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Abstra
t. We �nd tight estimates for the minimum number of proper subspa
es

needed to 
over all latti
e points in an n-dimensional 
onvex body C, symmetri


about the origin 0. This enables us to prove the following statement, whi
h settles a

problem of G. Hal�asz. The maximum number of n-wise linearly independent latti
e

points in the n-dimensional ball rB

n

of radius r around 0 is O(r

n=(n�1)

). This

bound 
annot be improved. We also show that the order of magnitude of the number

of di�erent (n � 1)-dimensional subspa
es indu
ed by the latti
e points in rB

n

is

r

n(n�1)

.

1. Introdu
tion and statement of results

This paper was inspired by the following question of G. Hal�asz. What is the

maximal 
ardinality of a subset S of rB

n

\Z

n

su
h that all n-element subsets of S

are linearly independent? (Here B

n

denotes the unit ball around the origin in R

n

.)

As any system of proper subspa
es that 
over rB

n

\ Z

n

provides an upper bound

on the above quantity, we would like to determine the size of the smallest su
h


overing system. We look at these questions from a somewhat broader perspe
tive.

We introdu
e the following notations. Let C � R

n

be a 
onvex 
ompa
t body

symmetri
 with respe
t to the origin. For 1 � i � n, let �

i

denote the i-th su

essive

minimum of C. That is,

�

i

= minf�j dim(�C \ Z

n

) � ig:

Let g(C) denote the minimum number of proper subspa
es 
overing C \Z

n

, and let

h(C) denote the maximum number of points that 
an be 
hosen from C \Z

n

so that

they are in general position, i.e., no n of them are linearly dependent. Clearly, we

have h(C) � (n� 1)g(C).

The following two theorems, providing a lower bound on h(C) and an upper

bound on g(C), respe
tively, give fairly tight estimates for these quantities.
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Theorem 1. If �

n

� 1 then

h(C) �

1� �

n

16n

2

min

0<m<n

(�

m

: : : �

n

)

�

1

n�m

:

Theorem 2. If �

n

� 1 then

g(C) � 
2

n

n

2

logn min

0<m<n

(�

m

: : : �

n

)

�

1

n�m

;

where 
 is an absolute 
onstant.

In Hal�asz' question, C is the n-dimensional ball, rB

n

, of radius r > 1 around the

origin, whose su

essive minima satisfy �

1

= �

2

= : : : = �

n

= 1=r. Thus, in this


ase, Theorems 1 and 2 immediately imply that the 
orre
t orders of magnitude of

both g(rB

n

) and h(rB

n

) are O(r

n=(n�1)

).

Remark 1. If �

n

> 1, then g(C) = 1 and hen
e h(C) < n. If �

n

< 1��, by Theorems

1 and 2 the values of g(C) and h(C) are determined by the su

essive minima of C

up to a 
onstant fa
tor depending on � and the dimension n. For �

n

= 1 no su
h

approximation is possible. For arbitrary large x > 1, 
onsider the 
onvex bodies

C

x

= [�x; x℄

n�1

� [�1; 1℄

and

C

0

x

= 
onv(f�xe

i

; xe

i

j1 � i < ng [ f�e

n

; e

n

g);

where (e

1

; : : : ; e

n

) is the standard basis of Z

n

. Both bodies have the same sequen
e

of su

essive minima: �

i

= 1=x for i < n and �

n

= 1. However, g(C

x

) � 2x and

h(C

x

) � x=2; while g(C

0

x

) = 2 and h(C

0

x

) = n.

Remark 2. The integer latti
e Z

n

plays no parti
ular role in the above theorems.

Our inequalities are preserved by aÆne transformations, therefore they hold for

n-dimensional latti
es in general.

For any r > 1, let H

r

denote the set of all (n � 1)-dimensional subspa
es (hy-

perplanes through 0) whi
h 
ontain n� 1 linearly independent latti
e points from

the ball of radius r 
entered at the origin.

Theorem 3. There exist suitable positive 
onstants 


1

and 


2

, depending only on

n, su
h that




1

r

n(n�1)

� jH

r

j � 


2

r

n(n�1)

;

provided that r is large enough.

