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Abstract

We construct binary codes for fingerprinting digital documents. Our
codes for n users that are ǫ-secure against c pirates have length O(c2 log(n/ǫ)).
This improves the codes proposed by Boneh and Shaw [3] whose length
is approximately the square of this length. The improvement carries over
to works using the Boneh-Shaw code as a primitive, e.g. to the dynamic
traitor tracing scheme of Tassa [16].

By proving matching lower bounds we establish that the length of our
codes is best within a constant factor for reasonable error probabilities.
This lower bound generalizes the bound found independently by Peikert,
Shelat, and Smith [11] that applies to a limited class of codes. Our results
also imply that randomized fingerprint codes over a binary alphabet are
as powerful as over an arbitrary alphabet and the equal strength of two
distinct models for fingerprinting.

1 Introduction

1.1 Motivation

The problem of making many copies of a digital document unique by embedding
something like a serial number is a very natural one. For example, a software
distributor may want to be able to trace any running copy of his software to the
specific customer (user) who bought that piece of software. Other applications
include copyrighted digital documents of any form, e.g. digital images, audio or
video. Leaking sensitive documents to the press can also be fought this way.

If the users do not cheat, this represents no problem, but a malicious user
may try to erase the serial number (also called fingerprint) from his copy before
distributing illegal copies. To prevent such fraud it is natural to distribute the
digits of the fingerprint into locations of the digital document that are unknown

∗Preliminary version of this paper appeared in STOC’03 [15]. Work on this paper has
been supported by the Hungarian National Research & Development Fund # 2/019/2001,
the Hungarian Science Foundation grants OTKA T029255, OTKA T030059, and the grant
AKP 2000-78 2.1.
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to the users. The digits in these positions must be irrelevant with respect to the
intended use of the document (e.g. the software must run correctly whatever the
digits are on these positions), but the exact locations should be impossible to
find for the user. This way the user cannot erase the fingerprint without risking
altering relevant digits of the document too. Here we consider the document
as a sequence of digits. In this paper we do not consider the task of hiding the
digits of the fingerprint. This is a highly nontrivial implementation challenge.

A further problem arises when a coalition of malicious users (we call them
pirates) collaborate. Each of them has access to one fingerprinted copy of the
document. Comparing these copies, they can identify the positions where the
copies differ, these positions hold digits of the fingerprint. They can erase these
digits of the fingerprint or they can even introduce arbitrary digits in these
positions. Such a strategy results in a document (pirated copy) that is not
identical to any of the legitimate (fingerprinted) copies but is identical with all
of them on relevant positions. In this scenario, we want the distributor to be
able to identify at least one pirate of the guilty coalition. We assume that the
pirates do not alter the digital document on positions where all of the copies
they see agree. This is called the marking condition. The pirates may have
an arbitrary strategy to fill in the positions where they detected disagreement.
(See Section 6 for a slight relaxation of the marking condition.)

It is important that in the scenario we consider the pirates can put any
digit in the document on positions where they detected difference. If we restrict
the pirates to use a digit at any position that appears in the same position
in one of their documents, we get another model that is more restrictive for
the pirates if the alphabet is not binary. This alternate model allows for a
deterministic solution, such codes are called IPP codes. This more restrictive
assumption (while adequate in some applications) seems to be too strong in
many fingerprinting applications. Our problem formulated above has no error-
free solution if there are at least three users and any two of them can form the
pirate coalition. We present here an efficient randomized scheme. See discussion
of related results in Section 1.3.

1.2 The Model

Since a deterministic solution does not exist, we turn to a randomized procedure
to generate codewords and accuse users that works with high probability. In
the formal definition below, we simplify the notation by ignoring the relevant
positions of the document and concentrating on the fingerprint itself. Thus, the
length of the fingerprint code is the number of irrelevant positions needed to
embed such a code.

Definition 1.1. A fingerprint code of length m for n users over the alphabet
Σ is a distribution over the pairs (X, σ), where X is an n by m matrix over Σ
and σ is an algorithm that takes a string y ∈ Σm (the pirated copy) as input,
and produces a subset σ(y) ⊆ [n] := {1, 2, . . . , n} (the set of accused users). For
∅ 6= C ⊆ [n] a C-strategy is an algorithm ρ that takes the submatrix of X formed

2



by the rows with indices in C as input, and produces a string y = ρ(X) ∈ Σm

as output1 and satisfies the marking condition that, for all positions 1 ≤ i ≤ m,
if all the values Xji for j ∈ C agree with some letter s ∈ Σ then yi = s. We say
that a fingerprint code is ǫ-secure against coalitions of size c, if for any C ⊆ [n]
of size |C| ≤ c and for any C-strategy ρ, the error probability

P [σ(ρ(X)) = ∅ or σ(ρ(X)) 6⊆ C]

is at most ǫ.

