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Abstrat. We introdue the notion of rough transitivity and prove that there exist no

non-onstant harmoni Dirihlet funtions on amenable roughly transitive graphs.

1 Introdution

Let us all a graph G roughly transitive if there exist quasi-isometries f

xy

from G to G

for verties x and y of G with f

xy

(x) = y suh that these quasi-isometries have bounded

distortion. (See Setion 2 for notations.)

Any graph quasi-isometri to a vertex-transitive graph is learly roughly transitive.

However, the onverse is far from being true as we shall show in Setion 3.

The study of harmoni Dirihlet funtions on graphs goes bak to Cheeger and Gromov

[2℄. They proved that there exist no non-onstant harmoni Dirihlet funtion on the

Cayley graph of an amenable group. For di�erent proofs see also Elek [3℄ and Pashke [7℄.

Later Medolla and Soardi [5℄ extended this result to amenable vertex-transitive graphs. In

a reent preprint Benjamini, Lyons, Peres, and Shramm [1℄ gave a probabilisti proof for

this result. The goal of this paper is to extend the result of Medolla and Soardi to amenable

roughly transitive graphs:

Theorem 1 The only harmoni Dirihlet funtions of a roughly transitive amenable graph

are the onstant funtions.

Note that some assumption of this kind is neessary as there exist amenable graphs

with non-onstant harmoni Dirihlet funtions, see e.g. [10℄, Chapter 6.
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2 Notations

In this note we use the term graph for simple, onneted, undireted graphs with bounded

degree verties only. We will mostly onsider in�nite graphs. We denote the set of verties

of a graph G by V (G), we use E(G) for the set of edges. By

~

E(G) we denote the set

of oriented edges:

~

E(G) = f(x; y) j fx; yg 2 E(G)g. We denote the opposite orientation

(y; x) of an oriented edge e = (x; y) by �e. We onsider the Hilbert spae l

2

(G) of the

l

2

funtions u :

~

E(G) ! IR satisfying u(�e) = �u(e) with the salar produt hu; u

0

i =

1=2

P

e2

~

E(G)

u(e)u

0

(e). For simpliity we write u(x; y) for the value u((x; y)). For a funtion

v : V (G) ! IR we de�ne its di�erential dv :

~

E(G) ! IR by dv(x; y) = v(y) � v(x). We

all a v : V (G) ! IR funtion a Dirihlet funtion if dv 2 l

2

(G) and denote the set of

Dirihlet funtions by D(G). Let l

2

(V (G)) denote the Hilbert spae of the l

2

funtions

v : V (G)! IR (with the standard salar produt), this is learly ontained in D(G).

Consider the adjoint d

�

of the operator d : l

2

(V (G)) ! l

2

(G). We all a funtion

u 2 l

2

(G) a ow if d

�

u = 0. We all a Dirihlet funtion v 2 D(G) harmoni if dv is a ow.

We denote the set of harmoni Dirihlet funtions by HD(G).

Here d

�

u is given by d

�

u(x) =

P

fy;xg2E(G)

u(y; x) for u 2 l

2

(G) and x 2 V (G). Thus

u is a ow if and only if

P

fx;yg2E(G)

u(x; y) = 0 for every x 2 V . The funtion v 2 D(G)

is harmoni if and only if for every x 2 V the value v(x) is the average of the values v(y)

with fx; yg 2 E(G). All onstant funtions V (G)! IR are harmoni Dirihlet funtions.

For verties x and y of a graph G let Æ(x; y) denote their distane in G. A wobbling

is a map f : V (G) ! V (G) suh that Æ(x; f(x)) for x 2 V (G) is bounded. The map

f : V (G)! V (G

0

) is alled a quasi-isometry from G to G

0

if there exits a positive number

k|the distortion of f|suh that for verties x and y in V (G) one has

1

k

Æ(x; y)� 1 < Æ(f(x); f(y)) � kÆ(x; y);

and for every vertex x 2 V (G

0

) there exists y 2 V (G) with Æ(x; f(y)) < k. A quasi-inverse

of a quasi-isometry f from G to G

0

is a quasi-isometry g from G

0

to G suh that f Æ g and

g Æ f are wobblings.

