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abstract

In certain families of hypergraphs the transversal number of a hy-
pergraph is bounded above by a function of its packing number. In
this paper we study hypergraphs related to multiple intervals and
axis-parallel rectangles, respectively. Essential improvements of for-
mer established upper bounds are presented here. We explore the
close connection between the to problems at issue.

1 Introduction

Let H be a hypergraph: a finite family of nonempty subsets of an underlying set X .
These subsets are called the edges of the hypergraph, the elements of X are its vertices.
The transversal number τ(H) is the minimum k such that some set of k vertices meets
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all the edges of the hypergraph. The packing number ν(H) is defined as the maximum
number of pairwise disjoint edges of H. The inequality

τ(H) ≥ ν(H)

is trivial. If H is a finite set of intervals on a line, then τ(H) = ν(H) as it was first
observed by Hajnal and Surányi [HaS]. We note that the result can be extended to
arbitrary families of closed intervals on a line (see e.g. [Kar]). On the other hand,
there are several interesting types of hypergraphs where τ(H) may be arbitrarily large
though ν(H) = 1 (see e.g. [DSW] or [GyL2]).

Hypergraphs related to families of multiple intervals were investigated by Gyárfás
and Lehel in [GyL1] and [GyL2], and upper bounds were established for the transversal
number in terms of the packing number. To state the results we should introduce some
terminology.

Let m denote an arbitrary natural number. Choose and fix m distinct parallel
lines ℓ1, . . . , ℓm. For convenience, we will occasionally identify each of them with the
line IR of real numbers. An m-interval A is the union of m intervals one located on each
of the lines ℓ1, . . . , ℓm. We use the superscript notation Ai to denote the component of
A on the line ℓi. Here some but definitely not all of the intervals A1, . . . , Am may be
empty. Define

f(k, m) = max{τ(H)|H is a family of m-intervals with ν(H) = k}.

We obtain an other interesting type of hypergraph if we let the lines ℓ1, . . . , ℓm

coincide. A homogeneous m-interval A is the union of m intervals on the line IR. We
denote these intervals by A1, . . . , Am. Analogously to f(k, m) we define

f∗(k, m) = max{τ(H)|H is a family of homogeneous m-intervals with ν(H) = k}.

Clearly f(k, m) ≤ f∗(k, m).
The observation of Hajnal and Surányi now can be stated as follows.

Theorem 1.1. [HaS] f(k, 1) = f∗(k, 1) = k .

Gyárfás and Lehel [GyL1] proved that f(k, m) and f∗(k, m) are finite for every
k, m ∈ IN. To be more detailed, they proved

Theorem 1.2. [GyL1] f(k, m) ≤ f(k((k + 1)m−1 − 1), m− 1) + k ,

f∗(k, m) ≤ (f∗(k, m − 1))m−1f(k, m) +
m−1
∑

i=1

(f∗(k, m − 1))i .

The recursions in Theorem 1.2 yield f(k, m) = O(km!) and f∗(k, m) = O(k(m+1)!/2)
for any fixed m. In Section 2 we improve these upper bounds, and also show a lower
bound for the function f(k, m). We have to note that a quadratic upper bound for
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f∗(k, 2) was proved by Kostochka [Kos] earlier and later Tardos [Tar] proved a linear
upper bound for the same function.

In [GyL2] Gyárfás and Lehel raised the following problem. Given a family H of
rectangles with parallel sides in the plane, is there any constant c such that τ(H) <
cν(H)? Though the question is still open, the following approximative result was proved
recently by Károlyi [Kar]. Later Kostochka [FFK] gave a simpler proof.

Theorem 1.3. [Kar] If H is an arbitrary family of axis-parallel rectangles in the plane
IR

2, then
τ(H) ≤ ν(H)(⌊log ν(H)⌋ + 2) .

A discrete version of this problem is the following. Let us call a finite hypergraph
H rectangular, if its set of vertices X can be placed in the plane so that every edge
of H is of the form X ∩ R where R is a suitable rectangle with sides parallel to the
coordinate axes. Rectangular hypergraphs were first investigated by Ding, Seymour
and Winkler [DSW] in a more general context. As a consequence of their general
theorem for arbitrary hypergraphs, they proved the following result.

Theorem 1.4. [DSW] For any rectangular hypergraph H,

τ(H) ≤ (ν(H) + 63)127 .

Later Pach and Törőcsik [PaT] observed a connection with 4-interval hypergraphs,
and proved that τ(H) ≤ f(1, 4)(ν(H))8 holds for rectangular hypergraphs H. It is
worth for noting that the constant f(1, 4) here comes from the observation that for
rectangular hypergraphs H with ν(H) = 1 one has τ(H) ≤ f(1, 4).