Our main results are a construction of short fingerprint codes (see Corol-
lary 3) and a matching lower bound for the length of any fingerprint code (see
Theorem 4). We state these results and give the construction itself in the next
section.

Remarks

1. In the above definition, we do not have any complexity assumptions on the
algorithms σ and ρ. Furthermore, we can restrict our attention to deterministic
algorithms. Randomization in σ can be “moved” to the distribution over (X, σ),
while for ρ one can suppose it chooses deterministically one of the strings that
maximizes the error probability. Thus, considering randomized or deterministic
algorithms here (or simply considering σ and ρ to be functions) leads to equiva-
lent definitions. We assume all algorithms to be deterministic unless otherwise
stated. Despite allowing algorithms of arbitrary complexity, our construction in
the next section uses a very efficient algorithm σ: each accusation is determined
by a linear constraint. The proof of the lower bound claimed in the next section
is also based on very simple (randomized) algorithms ρ.

2. In the setting of the above definition, one can assume that always a single
user is accused, i.e., that |σ(y)| = 1. Indeed, one can modify σ to accuse any
one user from the set σ(y) and an arbitrary user if σ(y) = ∅. This does not
increase the error probability. However, later we will treat separately the error
of accusing an innocent user and the error of not accusing any guilty one. For
obvious reasons the former type of error (that we call “soundness error”) is
considered far worse. Our construction has the advantage that the bound on
the soundness error is maintained even against arbitrarily large coalitions. To
achieve this the algorithm σ needs to be able not to accuse anybody if it is not
sure.

3. The definition above assumes that the number n of users is known in
advance. Our construction however does not need this assumption: codewords
can be generated one by one as users appear.

4. In the real scenario of fingerprinting digital documents explained before
the definition, the pirates have just a little less information than in the setting
of this definition. Indeed, they learn only about irrelevant positions where
not all of their codes agree. Thus, they can reconstruct the submatrix of X
consisting of their respective rows, but missing all columns that are constant

1For simplicity, we denote the output of the C-strategy ρ by ρ(X), despite the fact that
the input is only a submatrix of X, ρ “does not see” the rows with indices outside C.
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in this submatrix. This subtle difference is not relevant though. Naturally,
our construction is secure against these more restricted pirate coalitions, and
also, our lower bound works in this more restricted case too, as the proof is
based on very simple strategies ρ for cheating, where the ith digit of the output
depends (in some randomized manner) only on the ith digits of their respective
codewords (the ith column of the submatrix).

1.3 Earlier Results

Fingerprinting was first studied by Wagner [18]. Fingerprinting resilient against
pirate coalitions was studied by Blakley et al. [1]. Many different models for
fingerprinting are studied in the literature. See for example Kilian et al. [8] for
a model where the fingerprint can alter the document but the distance should
be bounded.

IPP or identifiable parent property codes were introduced by Chor et al. [4].
These codes must work only against pirates who must output a pirated copy
such that for any i the ith position of the pirated copy is identical to the ith
position of a legitimate copy the pirates have access to. These codes and the
related traitor tracing are widely studied, see e.g. [2, 9, 13, 14]. As we have
already mentioned, this more restrictive assumption seems to be too strong in
many fingerprinting applications. The unreadable digit model seems to be a
more appropriate intermediate model. See Section 5 for the definition and for
a comparison between these models.

The following is the standard argument to show that in our model, where
the pirates could introduce arbitrary digits in positions their codewords differ,
no deterministic fingerprint code exists for 3 players if any two of them can form
a pirate coalition. Consider any three fingerprinted document X1, X2 and X3

distributed to the players and let X be a document such that for any position
i if the ith digits of at least two of X1, X2 and X3 are some letter s ∈ Σ then
the ith digit of X is also s. (Over the binary alphabet X is determined by X1,
X2 and X3, it is their bitwise majority. Over larger alphabets X may not be
determined uniquely by Xj but such X always exist.) No matter which two
of the three users form the pirate coalition it is possible for them to come up
with the pirated copy y = X . Thus no deterministic algorithm can accuse any
of them for producing this copy without risking accusing an innocent user. (In
a related model Chung, Graham, and Leighton [5] get around this problem by
accepting accusations of the form “two out of these three players are guilty”
and even more complicated accusations for larger coalitions. But even in the
model they study the code length must be exponential in the coalition size.)