Analyzing the dependen
e of 


1

and 


2

on n, one 
an dedu
e the following result

on

s

r

=

1

jH

r

j

X

H2H

r

jH \ rB

n

\ Z

n

j;

the average number of latti
e points in rB

n

in the hyperplanes belonging to H

r

.
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Corollary. There is an absolute 
onstant 


3

su
h that

lim

r!1

s

r

� 2

n

2

+


3

n

:

In Se
tion 2, we essentially show that within C \ Z

n

one 
an represent a �nite

proje
tive spa
e over a relatively small prime (see Lemma). To establish Theorem

1, we 
ombine this result with a well known 
onstru
tion of P. Erd}os (see [11,

Appendix℄).

Se
tion 3 
ontains the proof of Theorem 2. This proof is also 
onstru
tive: in

most 
ases, to 
over C \Z

n

we take all subspa
es perpendi
ular to an integer ve
tor

in a body homotheti
 to the polar of C.

The proof of Theorem 3 is given in Se
tion 4.

The related (but di�erent) problem of 
overing the latti
e points within a 
onvex

body by aÆne subspa
es was �rst investigated by K. Bezdek and T. Hausel [2℄.

They only 
onsidered 1-
odimensional subspa
es, i.e. hyperplanes (as we do here).

Their work was sharpened and extended to the general 
ase by I. Talata [14℄. The

estimates in these two papers are given in terms of the dimension n and the latti
e

width of the 
onvex body.

2. Proof of Theorem 1

The proof is based on the following

Lemma. Let �

n

< 1 and suppose that p is an integer satisfying

1 < p <

1� �

n

8n

2

min

0<m<n

(�

m

: : : �

n

)

�

1

n�m

:

Then, for any v 2 R

n

, there exist an integer 1 � j < p and a latti
e point w 2 Z

n

with jv + pw 2 C.

Proof of Lemma. Find linearly independent ve
tors v

i

2 �

i

C \ Z

n

for i = 1; : : : ; n.

Any ve
tor x 2 R

n


an be uniquely written in the form x =

P

n

i=1

a

i

v

i

+

P

n

i=1

b

i

v

i

with a

i

2 Z and b

i

2 (�1=2; 1=2℄. Here

P

n

i=1

a

i

v

i

2 Z

n

and

n

X

i=1

b

i

v

i

2 
onv

�

v

i

2p�

i

;�

v

i

2p�

i

�

�

�

1 � i � n

�

�

C

2p

;

whenever

P

n

i=1

�

i

jb

i

j � 1=(2p). Thus, the density d of the periodi
 set

S =

C

2p

+ Z

n

is at least the probability that for independent uniform random numbers b

i

2 [0; 1=2℄

we have

P

n

i=1

�

i

b

i

� 1=(2p). This inequality is satis�ed if �

i

b

i

� �=(2pn) for all

i < n and �

n

b

n

< (1� �)=(2p), where � = (1� �

n

)=2. Thus, we have

d � min

�

1;

1� �

p�

n

�

n�1

Y

i=1

min

�

1;

�

pn�

i

�

:
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This lower bound on d takes the form

A

m

=

Y

m�i<n

�

pn�

i

or

B

m

=

1� �

p�

n

Y

m�i<n

�

pn�

i

;

where 1 � m � n is an appropriate integer (the produ
t is empty in 
ase m = n).