In Section 3 we explore the close connection with 2-interval hypergraphs which
yields the following improvement of Theorem 1.4.

Theorem 1.5. For any rectangular hypergraph H,

τ(H) = 4ν(H)(⌊log ν(H⌋ + 1)2 .

This bound of τ is almost linear in ν. Conjecture 3.5 would even shave off one of
the two log ν(H) factors.

2 Multiple intervals

The following theorem (using Theorem 1.2 to see that f∗(m, m) is finite) yields
f∗(k, m) = O(km) for any fixed m.
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Theorem 2.1. For k ≥ m we have f∗(k, m) ≤ km +
(

k
m

)

f∗(m, m) .

Proof. Let H be a system of homogeneous m-intervals with ν(H) = k. Let, in
particular, H1, H2, . . . , Hk be pairwise disjoint elements of H. The km left endpoints
of the intervals Hj

i (1 ≤ i ≤ k, 1 ≤ j ≤ m) will cover the homogeneous m-intervals
H1, H2, . . . , Hk; and also those members H of H for which some Hj (1 ≤ j ≤ m) has
a common point with at least two different H l

i (1 ≤ i ≤ k, 1 ≤ l ≤ m). Therefore
it remains to cover those members H of H, for which every Hj (1 ≤ j ≤ m) meets
at most one Hi (1 ≤ i ≤ k). As these homogeneous m-intervals meet at most m of
H1, . . . , Hk they are contained in one of the sets

HS = {H ∈ H|H ∩ U = ∅ for any U ∈ S}

where S ⊂ {H1, . . . , Hk} and |S| = k − m. By definition all elements of S are disjoint
from any element of HS and therefore

ν(HS) ≤ k − |S| = m .

Thus the homogeneous m-intervals in HS can be covered by at most f∗(m, m) points.
The statement of the theorem follows by taking the km left endpoints and then covering
each HS separately.

The same proof yields the analogous theorem for m-intervals:

Theorem 2.2. For k ≥ m we have f(k, m) ≤ km +
(

k
m

)

f(m, m).

The best upper bound we can show to f(k, m) comes from the recursion in the
following Lemma. Although it yields stronger bounds, the statement and the proof is
similar to Theorem 1.2.

Theorem 2.3. For positive integers k and m we have f(k, m + 1) ≤ m2k + 1 + f(k −
1, m + 1) + f(mk, m).

Proof. Let H be a family of (m+ 1)-intervals with ν(H) = k. We must cover H with
at most m2k + 1 + f(k − 1, m + 1) + f(mk, m) points. For compactness reasons it is
enough to prove for finite families H.

Let us identify the first line ℓ1 with the real line IR. Take a subset I ⊂ ℓ1 and
consider the set

HI = {H ∈ H|H1 ⊂ I}.

Let H′
I consist of the m-intervals obtained from the (m+1)-intervals in HI by removing

their first component. Let us take

x0 = sup{x|ν(H′

(−∞,x)) ≤ mk.

As ν(H′

(−∞,x0)) ≤ mk we can cover H′

(−∞,x0)
and thus H(−∞,x0) by f(mk, m)

points. In case x0 is infinity this finishes the proof. Suppose therefore that x0 is finite.
By the finiteness of H we have ν(H′

(−∞,x0]) > mk. We can take therefore an mk+1

element set S ⊂ H(∞,x0] of (m + 1)-intervals that are pairwise disjoint except for their
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first components. For i = 2, . . . , m + 1 we can take mk points on ℓi that separates the
mk + 1 disjoint ith components of S. Let T be the set of all these m2k points.

Let us take H∗ to be the set of (m+ 1)-intervals of H(x0,∞) not covered by T . We
claim that ν(H∗) < k. We prove this by contradiction. Suppose S∗ ⊂ H∗ consists of k
pairwise disjoint (m + 1)-intervals. The any element H of S∗ the first component H1

is disjoint from the elements of S and any other component Hi (i = 2, . . .m + 1) can
only intersect at most one of the elements in H since T does not cover H. Thus at
least one of the elements in S is disjoint from each elements of S∗. This would mean
k + 1 pairwise disjoint elements of H, a contradiction.

By the observation above H∗ can be covered by f(k − 1, m) points. Thus H(x0,∞)

can be covered by f(k − 1, m + 1) + |T | = f(k − 1, m + 1) + m2k points. We finish
the proof by recalling that H(−∞,x0) can be covered by f(mk, m) points and observing
that the rest of H is covered by the single pont x0.