Randomized fingerprint codes were introduced by Boneh and Shaw [3]. The
fingerprint code they propose uses randomization in a restricted way. They
first deterministically construct a code matrix and use randomization only for
randomly permuting the columns of this matrix. We, on the other hand, use
the full power of randomization allowed by Definition 1.1. Boneh and Shaw
constructed fingerprint codes of length m = O(n3 log(n/ǫ)) for n users that are
ǫ-secure against coalitions of any size. Against coalitions of size c < n they
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constructed ǫ-secure fingerprint codes of length m = O(c4 log(1/ǫ) log(n/ǫ)) for
n users. In follow-up works Lindkvist [10] made minor improvement on the
length not effecting the asymptotics, while Yacobi [17] designed a very efficient
implementation of the Boneh-Shaw codes. The length of our codes presented in
the next section is approximately the square root of the length of the Boneh-
Shaw codes.

Dynamic traitor tracing was introduced by Fiat and Tassa [6]. This was
originally a deterministic model requiring high alphabet size, but Tamir Tassa
[16] introduced a more efficient probabilistic version. Tassa uses the Boneh-
Shaw code as a primitive in his scheme. Substituting our codes presented in the
next section substantially improves the convergence time of the Tassa scheme.

Boneh and Shaw also prove an Ω(c log(1/(cǫ))) lower bound for the length
of fingerprint codes. Our lower bound improves their bound significantly and
matches the construction if ǫ is reasonably small. Peikert, Shelat, and Smith
[11] prove a lower bound for a restricted type of fingerprint codes. Their bound
is basically the same as our bound in Theorem 4, but it only applies for codes
with a limited number of “column types”. If all columns of the code matrix X
differ their side condition on the number of column types is not met. For codes
that use randomization in the limited way the Boneh-Show code does they prove
that the original construction of Boneh and Show is almost optimal. The codes
constructed in this paper do not satisfy the requirements needed for either of
their bounds to apply. Nevertheless, the results in [11] also point toward the
c2 log(1/ǫ) bound. The pirate strategy they employ in the proof is similar to
our strategy, both are based on a carefully selected bias function.

The rest of the paper is organized as follows. In the next section we present
our construction for fingerprint codes and summarize our results. In Sections
3 and 4 we prove Theorems 1 and 2, respectively, the two results stating the
favorable properties of our fingerprint code. In Section 5 we introduce the
unreadable digit model for fingerprinting, and we prove that any fingerprint code
in the standard (arbitrary digit) model also works in this model. We state and
prove our lower bound result (Theorem 5) for the unreadable digit model, and
our original lower bound (Theorem 4) follows as a consequence. The matching
length of the construction in the stronger model and the lower bound in the
weaker establishes the equal strength of the two models. Similarly, the equal
strength of fingerprint codes over binary and larger alphabets is a consequence
of this lower bound. Section 6 contains a few concluding remarks.

2 Construction and Results

Our main result is the construction of fingerprint codes of length m = O(c2 log(n/ǫ))
that are ǫ-secure against coalitions of size c (see Corollary 3). After present-
ing the construction we motivate some of the seemingly arbitrary choices in it,
then state its main properties in Theorems 1 and 2. These results are much
stronger than the requirements of Definition 1.1. A few comments on these
added advantages of our codes follow. Theorem 4 states a lower bound for the
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length of fingerprint codes that matches our construction if the error bound ǫ
is reasonably small.

2.1 The Construction

In this paper, log always denotes the natural logarithm.
Let n and c be positive integers, 0 < ǫ < 1 and let k = ⌈log(1/ǫ)⌉. We define

the binary fingerprint code Fncǫ of length m = 100c2k for n users to be the
following distribution over the pairs (X, σ).

We select the pair (X, σ) in two phases. First, let pi be independent, iden-
tically distributed random variables from [t, 1 − t] for all 1 ≤ i ≤ m. Here
t = 1/(300c) and pi = sin2 ri is selected by picking uniformly at random the
value ri ∈ [t′, π/2 − t′] with 0 < t′ < π/4, sin2 t′ = t.

In the second phase, we select the code matrix X , by selecting each entry
Xji independently from the binary alphabet {0, 1} with P [Xji = 1] = pi. Notice
that independence of the entries Xji holds only in the second phase, the overall
random variables Xji and Xj′i are positively correlated as both of them tend
to be 1 if pi is large.

The accusation algorithm σ is determined by the values pi and the matrix
X , as follows. We define the n by m matrix U with entries

Uji =











√

1−pi

pi
if Xji = 1,

−
√

pi

1−pi
if Xji = 0.

Let σ accuse user j on the pirated copy y ∈ {0, 1}m as input if

m
∑

i=1

yiUji > Z,

where Z = 20ck is a threshold parameter. In other words, σ(y) consists of the
indices j for which the jth entry of UyT exceeds Z.

Remarks Having described the construction here we motivate some of our
choices in it.