We 
laim that ea
h of these values is larger than 1=p, so we have d > 1=p. The

inequality B

m

> 1=p is equivalent to

p

n�m

<

(1� �)�

n�m

n

n�m

�

m

: : : �

n

:

This is true, by the 
hoi
e of �, for m = n, and, by our bound on p, otherwise. The

inequality A

m

> 1=p is equivalent to

C

m

= p

n�m�1

�

m

: : : �

n�1

<

�

�

n

�

n�m

:

If m = n, this is true, be
ause p > 1. Suppose m < n, and use our bound on p to

get

C

m

<

1

p�

n

�

�

4n

2

�

n�m

:

If �

n

� 1=2 then p�

n

� 1, hen
e the desired inequality follows. If �

n

< 1=2 then

� > 1=4, hen
e the previous inequality yields

C

m

<

1

p�

n

�

�

n

�

n�m+1

:

On the other hand, using the monotoni
ity of the sequen
e (�

i

), we obtain

C

m

� p

n�m�1

�

n�m

n

< (p�

n

)

n�m

:

Taking a weighted geometri
 mean of the last two bounds, we get

C

m

<

�

1

p�

n

�

�

n

�

n�m+1

�

n�m

n�m+1

�

(p�

n

)

n�m

	

1

n�m+1

=

�

�

n

�

n�m

;

as required. This proves A

m

> 1=p and hen
e d > 1=p.

Consider the periodi
 sets S + jv=p for j = 0; : : : ; p � 1. Ea
h of these p sets

have density d > 1=p thus two of these sets must interse
t. We have

j

1

v

p

+

u

1

2p

+ w

1

=

j

2

v

p

+

u

2

2p

+ w

2

;

for some 0 � j

1

< j

2

< p, some u

1

; u

2

2 C and some w

1

; w

2

2 Z

n

. For 1 � j =

j

2

� j

1

< p and w = w

2

� w

1

2 Z

n

, we have

jv + pw =

u

1

� u

2

2

2 C;
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verifying the statement of the Lemma. �

Now it is easy to �nish the proof of Theorem 1. Let p be the largest prime

number satisfying the 
ondition in the Lemma. If su
h a prime does not exist,

then the statement of the theorem is trivial. The points of the dis
rete moment


urve (used by Erd}os in 
onne
tion with Heilbronn's triangle problem [11℄), v

i

=

(1; i; i

2

; : : : ; i

n�1

) for integer values 0 � i < p (and v

1

= (0; : : : ; 0; 1) 2 Z

n

) are n-

wise linearly independent over the p-element �eld. By the Lemma, we have integers

1 � j

i

< p and integer ve
tors w

i

with v

0

i

= j

i

v

i

+ pw

i

2 C. Clearly, the ve
tors v

0

i

are integer ve
tors, and they are n-wise linearly indepent over the p-element �eld,

and hen
e over the reals. This shows h(C) > p, and an appli
ation of Chebyshev's

theorem 
on
ludes the proof.

3. Proof of Theorem 2

Let C

0

denote the polar body of C, i.e.,

C

0

= fx 2 R

n

: ux � 1 for all u 2 Cg:

Denote by �

1

� � � � � �

n

the su

essive minima of C

0

. It is known that

1 � �

i

�

n�i+1

� 


1

n logn (i = 1; : : : ; n)

where 


1

is an absolute 
onstant. The lower bound is a 
lassi
al inequality of Mahler

[10℄, the upper one has been re
ently proved by Banasz
zyk [1℄.

Fix any integer 0 < m < n; for the rest of the argument. It follows that

(1) 1 � (�

m

: : : �

n

)(�

1

: : : �

n�m+1

) � (


1

n logn)

n�m+1

:

For te
hni
al reasons, we will 
onsider any in
reasing sequen
e

0 < �

1

< � � � < �

n�m+1

su
h that no ratio �

i

=�

j

(i 6= j) is rational and

�

i

� �

i

(i = 1; : : : ; n�m+ 1):

Let

w

i

2 �

i

C

0

\ Z

n

(i = 1; : : : ; n�m+ 1)

be linearly independent ve
tors, and 
onsider some sets of integer ve
tors of the

form

D

+

�

=

(

n�m+1

X

i=1

a

i

w

i

: a

i

2 [0; �=�

i

℄ \ Z

)

;

D

�

=

(

n�m+1

X

i=1

a

i

w

i

: a

i

2 [��=�

i

; �=�

i

℄ \ Z

)

;

where � is a non-negative parameter to be spe
i�ed later. Clearly, D

�

is the union

of 2

n�m+1

isometri
 
opies of D

+

�

satisfying

D

�

� (n�m+ 1)�C

0

\ Z

n

:
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Also, the di�eren
e of any two ve
tors from D