Using f(k, 1) = k and f(0, m) = 0 as the base case for the recursion in Lemma
2.3 one obtains f(k, m) = O(km) for any fixed m again. We remark that this proof
proves the existence of a covering set of this size which has only k points on the first
line. (The number k is optimal here.)

We get better upper bounds for f(k, m) if we use the following theorem from [Tar]
as the base case when applying Lemma 2.3.

Theorem 2.4. [Tar] f(k, 2) = 2k.

Corollary 2.5. For any fixed m ≥ 2 we have f(k, m) = O(km−1).

Proof. Lemma 2.3 and Theorem 2.4 yield the proof.

Let us remark that using the f∗(k, m) ≤ f(2m(m−1)k, m) bound in [Tar] Corollary
2.5 implies the same bound for homogeneous m-intervals: f∗(k, m) = O(km−1) for any
fixed m ≥ 2.

The upper bounds above for f and f∗ are probably far from tight for higher values
of m. There are however special types of families of multiple intervals for which the
dependence between τ and ν can be computed exactly.

For an interval I denote the endpoints of I by l(I) and r(I). Choosing this notation
so that l(I) ≤ r(I), we call l(I) and r(I) the left and right endpoints of I, respectively.
The endpoints of I are not defined if I = ∅. We say that the family H of m-intervals
is left-ordered, if l(Ai) < l(Bi) implies l(Aj) ≤ l(Bj) for every pair A, B ∈ H and
superscripts 1 ≤ i, j ≤ m, whenever l(Ai), l(Bi), l(Aj) and l(Bj) are defined. Introduce

g(k, m) = max{τ(H)|H is a left-ordered family of m-intervals with τ(H) = k}

Theorem 2.6. g(k, m) = km .

Proof. The upper bound g(k, m) ≤ km is an easy consequence of Theorem 1.1. Indeed,
let H be a family of m-intervals with ν(H) = k, and suppose that H is left-ordered. We
may assume that l(Aj) 6= l(Bj) for every A, B ∈ H (A 6= B) and 1 ≤ j ≤ m. Therefore
we may choose homeomorphisms

gi : ℓi −→ IR (1 = 1, 2, . . . , m)
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with the following property: for every H ∈ H gi(l(H
i)) = gj(l(H

j)) for every 1 ≤
i, j ≤ m if Hi and Hj are nonempty. Then g(H) = ∪m

j=1gj(H
j) is an interval for every

H ∈ H. If the intervals g(H1), . . . , g(Hl) are pairwise disjoint for some H1, . . . , Hl ∈ H,
then the m-intervals H1, . . . , Hl are also pairwise disjoint, thus l ≤ k. Therefore, by
Theorem 1.1, the family of intervals {g(H) | H ∈ H} can be covered by at most k
points, x1, . . . , xk. Obviously, the inverse images g−1

j (xi) (1 ≤ i ≤ k, 1 ≤ j ≤ m) cover
all the elements of H, proving the assertion.

To show that the upper bound is tight we construct a left-ordered family H = Hk,m

of m-intervals with ν(H) = k and τ(H) ≥ km. In fact it is enough to construct
Hm = H1,m with the desired properties, then Hk,m is obtained as the union of k
pairwise disjoint translates of Hm.

In the construction we identify the lines ℓi with the real line IR for i = 1, . . . , m.
Let us take Hm as the set of the m-intervals Hi for 1 ≤ i ≤ m2 where we define

Hj
i = [−i, 0] if (j − 1)m < i ≤ jm and Hj

i = [−i,−i + 1/2] otherwise

for all 1 ≤ i ≤ m2 and 1 ≤ j ≤ m.
Now it is easy to check that

1) Hm is left-ordered;
2) for 1 ≤ i ≤ i′ ≤ m2 the m-intervals Hi and H ′

i both contain the point −i on the
line ℓj where (j − 1)m < i′ ≤ jm and therefore ν(Hm) = 1;

3) the intervals Hj
i (i 6∈ {(j − 1)m + 1, . . . , jm}) are pairwise disjoint for each 1 ≤

i ≤ m, and therefore each point of the line ℓi (1 ≤ i ≤ m) covers at most m + 1
distinct elements of Hm.

Since |Hm| = m2 > (m+1)(m−1), 3) implies that m−1 points are not enough to cover
all the elements of Hm. Therefore we have ν(Hm) = 1 and τ(Hm) ≥ m, as claimed.

Let us remark that the trivial lower bound f(k, m) ≥ g(k, m) = km is not tight
as [GyL1] proves f(1, 3) = 4. Proving better lower bounds seems to be hard, even for
f(1, m) we are unable to improve the trivial lower bound by more than a constant.

