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Abstra
t. We introdu
e the notion of rough transitivity and prove that there exist no

non-
onstant harmoni
 Diri
hlet fun
tions on amenable roughly transitive graphs.

1 Introdu
tion

Let us 
all a graph G roughly transitive if there exist quasi-isometries f

xy

from G to G

for verti
es x and y of G with f

xy

(x) = y su
h that these quasi-isometries have bounded

distortion. (See Se
tion 2 for notations.)

Any graph quasi-isometri
 to a vertex-transitive graph is 
learly roughly transitive.

However, the 
onverse is far from being true as we shall show in Se
tion 3.

The study of harmoni
 Diri
hlet fun
tions on graphs goes ba
k to Cheeger and Gromov

[2℄. They proved that there exist no non-
onstant harmoni
 Diri
hlet fun
tion on the

Cayley graph of an amenable group. For di�erent proofs see also Elek [3℄ and Pas
hke [7℄.

Later Medolla and Soardi [5℄ extended this result to amenable vertex-transitive graphs. In

a re
ent preprint Benjamini, Lyons, Peres, and S
hramm [1℄ gave a probabilisti
 proof for

this result. The goal of this paper is to extend the result of Medolla and Soardi to amenable

roughly transitive graphs:

Theorem 1 The only harmoni
 Diri
hlet fun
tions of a roughly transitive amenable graph

are the 
onstant fun
tions.

Note that some assumption of this kind is ne
essary as there exist amenable graphs

with non-
onstant harmoni
 Diri
hlet fun
tions, see e.g. [10℄, Chapter 6.
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2 Notations

In this note we use the term graph for simple, 
onne
ted, undire
ted graphs with bounded

degree verti
es only. We will mostly 
onsider in�nite graphs. We denote the set of verti
es

of a graph G by V (G), we use E(G) for the set of edges. By

~

E(G) we denote the set

of oriented edges:

~

E(G) = f(x; y) j fx; yg 2 E(G)g. We denote the opposite orientation

(y; x) of an oriented edge e = (x; y) by �e. We 
onsider the Hilbert spa
e l

2

(G) of the

l

2

fun
tions u :

~

E(G) ! IR satisfying u(�e) = �u(e) with the s
alar produ
t hu; u

0

i =

1=2

P

e2

~

E(G)

u(e)u

0

(e). For simpli
ity we write u(x; y) for the value u((x; y)). For a fun
tion

v : V (G) ! IR we de�ne its di�erential dv :

~

E(G) ! IR by dv(x; y) = v(y) � v(x). We


all a v : V (G) ! IR fun
tion a Diri
hlet fun
tion if dv 2 l

2

(G) and denote the set of

Diri
hlet fun
tions by D(G). Let l

2

(V (G)) denote the Hilbert spa
e of the l

2

fun
tions

v : V (G)! IR (with the standard s
alar produ
t), this is 
learly 
ontained in D(G).

Consider the adjoint d

�

of the operator d : l

2

(V (G)) ! l

2

(G). We 
all a fun
tion

u 2 l

2

(G) a 
ow if d

�

u = 0. We 
all a Diri
hlet fun
tion v 2 D(G) harmoni
 if dv is a 
ow.

We denote the set of harmoni
 Diri
hlet fun
tions by HD(G).

Here d

�

u is given by d

�

u(x) =

P

fy;xg2E(G)

u(y; x) for u 2 l

2

(G) and x 2 V (G). Thus

u is a 
ow if and only if

P

fx;yg2E(G)

u(x; y) = 0 for every x 2 V . The fun
tion v 2 D(G)

is harmoni
 if and only if for every x 2 V the value v(x) is the average of the values v(y)

with fx; yg 2 E(G). All 
onstant fun
tions V (G)! IR are harmoni
 Diri
hlet fun
tions.

For verti
es x and y of a graph G let Æ(x; y) denote their distan
e in G. A wobbling

is a map f : V (G) ! V (G) su
h that Æ(x; f(x)) for x 2 V (G) is bounded. The map

f : V (G)! V (G

0

) is 
alled a quasi-isometry from G to G

0

if there exits a positive number

k|the distortion of f|su
h that for verti
es x and y in V (G) one has

1

k

Æ(x; y)� 1 < Æ(f(x); f(y)) � kÆ(x; y);

and for every vertex x 2 V (G

0

) there exists y 2 V (G) with Æ(x; f(y)) < k. A quasi-inverse

of a quasi-isometry f from G to G

0

is a quasi-isometry g from G

0

to G su
h that f Æ g and

g Æ f are wobblings.