+

�

lies in D

�

. Let f(�) be the number

of points in the �rst set, i.e.,

f(�) =

�

�

D

+

�

�

�

=

n�m+1

Y

i=1

��

�

�

i

�

+ 1

�

:

Noti
e that f(�) is an in
reasing, right 
ontinuous fun
tion whi
h 
hanges by a

fa
tor of at most 2 at its points of dis
ontinuity, i.e., for any � > 0,

(2) f(�) � 2f(��):

Also, f(0) = 1 and

(3) f(�) �

n�m+1

Y

i=1

�

�

i

:

We 
laim that, whenever

(4) f(�) > 2(n�m+ 1)�+ 1

holds, every latti
e point in C is perpendi
ular to some non-zero element of D

�

.

To see this, �x any u 2 C \ Z

n

and 
onsider all the s
alar produ
ts uv where

v 2 D

+

�

. These s
alar produ
ts are integers, whose absolute values do not ex
eed

(n�m+ 1)�. Therefore, (4) implies the existen
e of two distin
t v

1

; v

2

2 D

+

�

with

uv

1

= uv

2

. Hen
e, the non-zero ve
tor v = v

1

� v

2

2 D

�

is perpendi
ular to u. We

established that (4) implies

(5) g(C) � jD

�

j � 2

n�m+1

f(�):

By the right 
ontinuity of f(�); there is a minimum � su
h that

f(�) � 16(n�m+ 1)

n�m+1

n�m

(�

1

: : : �

n�m+1

)

1

n�m

:

By (3), this � satis�es

� � 4(n�m+ 1)

1

n�m

(�

1

: : : �

n�m+1

)

1

n�m

:

In parti
ular, we have

4(n�m+ 1)� � f(�):

The inequality 0 < �

m

� � � � � �

n

� 1 
ombined with (1) guarantees that

1 � �

1

: : : �

n�m+1

� �

1

: : : �

n�m+1

;

when
e also

32 � f(�):

The last two estimates on f(�) show that (4) is satis�ed. In parti
ular, � > 0,

therefore (5) 
ombined with (2) yields

g(C) � 2

n�m+2

f(��) < 2

n�m+6

(n�m+ 1)

n�m+1

n�m

(�

1

: : : �

n�m+1

)

1

n�m

:
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Taking the in�mum of the right hand side over all admissible 
hoi
es of the sequen
e

0 < �

1

< � � � < �

n�m+1

, we get

g(C) � 2

n�m+6

(n�m+ 1)

n�m+1

n�m

(�

1

: : : �

n�m+1

)

1

n�m

� 2

n�m+7

n(�

1

: : : �

n�m+1

)

1

n�m

:

Combining this with (1), we obtain

g(C) � 2

n�m+7

n(


1

n logn)

n�m+1

n�m

(�

m

: : : �

n

)

1

n�m

� 2

n+7




2

1

n

2

logn

�

2

�m

(n logn)

1

n�m

	

(�

m

: : : �

n

)

1

n�m

:

Here

2

�m

(n logn)

1

n�m

� max

�

(n logn)

2=n

; 2

�n=2

n logn

	

is bounded from above by an absolute 
onstant, hen
e we 
an see that

g(C) � 2

n


n

2

logn(�

m

: : : �

n

)

1

n�m

;

where 
 is some absolute 
onstant. Minimizing over all integers 0 < m < n;

Theorem 2 follows.

4. Proof of Theorem 3

The upper bound follows at on
e by noting that

jH

r

j �

�

jrB

n

\ Z

n

j

n� 1

�

=

�

O(r

n

)

n� 1

�

= O(r

n(n�1)

):

For any primitive integer ve
tor v, let L(v) stand for the (n � 1)-dimensional

latti
e Z

n

\ v

?

orthogonal to v, with determinant detL(v) = jvj. Write �

1

(v) �

� � � � �

n�1

(v) for the su

essive minima of L(v), i.e.,

�

i

(v) = minf�j dim(�B

n

\ L(v)) � ig:

Denote by !

n

the volume of the unit ball B

n

. A

ording to Minkowski's se
ond

fundamental theorem, we have

(6) �

1

(v) : : : �

n�1

(v) � 2

n�1

!