3 Axis-parallel rectangles

To prove covering theorems for rectangular hypergraphs (Theorem 1.5) we need
covering results about the following special type of rectangular hypergraphs.

The hypergraph H is called pointed rectangular if its finite vertex set X can be
placed into the plane so that for every H ∈ H there exist an axis-parallel rectangle RH

such that H = X ∩ RH and ∩H∈HRH 6= ∅.

Bounding the transversal number of rectangular hypergraphs shows close connec-
tion to bounding the transversal number of families of multiple intervals. A straightfor-
ward generalization of Lemma 1 in [PaT] yields that τ(H) ≤ f(ν(H), 4). The following
statement is an improvement upon this result.

6



Lemma 3.1. For any pointed rectangular hypergraph H

τ(H) ≤ 2f(ν(H), 2) .

Proof. Let X be the vertex set of H placed in the plain according to the definition.
For an edge H ∈ H let RH be the axis parallel rectangle with H = X ∩RH , such that
these rectangles RH contain a common point. We may assume that the common point
is the origin (0, 0).

Let us define X1 = {(x, y) ∈ X |x ≥ 0} and X2 = {(x, y) ∈ X |x ≤ 0}. Let p1 be
the projection to the x axis and p2 the projection to a different line parallel to the x
axis. For an edge H ∈ H we define the following 2-interval IH . The first component
I1
H is the convex hull of p1(H ∩ X1) while I2

H is the convex hull of p2(H ∩ X2). Let
H′ = {IH |H ∈ H} be the family of 2-intervals so obtained.

Let H and H ′ be two intersecting edges of H. If their common vertex is x ∈ Xi

(i = 1 or 2) then pi(x) is a common point of IH and IH′ . Thus ν(H′) ≤ ν(H).
Let P be a point covering some of the 2-intervals in H′. We claim that the

corresponding edges of H can be covered by two points. By symmetry we may suppose
P is on the first line, the x axis, thus P = (x0, 0). Consider the set {(x, y) ∈ X1|x ≤
x0 and y ≥ 0} and let P1 = (x1, y1) be an element of the set with minimal y-coordinate.
Similarly let P2 = (x2, y2) an element of the set {(x, y) ∈ X2|x ≤ x0 and y ≤ 0} with
maximal y-coordinate. If the corresponding sets are empty then P1 or P2 or both are
undefined. Take an edge H ∈ H such that P ∈ IH . By definition there are points
P3 = (x3, y3) and P4 = (x4, y4) in H ∩ X1 such that x3 ≤ x0 ≤ x4. We claim that if
y3 ≥ 0 then P1 covers H and if y3 ≤ 0 then P2 covers H. By symmetry it is enough to
prove the first assertion. Since P3 ∈ {(x, y) ∈ X1|x ≤ x0 and y ≥ 0} P1 is defined and
0 ≤ y1 ≤ y3. Therefore any axis-parallel rectangle containing P3, P4, and the origin
also contains P1. Thus P1 ∈ H as claimed.

The last paragraph implies τ(H) ≤ 2τ(H′). As H′ is a system of 2-intervals with
ν(H′) ≤ ν(H) we have τ(H′) ≤ f(ν(H), 2). The statement of the lemma follows.

Let us remark that an upper bound on the transversal number of rectangular
hypergraph follows from Theorem 1.3, Theorem 2.4, and Lemma 3.1. Let H be a
rectangular hypergraph. As the packing number of the system of rectangles in the
definition is at most ν(H). Thus by Theorem 1.3 ν(H)(⌊log ν(H)⌋ + 2) points of the
plain is enough to cover all rectangles. For any covering point P the edges of H for
which the corresponding rectangle is covered by P is a pointed rectangular hypergraph,
with packing number at most ν(H). Thus it can be covered by 2f(ν(H), 2) = 4ν(H)
points by Lemma 3.1 and Theorem 2.4. Thus H can be covered by the covering all
these subsystems, proving

τ(H) ≤ 4(ν(H)2)(⌊log ν(H)⌋ + 2).

To prove the much stronger Theorem 1.5 we replace Theorem 1.3 with Corollary 3.4.
We call a hypergraph H disintegrated if there is a partition H = ∪i∈IHi such that

∩H∈Hi
H 6= ∅ for each i ∈ I and the elements of Hi are disjoint from the elements of

Hi′ for each i 6= i′ ∈ I. We call a line horizontal if it is parallel to the x axis, and we
call it vertical if it is parallel to the y axis.
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Lemma 3.2 Let H′ be a disintegrated family of axis-parallel rectangles and

X a finite set in the plane. The rectangular hypergraph H = {R ∩ X |R ∈ H′}
satisfies τ(H) ≤ 4ν(H).