Note that for a quasi-isometry f of distortion k one 
an take a quasi-inverse of distortion

2k

2

.

When speaking of subgraphs of a graph we always mean a 
onne
ted full subgraph with

at least one edge. LetG

0

be a subgraph of a graphG. By �(G

0

) we denote the set of verti
es

of G

0

that have neighbors in G outside G

0

. We 
all G amenable if inf j�(G

0

)j=jV (G

0

)j = 0,

where the in�mum is taken for �nite subgraphs G

0

. We 
all the sequen
e (G

i

) of �nite

subgraphs of a graph G a F�lner sequen
e if j�(G

i

)j=jV (G

i

)j tends to 0 as k tends to in�nity.

3 An example

In this se
tion we 
onstru
t a roughly transitive amenable graph that is not quasi-isometri


to a vertex transitive graph. Let G be a simply 
onne
ted nilpotent Lie group. Then a

net N in G is a roughly transitive amenable graph. Here the verti
es of the net N form a
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maximal subset of G with minimum distan
e 1, the edges 
onne
t verti
es of distan
e at

most 3. If G has a 
o-
ompa
t latti
e then of 
ourse N is quasi-isometri
 to the latti
e,

that is a vertex transitive graph, so the fa
t that all harmoni
 Diri
hlet fun
tion on N is


onstant follows from Soardi's Theorem [9℄ on the quasi-isometry invarian
e of the existen
e

on non-
onstant harmoni
 Diri
hlet fun
tion. Note however, that a

ording to Mal
ev's

Theorem [4℄ G has a 
o-
ompa
t latti
e if and only if the Lie-algebra of G is rational i.e. has

a base with rational stru
ture 
onstants. There are un
ountable pairwise non-isomorphi


non-rational Lie-algebras [8℄.

Proposition 2 There exists a simply 
onne
ted nilpotent Lie group G and a net N of G

su
h that N is not quasi-isometri
 to any vertex transitive graph.

Proof: Let G be the graded two-step nilpotent Lie algebraN(d) in [8℄, where d is irrational.

This algebra is non-rational. Let G be the asso
iated simply 
onne
ted nilpotent Lie group

and let N be a net of G. Suppose that N is quasi-isometri
 to a vertex transitive graph

M . Then M has polynomial growth so by the famous result of Tro�mov [11℄, M is quasi-

isometri
 to the Cayley graph of a dis
rete nilpotent group �. Let H be the Mal
ev-


ompletion of �. Then H is a nilpotent Lie group whi
h 
ontains � as a 
o-
ompa
t latti
e.

Moreover, the nilpotent Lie groups G and H are quasi-isometri
. Now, we re
all Pansu's

result [6℄ (we thank to Martin Bridson for 
alling our attention to this beautiful theorem):

If two nilpotent Lie groups are quasi-isometri
, then their asso
iated graded Lie algebras

are in fa
t isomorphi
. The Lie algebra of H is rational by Mal
ev's Theorem [4℄. The

asso
iated graded Lie algebra of a rational Lie algebra is obviously rational as well. On the

other hand the Lie algebra of G is just N(d), whi
h is itself graded. Thus G and H 
annot

be quasi-isometri
. This proves our proposition.

It would be interesting to 
hara
terize roughly transitive graphs of polynomial growth

up to quasi-isometry the same way as Tro�mov did in the vertex transitive 
ase.

4 The result

We borrow some notations from [1℄. The support supp(v) of a real-valued fun
tion v is the

subset of the domain where v is not zero. For a graph G we de�ne ?(G) to be the 
losure

in l

2

(G) of the fun
tions dv, where v : V (G) ! IR has �nite support. Let }(G) be the


losure in l

2

(G) of the 
ows with �nite support.

Noti
e that we always have dl

2

(V (G)) � ?(G). The following lemma is well known. We

prove it to be self 
ontained.

Lemma 3 Let G be any graph. We have the following orthogonal de
omposition:

l

2

(G) = ?(G) +}(G) + dHD(G):

The 
ows 
onstitute the subspa
e }(G) + dHD(G), and dD(G) = ?(G) + dHD(G).