Note that for a quasi-isometry f of distortion k one an take a quasi-inverse of distortion

2k

2

.

When speaking of subgraphs of a graph we always mean a onneted full subgraph with

at least one edge. LetG

0

be a subgraph of a graphG. By �(G

0

) we denote the set of verties

of G

0

that have neighbors in G outside G

0

. We all G amenable if inf j�(G

0

)j=jV (G

0

)j = 0,

where the in�mum is taken for �nite subgraphs G

0

. We all the sequene (G

i

) of �nite

subgraphs of a graph G a F�lner sequene if j�(G

i

)j=jV (G

i

)j tends to 0 as k tends to in�nity.

3 An example

In this setion we onstrut a roughly transitive amenable graph that is not quasi-isometri

to a vertex transitive graph. Let G be a simply onneted nilpotent Lie group. Then a

net N in G is a roughly transitive amenable graph. Here the verties of the net N form a
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maximal subset of G with minimum distane 1, the edges onnet verties of distane at

most 3. If G has a o-ompat lattie then of ourse N is quasi-isometri to the lattie,

that is a vertex transitive graph, so the fat that all harmoni Dirihlet funtion on N is

onstant follows from Soardi's Theorem [9℄ on the quasi-isometry invariane of the existene

on non-onstant harmoni Dirihlet funtion. Note however, that aording to Malev's

Theorem [4℄ G has a o-ompat lattie if and only if the Lie-algebra of G is rational i.e. has

a base with rational struture onstants. There are unountable pairwise non-isomorphi

non-rational Lie-algebras [8℄.

Proposition 2 There exists a simply onneted nilpotent Lie group G and a net N of G

suh that N is not quasi-isometri to any vertex transitive graph.

Proof: Let G be the graded two-step nilpotent Lie algebraN(d) in [8℄, where d is irrational.

This algebra is non-rational. Let G be the assoiated simply onneted nilpotent Lie group

and let N be a net of G. Suppose that N is quasi-isometri to a vertex transitive graph

M . Then M has polynomial growth so by the famous result of Tro�mov [11℄, M is quasi-

isometri to the Cayley graph of a disrete nilpotent group �. Let H be the Malev-

ompletion of �. Then H is a nilpotent Lie group whih ontains � as a o-ompat lattie.

Moreover, the nilpotent Lie groups G and H are quasi-isometri. Now, we reall Pansu's

result [6℄ (we thank to Martin Bridson for alling our attention to this beautiful theorem):

If two nilpotent Lie groups are quasi-isometri, then their assoiated graded Lie algebras

are in fat isomorphi. The Lie algebra of H is rational by Malev's Theorem [4℄. The

assoiated graded Lie algebra of a rational Lie algebra is obviously rational as well. On the

other hand the Lie algebra of G is just N(d), whih is itself graded. Thus G and H annot

be quasi-isometri. This proves our proposition.

It would be interesting to haraterize roughly transitive graphs of polynomial growth

up to quasi-isometry the same way as Tro�mov did in the vertex transitive ase.

4 The result

We borrow some notations from [1℄. The support supp(v) of a real-valued funtion v is the

subset of the domain where v is not zero. For a graph G we de�ne ?(G) to be the losure

in l

2

(G) of the funtions dv, where v : V (G) ! IR has �nite support. Let }(G) be the

losure in l

2

(G) of the ows with �nite support.

Notie that we always have dl

2

(V (G)) � ?(G). The following lemma is well known. We

prove it to be self ontained.

Lemma 3 Let G be any graph. We have the following orthogonal deomposition:

l

2

(G) = ?(G) +}(G) + dHD(G):

The ows onstitute the subspae }(G) + dHD(G), and dD(G) = ?(G) + dHD(G).

Proof: First note that if v 2 D(G) and u is a ow with �nite support then we have

hdv; ui = hdv

0

; ui = hv

0

; d

�

ui = 0, where v

0

is v restrited to the �nite support onsisting
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of the endpoints of the oriented edges in the support of u. Thus dD(G) is orthogonal to

}(G). To see that they are orthogonal omplements onsider any funtion u orthogonal to

}(G). Fix a vertex x

0

2 V (G) and de�ne v : V (G) ! IR by v(x

n

) =

P

n

i=1

u(x

i�1

; x

i

) for

any path (x

0

; : : : ; x

n

) (n � 0) in G. The orthogonality proves that v is well de�ned. We

have dv = u thus d 2 D(G) as required.