Proof. Let H′ = ∪i∈IH
′
i be the partition in the definition of disintegrated for H′.

Let Hi = {R ∩ X |R ∈ H′
i}, these sets form a partition of H into pointed rectangular

hypergraphs. Thus by Lemma 3.1 and Theorem 2.4 we have τ(Hi) ≤ 2f(ν(Hi), 2) =
4ν(Hi). By the disjointness property in the definition of disintegrated we have ν(H) =
∑

i∈I ν(Hi) and τ(H) =
∑

i∈I τ(Hi). The lemma follows.

Lemma 3.3. Let H be a system of axis-parallel rectangles in the plane and let i and
j be positive integers. Suppose that there are 2i − 1 horizontal lines such that each
rectangle in H intersects one of these lines. Suppose that there are 2j − 1 vertical lines
with the same property. Then H can be partitioned into ij disintegrated hypergraphs.

Proof. The proof is by induction on i and j. If i = j = 1 then all rectangles in H
contain the intersection of the only horizontal and the only vertical line. Thus H is
disintegrated as claimed.

Suppose one of i and j is not one. By symmetry we may suppose i > 1. Let us
call the central of the 2i−1 horizontal lines ℓ. We partition H with respect to ℓ: let H0

consist of the rectangles in H intersecting ℓ, H1 consist of the rectangles on the one side
of ℓ, while H2 consist of the rectangles in H on the other side of ℓ. By induction H0 can
be partitioned into j disintegrated hypergraphs, while H1 and H2 can be partitioned
into (i−1)j disintegrated hypergraphs each. As the elements of H1 are separated from
the elements of H2 by ℓ we can take the union of a disintegrated subset of H1 and a
disintegrated subset of H2 and still get a disintegrated hypergraph. Thus matching the
parts of H1 to the parts of H2 we get a partition of H into (i−1)j+j = ij disintegrated
hypergraphs as claimed.

Corollary 3.4. Let H be a family of axis-parallel rectangles in the planes with fi-
nite packing number. Then H can be partitioned into (⌊log ν(H)⌋ + 1)2 disintegrated
hypergraphs.

Proof. Let H′ be the set of projections to the x axis of the rectangles in H. Using
Theorem 1.1 one finds ν(H′) ≤ ν(H) vertical lines such that each rectangles in H
intersects one of them. Similarly one can find at most ν(H) horizontal lines with the
same property. Applying Lemma 3.2 yields the result.

We are ready now to prove Theorem 1.5.
Proof of Theorem 1.5. Let x be the set of vertices of H and let H′ be a collection of
axis-parallel rectangles such that H = {R∩X |R ∈ H′}. Apply Corollary 3.4 to partition
H′ into disintegrated hypergraphs. As ν(H′) ≤ ν(H) the number of the parts H′

i (i ∈ I)
is at most (⌊log ν(H)⌋ + 1)2. For i ∈ I let Hi = {R ∩ X |R ∈ H′

i}, these sets form a
partition of H. Lemma 3.2 yields τ(Hi) ≤ 4ν(H′

i). Using the trivial ν(Hi) ≤ ν(H) and
τ(H) ≤

∑

i∈I τ(Hi) bounds this last observation proves the theorem.

One way to improve on the bound in Theorem 1.5 would be to improve Corollary
3.4. Unfortunately it is optimal except for a constant factor. Let H be the family
of all rectangles with integer coordinates inside a k by k square. It is easy to show
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that ν(H) = Θ(n2) and the minimum number of disintegrated hypergraphs H can be
partitioned to is Θ(log2 n). One can gain though by restricting attention to Sperner
systems, i. e. hypergraphs with no edge containing another edge. As the packing and
transversal numbers of a finite hypergraph does not change by removing all non-minimal
edges we can assume without loss of generality that the hypergraph is a Sperner system.
In the case of rectangular hypergraphs the corresponding family of rectangles is also a
Sperner system then. So the next conjecture would be enough to prove

τ(H) = O(ν(H) log ν(H))

for any rectangular hypergraph. It is worth noting that this bound matches the best
known bound for families of rectangles.

Conjecture 3.5. Let H be a Sperner system of axis-parallel rectangles. Then it can
be partitioned into O(log ν(H)) disintegrated hypergraphs.
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conversations.

References.

[DSW] G. Ding, P. Seymour and P. Winkler, Bounding the vertex cover number of
a hypergraph, Combinatorica, to appear.

[FFK] D.G. Fon-Der-Flaass and A.V. Kostochka, Covering boxes by points, Discr.
Math. 120 (1993) 269–275.
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