adding dummy irles to

bring the number of irles around eah q 2 Q

i

up to k

i

= b2

i

`=m. Clearly, we

have m

i

:= jQ

i

j � m=2

i�1

, and the values `

i

:= jC

0

i

j add up to O(`).

Applying Proposition 2.1 to the system (P;Q

0

; C

0

0

), we get that the number of

inidenes between the points in P and the irles in C

0

0

does not exeed the bound

in Theorem 2. For the systems (P;Q

i

; C

0

i

), we obtain similar bounds, but their last

three terms are multiplied by some onstant negative power of 2

i

. Notie that we

an assume Q

i

= ; for i > logn, for a onentri family of irles has at most n

elements inident to at least one point in P . Hene, adding up the upper bounds

that follow from Proposition 2.1, we readily obtain a weaker version of the bound

in Theorem 2, in whih the �rst three terms are multiplied by log n.

In the rest of this proof, we get rid of these unwanted logarithmi fators. In the

ase of the �rst term, n, of the expression, this an be ahieved by notiing that for

all settings of the parameters, when n logn would be the leading term, the upper

bound

O(n+ `+ n

2=3

`

2=3

+ n

6=11+3�

`

9=11��

)

established by Aronov and Sharir [2℄ is better and gives O(n+ n

2=3

`

2=3

) inidenes.

It is even easier to argue for the seond term, as not only eah m

i

k

i

= `

i

is

bounded by O(`), but we also have

P

i

`

i

= O(`).

We have to work most for the third term, n

2=3

m

2=3

i

k

2=3

i

= O(n

2=3

`

2=3

). In this

ase, we have to look into the proof of Proposition 2.1. This an be the dominant

term for some i only if we hoose the parameter b to be 2, and in this ase the

term appears in our bound, beause the number of edges of a ertain topologial

graph �

i

is at most O(n+ n

2=3

m

2=3

i

k

2=3

i

). Notie, however, that the union � of all

topologial graphs �

i

; for whih the parameter b was set to be equal to 2, is still

a topologial graph on n verties, it still does not have any parallel edges, and its

rossing number is at most `

2

(there are at most two rossing pairs for eah pair of

irles in C). Thus, by Lemma 2.2, � has O(n+ n

2=3

`

2=3

) edges. Using this bound,

instead of bounding the number of edges in eah of the graphs �

i

separately, we an

replae the O(n

2=3

`

2=3

logn) term with O(n

2=3

`

2=3

).

4 Proof of Theorem 1

The ommon endpoint of two equal sides of an isoseles triangle is alled its apex.

(An equilateral triangle has three apies.) Consider an n-element point set P in the

9



plane, and let T be the set of ordered triples pqr that indue an isoseles triangle in

P , with apex q. Thus, jT j is equal to the number of isoseles triangles indued by

P , ounted with multipliities (equilateral triangles are ounted six times, all other

isoseles triangles twie).

For any pqr 2 T , let (pqr) denote the irle entered at q, whih passes through

p and r. We lassify the elements of T aording to the order of magnitude of

j(pqr) \ P j, and bound the sizes of the lasses separately. Setting a threshold

t := n

(1��)=(5��)

, let

T

0

= fpqr 2 T : j(pqr) \ P j � tg;

T

i

= fpqr 2 T : 2

i

t � j(pqr) \ P j � 2

i+1

tg;

for i = 0; 1; : : : ; blog n:

For any points p; q 2 P there are at most t� 1 hoies for r suh that pqr 2 T

0

.

Thus, we have

jT

0

j < n

2

t = n

11�3�

5��

:

Let C

i

= f(pqr) : pqr 2 T

i

g, for 0 � i � logn. Letting `

i

:= jC

i

j, we have at

least 2

i

t`

i

inidenes between the n points in P and the `

i

irles in C

i

. Moreover,

the enter of eah irle in C

i

is among the n points of P , so we an apply Corollary

3, whih yields

2

i

t`

i

= O

�

�

n

5+3�

7+�

`

5��

7+�

i

�

;

for an arbitrary 0 < � < 1=e. Rearranging the terms, we get for every i that

`

i

= O

�

0

�

n

5+3�

2+2�

(2

i

t)

7+�

2+2�

1

A

:

Using the fat that jT

i

j < (2

i+1

t)

2

`

i

, we obtain

jT

i

j = O

�

0

�

n

5+3�

2+2�

(2

i

t)

3�3�

2+2�

1

A

= O

�

0

�

n

11�3�

5��

2

i

3�3�

2+2�

1

A

:

Adding up these bounds, it follows that

jT j = jT

0

j+

blog n

X

i=0

jT

i

j = O

�

�

n

11�3�

5��

�

;

as required.
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