Next we laim that the orthogonal omplement of ?(G) onsists of all the ows. Indeed

a funtion u 2 l

2

(G) belongs to this omplement if and only if hdv; ui = hv; d

�

ui = 0 for

every v : V (G)! IR with a �nite support. This is satis�ed if and only if d

�

u = 0.

To �nish the proof of the lemma notie that the orthogonal omplement of ?(G) ontains

}(G) and the intersetion of the orthogonal omplements of ?(G) and }(G) are ows in

dD(G), and by de�nition, this is dHD(G).

Let G

0

be a �nite subgraph of G and L a losed subspae of l

2

(G). We de�ne

dim

G

0

(L) =

P

e2

~

E(G

0

)

hP

L

e; ei

j

~

E(G

0

)j

;

where P

L

is the orthogonal projetion to L and the oriented edge e is identi�ed with the

element of l

2

(G) mapping e to 1, �e to �1 and all other oriented edges to 0.

Claim 4 Let G

0

be a �nite subgraph of a graph G. We have dim

G

0

(l

2

(G)) = 1. For orthog-

onal losed subspaes L and L

0

of l

2

(G) we have dim

G

0

(L + L

0

) = dim

G

0

(L) + dim

G

0

(L

0

).

For losed subspaes L � L

0

one has 0 � dim

G

0

(L) � dim

G

0

(L

0

). If the support of all u 2 L

is ontained in

~

E(G

0

) then dim

G

0

(L) = dim(L)=jE(G

0

)j.

Proof: The �rst statement follows from noting that P

l

2

(G)

is the identity. The seond

statement follows from the equality P

L+L

0

= P

L

+ P

L

0

for orthogonal subspaes L and L

0

.

The non negativity is trivial and implies the monotoniity. For the last statement note

that we an work in l

2

(G

0

). Half of the vetors e 2

~

E(G

0

) (taking one of the pairs e and

�e) form an orthonormal bases of l

2

(G

0

), and jE(G

0

)jdim

G

0

(L) is the trae of P

L

restrited

to l

2

(G

0

) omputed in this bases.

Lemma 5 If G

0

is a �nite subgraph of the graph G then dim

G

0

(?(G) + }(G)) � 1 �

j�(G

0

)j=jE(G

0

)j.

Proof: First note that dHD(G

0

) = 0 sine every ow on the �nite graph G

0

has �nite

support. So by Lemma 3 we have l

2

(G

0

) = ?(G

0

) +}(G

0

).

We identify funtions u 2 l

2

(G

0

) and v 2 D(G

0

) with their extension in l

2

(G) (re-

spetively D(G)) that is zero outside the original domain. We have to distinguish two

di�erential operators: d

G

0

: D(G

0

) ! l

2

(G

0

) is not the restrition of d : D(G) ! l

2

(G)

as d(D(G

0

)) 6� l

2

(G

0

) unless G = G

0

. But using the formula for d

�

one sees that d

�

G

0

is

the restrition of d

�

. Thus }(G

0

) � }(G). Let D

1

= fv 2 D(G) j supp(v) � �(G

0

)g and

D

2

= fv 2 D(G) j supp(v) � V (G

0

) n �(G

0

)g. Clearly, D(G

0

) = D

1

+ D

2

and ?(G

0

) =

d

G

0

D

1

+ d

G

0

D

2

. Notie that d and d

G

0

are idential in D

2

, thus d

G

0

D

2

= dD

2

� ?(G).

Let L = dD

2

+}(G

0

). We have d

G

0

D

1

+ L = ?(G

0

) +}(G

0

) = l

2

(G

0

), thus dim(L) �

dim(l

2

(G

0

))� dim(d

G

0

D

1

) � jE(G

0

)j � dim(D

1

) � jE(G

0

)j � j�(G

0

)j.