Proof: First note that if v 2 D(G) and u is a 
ow with �nite support then we have

hdv; ui = hdv

0

; ui = hv

0

; d

�

ui = 0, where v

0

is v restri
ted to the �nite support 
onsisting
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of the endpoints of the oriented edges in the support of u. Thus dD(G) is orthogonal to

}(G). To see that they are orthogonal 
omplements 
onsider any fun
tion u orthogonal to

}(G). Fix a vertex x

0

2 V (G) and de�ne v : V (G) ! IR by v(x

n

) =

P

n

i=1

u(x

i�1

; x

i

) for

any path (x

0

; : : : ; x

n

) (n � 0) in G. The orthogonality proves that v is well de�ned. We

have dv = u thus d 2 D(G) as required.

Next we 
laim that the orthogonal 
omplement of ?(G) 
onsists of all the 
ows. Indeed

a fun
tion u 2 l

2

(G) belongs to this 
omplement if and only if hdv; ui = hv; d

�

ui = 0 for

every v : V (G)! IR with a �nite support. This is satis�ed if and only if d

�

u = 0.

To �nish the proof of the lemma noti
e that the orthogonal 
omplement of ?(G) 
ontains

}(G) and the interse
tion of the orthogonal 
omplements of ?(G) and }(G) are 
ows in

dD(G), and by de�nition, this is dHD(G).

Let G

0

be a �nite subgraph of G and L a 
losed subspa
e of l

2

(G). We de�ne

dim

G

0

(L) =

P

e2

~

E(G

0

)

hP

L

e; ei

j

~

E(G

0

)j

;

where P

L

is the orthogonal proje
tion to L and the oriented edge e is identi�ed with the

element of l

2

(G) mapping e to 1, �e to �1 and all other oriented edges to 0.

Claim 4 Let G

0

be a �nite subgraph of a graph G. We have dim

G

0

(l

2

(G)) = 1. For orthog-

onal 
losed subspa
es L and L

0

of l

2

(G) we have dim

G

0

(L + L

0

) = dim

G

0

(L) + dim

G

0

(L

0

).

For 
losed subspa
es L � L

0

one has 0 � dim

G

0

(L) � dim

G

0

(L

0

). If the support of all u 2 L

is 
ontained in

~

E(G

0

) then dim

G

0

(L) = dim(L)=jE(G

0

)j.

Proof: The �rst statement follows from noting that P

l

2

(G)

is the identity. The se
ond

statement follows from the equality P

L+L

0

= P

L

+ P

L

0

for orthogonal subspa
es L and L

0

.

The non negativity is trivial and implies the monotoni
ity. For the last statement note

that we 
an work in l

2

(G

0

). Half of the ve
tors e 2

~

E(G

0

) (taking one of the pairs e and

�e) form an orthonormal bases of l

2

(G

0

), and jE(G

0

)jdim

G

0

(L) is the tra
e of P

L

restri
ted

to l

2

(G

0

) 
omputed in this bases.

Lemma 5 If G

0

is a �nite subgraph of the graph G then dim

G

0

(?(G) + }(G)) � 1 �

j�(G

0

)j=jE(G

0

)j.

Proof: First note that dHD(G

0

) = 0 sin
e every 
ow on the �nite graph G

0

has �nite

support. So by Lemma 3 we have l

2

(G

0

) = ?(G

0

) +}(G

0

).

We identify fun
tions u 2 l

2

(G

0

) and v 2 D(G

0

) with their extension in l

2

(G) (re-

spe
tively D(G)) that is zero outside the original domain. We have to distinguish two

di�erential operators: d

G

0

: D(G

0

) ! l

2

(G

0

) is not the restri
tion of d : D(G) ! l

2

(G)

as d(D(G

0

)) 6� l

2

(G

0

) unless G = G

0

. But using the formula for d

�

one sees that d

�

G

0

is

the restri
tion of d

�

. Thus }(G

0

) � }(G). Let D

1

= fv 2 D(G) j supp(v) � �(G

0

)g and

D

2

= fv 2 D(G) j supp(v) � V (G

0

) n �(G

0

)g. Clearly, D(G

0

) = D

1

+ D

2

and ?(G

0

) =

d

G

0

D

1

+ d

G

0

D

2

. Noti
e that d and d

G

0

are identi
al in D

2

, thus d

G

0

D

2

= dD

2

� ?(G).

Let L = dD

2

+}(G

0

). We have d

G

0

D

1

+ L = ?(G

0

) +}(G

0

) = l

2

(G

0

), thus dim(L) �

dim(l

2

(G

0

))� dim(d

G

0

D

1

) � jE(G

0

)j � dim(D

1

) � jE(G

0

)j � j�(G

0

)j.