�1

n�1

jvj:

De�ne a set V by

V = fv 2 Z

n

: v is primitive and jvj � �g;

where � will be spe
i�ed later.
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Claim. If � is large enough, there are at least !

n

�

n

=10 elements v 2 V su
h that

�

1

(v) � D�

1

n�1

, where D > 0 is a suitable 
onstant depending on n.

Before proving the Claim, we show how it implies the lower bound in Theorem

3. By (6), whenever �

1

(v) � D�

1

n�1

; we have

�

n�1

(v) � 2

n�1

!

�1

n�1

jvj(D�

1

n�1

)

�(n�2)

� 2

n�1

!

�1

n�1

D

�(n�2)

�

1

n�1

:

So, for at least !

n

�

n

=10 elements v 2 V , L(v) 
ontains n� 1 linearly independent

latti
e points from the ball of radius r = 2

n�1

!

�1

n�1

D

�(n�2)

�

1

n�1

. From here � 
an

be expressed as a fun
tion of r, and the lower bound in Theorem 3 follows.

Proof of Claim. We shall assume throughout this argument that � is suÆ
iently

large in terms of n. The inequality �

1

(v) � D�

1

n�1

is equivalent to the existen
e

of a primitive u 2 Z

n

with vu = 0 and juj � D�

1

n�1

. In other words, v 2 L(u) for

some primitive u with juj � D�

1

n�1

. For any primitive u with juj � D�

1

n�1

, we

estimate the number of 
orresponding ve
tors v.

Using (6) we 
an see that �

n�1

(u) � 2

n�1

!

�1

n�1

D�

1

n�1

= o(�) whi
h implies

that L(u) 
ontains a latti
e parallelotope of nonzero volume and of diameter o(�).

Therefore the number of 
orresponding ve
tors v is at most

jL(u) \ �B

n

j � 2vol(�B

n�1

)= detL(u) = 2!

n�1

�

n�1

=juj:

Hen
e the total number of v 2 V with �

1

(v) � D�

1

n�1

is at most

2!

n�1

�

n�1

X

juj�D�

1

n�1

1

juj

� 4!

n�1

!

n

D

n�1

�

n

;

as 
an be shown by a straightforward 
al
ulation. The total number of points in V

is at least

1

2�(n)

!

n

�

n

. Thus, the number of v 2 V with �

1

(v) � D�

1

n�1

is at least

�

1

2�(n)

� 4!

n�1

D

n�1

�

!

n

�

n

;

whi
h is larger than !

n

�

n

=10 if the 
onstant D is 
hosen properly. �

Proof of Corollary. Let 


3

; 


4

; : : : denote absolute 
onstants in this proof. We shall

also assume that r is suÆ
iently large in terms of n. By looking at the proof of

Theorem 3 we 
an see that an admissible 
hoi
e for D is provided by

D

n�1

!

n�1

=

1

16�(n)

:

Therefore

D � 


4

n

1=2

as follows from the expli
it formula

!

n�1

=

�

n�1

2

�

�

n+1

2

�

:
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Then � of the previous proof is de�ned by

r = 2

n�1

!

�1

n�1

D

�(n�2)

�

1

n�1

= 2

n+3

�(n)D�

1

n�1

whi
h shows that

� � (


5

2

�n

n

�1=2

r)

n�1

:

Therefore

(7) jH

r

j � !

n

�

n

=10 � 


n

6

n

�n=2

�

n

� 


n

2

7

2

�n

3

n

�n

2

=2

r

n(n�1)

:

Every (n � 1)-element subset of rB

n

\ Z

n

is 
ontained in a unique hyperplane

H 2 H

r

, i.e.,

X

H2H

r

�

jH \ rB

n

\ Z

n

j

n� 1

�

=

�

jrB

n

\ Z

n

j

n� 1

�

:

By using the 
onvexity of x 7!