We have L � (?(G)+}(G))\l

2

(G

0

), thus by Claim 4 dim

G

0

(?(G)+}(G)) � dim

G

0

(L) =

dim(L)=jE(G

0

)j � 1� j�(G

0

)j=jE(G

0

)j as laimed.

4



Corollary 6 For a F�lner sequene (G

i

) of �nite subgraphs of a graph G we have dim

G

i

(dHD(G))

tends to zero as i tends to in�nity.

Proof: By Lemma 3, Claim 4, and Lemma 5 we have 0 � dim

G

i

(dHD(G)) � j�(G

i

)j=jE(G

i

)j.

Here j�(G

i

)j=jE(G

i

)j tends to zero as (G

i

) is a F�lner sequene. Note that for traditional

reasons we used j�(G

i

)j=jV (G

i

)j in the de�nition of F�lner sequenes, but sine G

i

is on-

neted and has bounded degree jV (G

i

)j and jE(G

i

)j are proportional.

Corollary 6 indiates that the harmoni Dirihlet funtions on an amenable graph form

a \small" subspae. It does not, however, imply that dHD(G) = 0, this is false for some

amenable graphs. Our goal is to prove that if non-onstant harmoni funtions exist on a

roughly transitive graph then they form a \large" subspae ontraditing Corollary 6. This

is immediate for transitive graphs: with any harmoni Dirihlet funtion all its translates

are harmoni. The ase of roughly transitive graphs require more are. We study next how

quasi-isometries at on Dirihlet funtions and on dHD(G).

Let G

1

and G

2

be graphs. For a map f : V (G

1

) ! V (G

2

) we de�ne the funtion

f

�

: v 7! f Æ v on the funtions v : V (G

2

) ! IR. Let A be a subset of the verties of a

graph G. For k > 0 we de�ne the k-neighborhood C

k

(A) of A to be fx 2 V (G) j 9y 2 A :

Æ(x; y) � kg. We de�ne �

A

:

~

E(G) ! IR to be the harateristi funtion of the oriented

edges (x; y) 2

~

E(G) with x 2 A and y 2 A.

Lemma 7 For a quasi-isometry f from a graph G

1

to a graph G

2

we have f

�

(D(G

2

)) �

D(G

1

). Furthermore there is a onstant  depending on the distortion k of f and the

maximum degree of G

1

suh that jdf

�

vj � jdvj and jdf

�

v��

A

j � jdv��

B

j for any v 2 D(G

2

)

and A � V (G

1

) if B = C

k

(f(A)).

Proof: Let f be as in the lemma. We �x a path f(x) = x

e

0

; x

e

1

; : : : ; x

e

k

e

= f(y) in

G

2

of length 0 � k

e

� k for eah oriented edge e = (x; y) 2

~

E(G

1

). For any v 2

D(G

2

) we have jdf

�

vj

2

= 1=2

P

(x;y)2

~

E(G

1

)

(v(f(y))� v(f(x)))

2

� k=2

P

e2

~

E(G

1

)

P

k

e

i=1

(v(x

e

i

)�

v(x

e

i�1

))

2

. The summands in this last expression all appear in the summation jdvj

2

=

1=2

P

(x;y)2

~

E(G

2

)

(v(y)� v(x))

2

thus for the �rst statement we only have to limit the multi-

pliity of a summand (v(y) � v(x))

2

in the �rst sum for any (x; y) 2

~

E(G

2

). This is the

number of oriented edges in

~

E(G

1

) suh that the orresponding (oriented) path in G

2

on-

tains (x; y). As the endpoints of these edges form a subset in V (G

1

) of maximum distane

at most 2k

2

this multipliity an be bounded in terms of k and the maximum degree of G

1

.

For the last statement notie that if an edge is spanned by a subset A � E(G

2

) then

the orresponding path is within the set B = C

k

(f(A)).

Lemma 8 For a wobbling f of a graph G we have f

�

v�v 2 l

2

(V (G)) for every v 2 D(G).

Proof: For a vertex x 2 V (G) take a path x = x

0

; x

1

; : : : ; x

k

= f(x) in G. We have

((f

�

v� v)(x))

2

� k

P

k

i=1

(v(x

i

)� v(x

i�1

))

2

. Thus to bound the l

2

norm of f

�

v� v in terms

of jdvj it is enough to note that we an hoose the paths with bounded length and every

edge appears in a bounded number of paths.