We have L � (?(G)+}(G))\l

2

(G

0

), thus by Claim 4 dim

G

0

(?(G)+}(G)) � dim

G

0

(L) =

dim(L)=jE(G

0

)j � 1� j�(G

0

)j=jE(G

0

)j as 
laimed.

4



Corollary 6 For a F�lner sequen
e (G

i

) of �nite subgraphs of a graph G we have dim

G

i

(dHD(G))

tends to zero as i tends to in�nity.

Proof: By Lemma 3, Claim 4, and Lemma 5 we have 0 � dim

G

i

(dHD(G)) � j�(G

i

)j=jE(G

i

)j.

Here j�(G

i

)j=jE(G

i

)j tends to zero as (G

i

) is a F�lner sequen
e. Note that for traditional

reasons we used j�(G

i

)j=jV (G

i

)j in the de�nition of F�lner sequen
es, but sin
e G

i

is 
on-

ne
ted and has bounded degree jV (G

i

)j and jE(G

i

)j are proportional.

Corollary 6 indi
ates that the harmoni
 Diri
hlet fun
tions on an amenable graph form

a \small" subspa
e. It does not, however, imply that dHD(G) = 0, this is false for some

amenable graphs. Our goal is to prove that if non-
onstant harmoni
 fun
tions exist on a

roughly transitive graph then they form a \large" subspa
e 
ontradi
ting Corollary 6. This

is immediate for transitive graphs: with any harmoni
 Diri
hlet fun
tion all its translates

are harmoni
. The 
ase of roughly transitive graphs require more 
are. We study next how

quasi-isometries a
t on Diri
hlet fun
tions and on dHD(G).

Let G

1

and G

2

be graphs. For a map f : V (G

1

) ! V (G

2

) we de�ne the fun
tion

f

�

: v 7! f Æ v on the fun
tions v : V (G

2

) ! IR. Let A be a subset of the verti
es of a

graph G. For k > 0 we de�ne the k-neighborhood C

k

(A) of A to be fx 2 V (G) j 9y 2 A :

Æ(x; y) � kg. We de�ne �

A

:

~

E(G) ! IR to be the 
hara
teristi
 fun
tion of the oriented

edges (x; y) 2

~

E(G) with x 2 A and y 2 A.

Lemma 7 For a quasi-isometry f from a graph G

1

to a graph G

2

we have f

�

(D(G

2

)) �

D(G

1

). Furthermore there is a 
onstant 
 depending on the distortion k of f and the

maximum degree of G

1

su
h that jdf

�

vj � 
jdvj and jdf

�

v��

A

j � 
jdv��

B

j for any v 2 D(G

2

)

and A � V (G

1

) if B = C

k

(f(A)).

Proof: Let f be as in the lemma. We �x a path f(x) = x

e

0

; x

e

1

; : : : ; x

e

k

e

= f(y) in

G

2

of length 0 � k

e

� k for ea
h oriented edge e = (x; y) 2

~

E(G

1

). For any v 2

D(G

2

) we have jdf

�

vj

2

= 1=2

P

(x;y)2

~

E(G

1

)

(v(f(y))� v(f(x)))

2

� k=2

P

e2

~

E(G

1

)

P

k

e

i=1

(v(x

e

i

)�

v(x

e

i�1

))

2

. The summands in this last expression all appear in the summation jdvj

2

=

1=2

P

(x;y)2

~

E(G

2

)

(v(y)� v(x))

2

thus for the �rst statement we only have to limit the multi-

pli
ity of a summand (v(y) � v(x))

2

in the �rst sum for any (x; y) 2

~

E(G

2

). This is the

number of oriented edges in

~

E(G

1

) su
h that the 
orresponding (oriented) path in G

2


on-

tains (x; y). As the endpoints of these edges form a subset in V (G

1

) of maximum distan
e

at most 2k

2

this multipli
ity 
an be bounded in terms of k and the maximum degree of G

1

.

For the last statement noti
e that if an edge is spanned by a subset A � E(G

2

) then

the 
orresponding path is within the set B = C

k

(f(A)).

Lemma 8 For a wobbling f of a graph G we have f

�

v�v 2 l

2

(V (G)) for every v 2 D(G).