�

x

n�1

�

on [n� 2;1) we 
an dedu
e that

jH

r

j

�

s

r

n� 1

�

�

�

jrB

n

\ Z

n

j

n� 1

�

;

i.e., (7) 
ombined with

jrB

n

\ Z

n

j � 2!

n

r

n

� 


n

8

n

�n=2

r

n

shows that




n

2

7

2

�n

3

n

�n

2

=2

r

n(n�1)

�

s

r

n� 1

�

� 


n

2

8

n

�n

2

=2

r

n(n�1)

:

In other words,

�

s

r

n� 1

�

� 2

n

3




n

2

9

whi
h implies

s

r

� 2

n

2

+


3

n

as required. �

5. Epilogue

Hal�asz' question studied in this paper is related to the following famous problem

of Littlewood and O�ord [9℄. Given k not ne
essarily distin
t 
omplex numbers,

v

1

; v

2

; : : : ; v

k

, whose absolute values are at least 1, at most how many of the 2

k

subset sums

P

i2I

v

i

; I � f1; 2; : : : ; kg 
an belong to the same open ball of unit

diameter?

Erd}os [3℄ proved that for reals the best possible upper bound was

�

k

bk=2


�

. G. O.

H. Katona [6℄ and D. Kleitman [7℄ independently settled the original question by

showing that the same bound is valid for 
omplex numbers. Shortly after, Kleitman

[8℄ managed to generalize this theorem to systems of ve
tors of absolute value at

least 1 in any Eu
lidean spa
e R

n

. In all 
ases, the upper bound is attained when

all ve
tors (numbers) 
oin
ide.
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Erd}os and Moser 
onsidered the similar problem of haw many subset sums of

k distin
t numbers 
an 
oin
ide. A. S�ark�ozy, E. Szemer�edi [12℄ found the order of

the magnitude of this number and later R. Stanley [13℄ found the exa
t answer. G.

Hal�asz [5℄ 
onsidered the similar problem of how many subset sums 
an 
oin
ide

under various assumptions assuring that the k ve
tors are quite di�erent. J. Griggs

and G. Rote [4℄ investigated the following problem of this type. Given k n-wise

linearly independent ve
tors v

1

; v

2

; : : : ; v

k

2 R

n

, at most how many of the 2

k

subset

sums

P

i2I

v

i

; I � f1; 2; : : : ; kg 
an 
oin
ide? Denoting this fun
tion by f

n

(k);

they obtained that

f

n

(k) > C

n

2

k

k

3n=2�1

;

and it is impli
it in Hal�asz [5℄ that

f

n

(k) < C

0

n

2

k

k

n=2+bn=2


:

(Here C

n

and C

0

n

are positive 
onstants depending only on the dimension n.) The

orders of magnitude of these two bounds di�er already in 3-spa
e (n = 3).

Note that the 
onstru
tion of Griggs and Rote [4℄ 
an be regarded as the spe
ial


ase of our 
onstru
tion at the end of Se
tion 2, when C is a box of the form

[0; 1℄� [0; x℄

n�1

.

Hal�asz observed that the 
onstru
tion in [4℄ 
an be extended to give the following

result. Let h

n

(r) denote the maximum number of n-wise linearly independent

latti
e points that 
an be 
hosen in rB

n

. Let r(k) be the smallest r for whi
h

h

n

(r) � k. Then

f

n

(k) > C

00

n

2

k

k

n=2

r

n

(k)

:

This would improve on the previous lower bound, provided that r(k) = o(k

(n�1)=n

),

or, equivalently,

lim

r!1

h

n

(r)

r

n=(n�1)

=1:

However, the results in this paper show that this is not the 
ase.

With the ex
eption of Erd}os, all Hungarian mathemati
ians mentioned in this

se
tion (G�abor Hal�asz, Gyula Katona, Andr�as S�ark�ozy, Endre Szemer�edi) re
ently

have turned or will turn sixty. We 
ongratulate them with this note.
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