For a funtion f : A! B and S � B we use f

�1

(S) to denote fx 2 A j f(x) 2 Sg.
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Lemma 9 For a graph G we have dHD(G)

�

=

D(G)=d

�1

(?(G)). For a quasi-isometry f

from G

1

to G

2

f

�

indues an isomorphism between D(G

2

)=d

�1

(?(G

2

)) and D(G

1

)=d

�1

(?(G

1

))

thus between dHD(G

2

) and dHD(G

1

). For quasi-inverses f and g the funtions f

�

and g

�

indue inverse isomorphisms.

Proof: The dD(G) = ?(G) + dHD(G) laim of Lemma 3 proves the �rst statement.

Let f be as in the lemma and v 2 d

�1

(?(G

2

)). Then there exist funtions v

i

2 D(G

2

)

with �nite support suh that dv

i

tend to dv in norm. By Lemma 7 df

�

v

i

tend to df

�

v, and as

the funtions f

�

v

i

also have �nite support df

�

v 2 ?(G

1

). Thus f

�

maps D(G

2

)=d

�1

(?(G

2

))

linearly to D(G

1

)=d

�1

(?(G

1

)).

To see that this map is an isomorphism take a quasi-inverse g of the quasi-isometry f .

For any v 2 D(G

2

) we have by Lemma 8 that g

�

f

�

v�v 2 l

2

(V (G

2

)) � d

�1

(?(G

2

)). For v 2

D(G

1

) we similarly have f

�

g

�

v�v 2 d

�1

(?(G

1

)) thus the maps between D(G

2

)=d

�1

(?(G

2

))

and D(G

1

)=d

�1

(?(G

1

)) indued by f

�

and g

�

are inverses of eah other.

Lemma 10 Let the graph G and the positive numbers k and � be given. If dHD(G) 6= 0

then there exist a �nite set A � V (G) and a number � > 0 with the following property. For

any quasi-isometry f of distortion at most k to G from a graph G

0

of maximum degree at

most � one has a funtion w 2 HD(G

0

) with jdwj = 1 and jdw � �

B

j > � for B = f

�1

(A).

Proof: Choose a non-onstant funtion v 2 HD(G). We �x � > 0 later and hoose

A = C

k+1

(A

0

) with a �nite set A

0

� V (G) suh that jdv � �

V (G)nA

0

j < �.

By \onstant" we mean a quantity depending on G, v, k and � but not on G

0

, f or �.

We an take a quasi-inverse g of f of distortion bounded by a onstant. By Lemma 9 we

have the deomposition f

�

v = v

0

+z with some v

0

2 HD(G

0

) and z 2 d

�1

(?(G

0

)). Similarly

g

�

v

0

= v + t with some t 2 d

�1

(?(G)). By Lemma 7 we have 0 < jdvj � jdg

�

v

0

j � jdv

0

j

with some onstant . Thus jdv

0

j � 

0

= jdvj= > 0. We use Lemma 7 for f

�

to get jdzj �

jdf

�

vj � 

0

jdvj = 

1

with some onstants 

0

and 

1

. Now onsider B = f

�1

(A) � V (G

0

) and

C = (V (G

0

) nB) [ �(B). Notie that �

C

� 1� �

B

and D = C

k

(f(C)) is disjoint from A

0

.

Consider the orthogonal deompositions dv

0

= u

1

+ u

2

with u

1

= dv

0

� �

B

and u

2

=

dv

0

� (1� �

B

), and dz = s

1

+ s

2

with s

1

= dz � �

B

and s

2

= dz � (1� �

B

). By Lemma 7 we

have ju

2

+ s

2

j = jdf

�

v � (1� �

B

)j � jdf

�

v � �

C

j � 

2

jdv � �

D

j � 

2

jdv � �

V (G)nA

0

j < 

2

� with a

onstant 

2

. We an write 0 = hdv

0

; dzi = hu

1

; s

1

i + hu

2

; s

2

i. Here jhu

1

; s

1

ij � ju

1

j � js

1

j �

ju

1

j�jdzj � 

1

ju

1

j and hu

2

; s

2

i = hu

2

; u

2

+s

2

i�ju

2

j

2

� ju

2

j�ju

2

+s

2

j�ju

2

j

2

< �ju

2

j(ju

2

j�

2

�).