Proof: For a vertex x 2 V (G) take a path x = x

0

; x

1

; : : : ; x

k

= f(x) in G. We have

((f

�

v� v)(x))

2

� k

P

k

i=1

(v(x

i

)� v(x

i�1

))

2

. Thus to bound the l

2

norm of f

�

v� v in terms

of jdvj it is enough to note that we 
an 
hoose the paths with bounded length and every

edge appears in a bounded number of paths.

For a fun
tion f : A! B and S � B we use f

�1

(S) to denote fx 2 A j f(x) 2 Sg.
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Lemma 9 For a graph G we have dHD(G)

�

=

D(G)=d

�1

(?(G)). For a quasi-isometry f

from G

1

to G

2

f

�

indu
es an isomorphism between D(G

2

)=d

�1

(?(G

2

)) and D(G

1

)=d

�1

(?(G

1

))

thus between dHD(G

2

) and dHD(G

1

). For quasi-inverses f and g the fun
tions f

�

and g

�

indu
e inverse isomorphisms.

Proof: The dD(G) = ?(G) + dHD(G) 
laim of Lemma 3 proves the �rst statement.

Let f be as in the lemma and v 2 d

�1

(?(G

2

)). Then there exist fun
tions v

i

2 D(G

2

)

with �nite support su
h that dv

i

tend to dv in norm. By Lemma 7 df

�

v

i

tend to df

�

v, and as

the fun
tions f

�

v

i

also have �nite support df

�

v 2 ?(G

1

). Thus f

�

maps D(G

2

)=d

�1

(?(G

2

))

linearly to D(G

1

)=d

�1

(?(G

1

)).

To see that this map is an isomorphism take a quasi-inverse g of the quasi-isometry f .

For any v 2 D(G

2

) we have by Lemma 8 that g

�

f

�

v�v 2 l

2

(V (G

2

)) � d

�1

(?(G

2

)). For v 2

D(G

1

) we similarly have f

�

g

�

v�v 2 d

�1

(?(G

1

)) thus the maps between D(G

2

)=d

�1

(?(G

2

))

and D(G

1

)=d

�1

(?(G

1

)) indu
ed by f

�

and g

�

are inverses of ea
h other.

Lemma 10 Let the graph G and the positive numbers k and � be given. If dHD(G) 6= 0

then there exist a �nite set A � V (G) and a number � > 0 with the following property. For

any quasi-isometry f of distortion at most k to G from a graph G

0

of maximum degree at

most � one has a fun
tion w 2 HD(G

0

) with jdwj = 1 and jdw � �

B

j > � for B = f

�1

(A).

Proof: Choose a non-
onstant fun
tion v 2 HD(G). We �x � > 0 later and 
hoose

A = C

k+1

(A

0

) with a �nite set A

0

� V (G) su
h that jdv � �

V (G)nA

0

j < �.

By \
onstant" we mean a quantity depending on G, v, k and � but not on G

0

, f or �.

We 
an take a quasi-inverse g of f of distortion bounded by a 
onstant. By Lemma 9 we

have the de
omposition f

�

v = v

0

+z with some v

0

2 HD(G

0

) and z 2 d

�1

(?(G

0

)). Similarly

g

�

v

0

= v + t with some t 2 d

�1

(?(G)). By Lemma 7 we have 0 < jdvj � jdg

�

v

0

j � 
jdv

0

j

with some 
onstant 
. Thus jdv

0

j � 


0

= jdvj=
 > 0. We use Lemma 7 for f

�

to get jdzj �

jdf

�

vj � 


0

jdvj = 


1

with some 
onstants 


0

and 


1

. Now 
onsider B = f

�1

(A) � V (G

0

) and

C = (V (G

0

) nB) [ �(B). Noti
e that �

C

� 1� �

B

and D = C

k

(f(C)) is disjoint from A

0

.

Consider the orthogonal de
ompositions dv

0

= u

1

+ u

2

with u

1

= dv

0

� �

B

and u

2

=

dv

0

� (1� �

B

), and dz = s

1

+ s

2

with s

1

= dz � �

B

and s

2

= dz � (1� �

B

). By Lemma 7 we

have ju

2

+ s

2

j = jdf

�

v � (1� �

B

)j � jdf

�

v � �

C

j � 


2

jdv � �

D

j � 


2

jdv � �

V (G)nA

0

j < 


2

� with a


onstant 


2

. We 
an write 0 = hdv

0

; dzi = hu

1

; s

1

i + hu

2

; s

2

i. Here jhu

1

; s

1

ij � ju

1

j � js

1

j �

ju

1

j�jdzj � 


1

ju

1

j and hu

2

; s

2

i = hu

2

; u

2

+s

2

i�ju

2

j

2

� ju

2

j�ju

2

+s

2

j�ju

2

j

2

< �ju

2

j(ju

2

j�


2

�).