We have ju

2

j � jdv

0

j�ju

1

j � 

0

�ju

1

j hene 

1

ju

1

j � hu

1

; s

1

i = �hu

2

; s

2

i � ju

2

j(ju

2

j�

2

�) �

(

0

� ju

1

j)(

0

� 

2

�� ju

1

j) if 

0

� 

2

�� ju

1

j > 0.

Notie that we an hoose a small enough � depending on 

0

, 

1

, and 

2

suh that ju

1

j �



1

� ontradits our last inequality. For this � we have ju

1

j > 

1

�. We take w = v

0

=jdv

0

j 2

HD(G

0

) and notie that jdwj = 1 and jdw ��

B

j = ju

1

j=jdv

0

j > � as jdv

0

j � jdf

�

vj � 

1

. The

hoie of � (and thus of A) depends only on G, v, k and �.

Now we �nish the proof of our Theorem. The proof is by ontradition. Let G be a

roughly transitive amenable graph with dHD(G) 6= 0. Let k be the bound on the distortion

of the quasi-isometries f

xy

from G to G mapping x 2 V (G) to y 2 V (G). Choose the �nite

set A � V (G) and the number � > 0 for G, k and the maximum degree � of G as laimed

6



in Lemma 10. We �x a vertex y 2 A and use the statement of Lemma 10 to obtain a

funtion w

x

2 HD(G) for eah x 2 V (G) suh that jdw

x

j = 1 and jdw

x

� �

B

x

j > � for

B

x

= f

�1

xy

(A). Let a = max

y

0

2A

Æ(y; y

0

). By the bound on the distortion of f

xy

we have

Æ(x; x

0

) < k(a + 1) = b for any x 2 V (G) and x

0

2 B

x

.

Let (G

i

) be a F�lner sequene of �nite subgraphs of G. Let S

i

= V (G

i

) n C

b

(�(G

i

)).

Note that as b is onstant and the degree of the verties is limited, jC

b

(�(G

i

))j is pro-

portional to j�(G

i

)j thus jS

i

j=jV (G

i

)j tends to 1 as i tends to in�nity. For x 2 S

i

we

have B

x

� C

b

(fxg) � V (G

i

). Consider the projetion P in l

2

(G) to dHD(G) and let

P

x

the projetion to the one dimensional subspae of dHD(G) generated by dw

x

. Re-

all that we identify an oriented edge e 2

~

E(G) with the funtion in l

2

(G) mapping e

to 1, �e to �1 and everything else to zero. We have hPe; ei � hP

x

e; ei = hdw

x

; ei

2

=

(dw

x

(e))

2

for every oriented edge e and vertex x in G. We an write �

2

< jdw

x

� �

B

x

j

2

=

1=2

P

e2

~

E(G)

�

B

x

(e)(dw

x

(e))

2

� 1=2

P

e2

~

E(G)

�

B

x

(e)hPe; ei for any x 2 V (G). By summa-

tion we get 2�

2

jS

i

j �

P

e2

~

E(G)

hPe; ei

P

x2S

i

�

B

x

(e) for any index i. Notie that

P

x2S

i

�

B

x

(e)

is zero for oriented edges e outside

~

E(G

i

), while it is bounded by a onstant C for any

e 2

~

E(G), one an take C to be the maximum size of the b-neighborhood of a single ver-

tex. Thus we have 2�

2

jS

i

j=C �

P

e2

~

E(G

i

)

hPe; ei = j

~

E(G

i

)jdim

G

i

(dHD(G)). Consequently,

dim

G

i

(dHD(G)) � �

2

=C � jS

i

j=jE(G

i

)j. By Corollary 6 the left hand side of this last in-

equality tends to zero as i tends to in�nity, but as jS

i

j=jV (G

i

)j tends to 1 and jV (G

i

)j is

proportional to E(G

i

) the right hand side does not. The ontradition proves the theorem.

We thank the referee for valuable omments.
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