We have ju

2

j � jdv

0

j�ju

1

j � 


0

�ju

1

j hen
e 


1

ju

1

j � hu

1

; s

1

i = �hu

2

; s

2

i � ju

2

j(ju

2

j�


2

�) �

(


0

� ju

1

j)(


0

� 


2

�� ju

1

j) if 


0

� 


2

�� ju

1

j > 0.

Noti
e that we 
an 
hoose a small enough � depending on 


0

, 


1

, and 


2

su
h that ju

1

j �




1

� 
ontradi
ts our last inequality. For this � we have ju

1

j > 


1

�. We take w = v

0

=jdv

0

j 2

HD(G

0

) and noti
e that jdwj = 1 and jdw ��

B

j = ju

1

j=jdv

0

j > � as jdv

0

j � jdf

�

vj � 


1

. The


hoi
e of � (and thus of A) depends only on G, v, k and �.

Now we �nish the proof of our Theorem. The proof is by 
ontradi
tion. Let G be a

roughly transitive amenable graph with dHD(G) 6= 0. Let k be the bound on the distortion

of the quasi-isometries f

xy

from G to G mapping x 2 V (G) to y 2 V (G). Choose the �nite

set A � V (G) and the number � > 0 for G, k and the maximum degree � of G as 
laimed

6



in Lemma 10. We �x a vertex y 2 A and use the statement of Lemma 10 to obtain a

fun
tion w

x

2 HD(G) for ea
h x 2 V (G) su
h that jdw

x

j = 1 and jdw

x

� �

B

x

j > � for

B

x

= f

�1

xy

(A). Let a = max

y

0

2A

Æ(y; y

0

). By the bound on the distortion of f

xy

we have

Æ(x; x

0

) < k(a + 1) = b for any x 2 V (G) and x

0

2 B

x

.

Let (G

i

) be a F�lner sequen
e of �nite subgraphs of G. Let S

i

= V (G

i

) n C

b

(�(G

i

)).

Note that as b is 
onstant and the degree of the verti
es is limited, jC

b

(�(G

i

))j is pro-

portional to j�(G

i

)j thus jS

i

j=jV (G

i

)j tends to 1 as i tends to in�nity. For x 2 S

i

we

have B

x

� C

b

(fxg) � V (G

i

). Consider the proje
tion P in l

2

(G) to dHD(G) and let

P

x

the proje
tion to the one dimensional subspa
e of dHD(G) generated by dw

x

. Re-


all that we identify an oriented edge e 2

~

E(G) with the fun
tion in l

2

(G) mapping e

to 1, �e to �1 and everything else to zero. We have hPe; ei � hP

x

e; ei = hdw

x

; ei

2

=

(dw

x

(e))

2

for every oriented edge e and vertex x in G. We 
an write �

2

< jdw

x

� �

B

x

j

2

=

1=2

P

e2

~

E(G)

�

B

x

(e)(dw

x

(e))

2

� 1=2

P

e2

~

E(G)

�

B

x

(e)hPe; ei for any x 2 V (G). By summa-

tion we get 2�

2

jS

i

j �

P

e2

~

E(G)

hPe; ei

P

x2S

i

�

B

x

(e) for any index i. Noti
e that

P

x2S

i

�

B

x

(e)

is zero for oriented edges e outside

~

E(G

i

), while it is bounded by a 
onstant C for any

e 2

~

E(G), one 
an take C to be the maximum size of the b-neighborhood of a single ver-

tex. Thus we have 2�

2

jS

i

j=C �

P

e2

~

E(G

i

)

hPe; ei = j

~

E(G

i

)jdim

G

i

(dHD(G)). Consequently,

dim

G

i

(dHD(G)) � �

2

=C � jS

i

j=jE(G

i

)j. By Corollary 6 the left hand side of this last in-

equality tends to zero as i tends to in�nity, but as jS

i

j=jV (G

i

)j tends to 1 and jV (G

i

)j is

proportional to E(G

i

) the right hand side does not. The 
ontradi
tion proves the theorem.

We thank the referee for valuable 
omments.
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