The formula defining Uji is chosen so that after the first phase, it only
depends on Xji, it is positive if Xji = 1 and it has expectation 0 and variance
1. For a motivation observe that having 1 as the ith digit in the pirated copy
makes player j more suspicious if Xji = 1 and less suspicious otherwise. Clearly,
having a 1 in the pirated position where only a few players have that digit (pi

is small) makes these players even more suspicious.
Our choice of the distribution for pi is biased toward the values close to 0 or 1

(as opposed to values close to 1/2). This is motivated by the marking condition.
This is the only restriction on the pirates’ strategy and it is more likely to apply
to these columns with a high bias. On the other hand, no fingerprint code can do
totally without highly mixed columns, this is the basic idea of the Boneh-Shaw
lower bound on the length of fingerprint codes.
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Technically, the choice of the distribution of pi is used only in the proof of
“completeness” (Theorem 2) to show that the pirates’ choice of strategy has
only a minor effect on (an exponential average related to) their chance to be
caught.

The cutoff points t and 1 − t for the distribution on pi are introduced for
technical reasons. If pi gets too close to either 0 or 1 then Uji can have too
high a positive or negative value and therefore this single position can have too
much of an influence over the accusations.

The following two theorems bound the error probabilities of our codes Fncǫ.
Theorem 1 bounds the “soundness error” of accusing an innocent user, while
Theorem 2 bounds the “completeness error” of not accusing any guilty one. For
both theorems n ≥ c ≥ 1 and 0 < ǫ < 1 are arbitrary.

Theorem 1. Let (X, σ) be distributed according to Fncǫ. Let j ∈ [n] be an
arbitrary user, let C ⊆ [n] \ {j} be a coalition of arbitrary size not containing j,
and let ρ be any C-strategy. We have

P [j ∈ σ(ρ(X))] < ǫ.

Theorem 2. Let (X, σ) be distributed according to Fncǫ. Let C ⊆ [n] be a
coalition of size |C| ≤ c, and let ρ be any C-strategy. We have

P [C ∩ σ(ρ(X)) = ∅] < ǫc/4.

2.2 Advantages of the Construction

Notice that Theorems 1 and 2 establish properties that are in most parts, much
stronger then those required by the definition of ǫ-security. Most notably, The-
orem 1 states that innocent users are not likely to be accused even if all other
users collaborate against them. As the proof of Theorem 1 does not use the
marking condition, innocent users are not likely to be accused even if the pi-
rates can find the positions of the fingerprint code and thus they can break the
marking condition. In other words, we can be reasonably sure that any accused
user is a member of the group of pirates even if we do not know any bound on
the size or power of this group. Our lower bound theorem (Theorem 4) tells us
that Fncǫ (or any fingerprint code of the same length) cannot be secure against
coalitions of size much larger than c. If much more than c users collaborate,
they are able to come up with a strategy, so that in all likelihood none of them
is accused. As Theorem 1 still applies, in this case nobody is accused. The dis-
tributor can use this property the following way. He chooses a reasonable value
for c, assumes that at most c users collaborate and uses the fingerprint code
Fncǫ. Any user the code accuses will likely to be guilty regardless of the validity
of the distributor’s assumption. If the accusation algorithm accuses nobody,
this indicates that the pirate coalition is larger than c (or they can break the
marking condition).
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Another advantage of this code is the simple algorithm σ for accusation. To
compute σ(y) one only has to multiply y with a fixed matrix U and check which
entries of the resulting vector exceed a threshold parameter Z.

Notice that the distributor does not need to know n in advance. Based
only on c and ǫ, one can find the length m of the code and select the values pi

according to the required distribution. This is the first (preprocessing) phase.
The next phase can be carried out separately (independently) for each user.
Whenever a new user comes up, the distributor can generate his codeword (the
corresponding row of the matrix X) and the rules for his accusation will be clear
as the corresponding row of the matrix U is also defined.

Theorem 2 is stronger than required in its bound on the error probability.
This is only of theoretical interest as the “soundness error” of Theorem 1 is
higher and that type of error is considered worse.

An easy to fix weakness of Theorem 1 is that it bounds the probability of
accusing a single innocent user and not the probability of accusing some innocent
users. This is a natural consequence of the fact that the length of the code m
does not depend on the number of users. If n is larger than 2m+1, then most
users must share their codeword with another user. In this case even a single
pirate distributing his copy is impossible to catch without a high risk of failure.
From Theorems 1 and 2 it clearly follows that

Corollary 3. The fingerprint code Fnc ǫ
n

is ǫ-secure against coalitions of size c

if c ≥ 4. The length of this code is O(c2 log(n/ǫ)).

2.3 The Lower Bound

Theorem 4. Let F be a fingerprint code of length m over an arbitrary alphabet
Σ for n users. Let 3 ≤ c ≤ n be an integer and 0 < ǫ < 1/(100ca) a real, where
a > 1 is a constant. If F satisfies conditions (i) and (ii) below then

m ≥ dac2 log(1/ǫ),

where da > 0 depends solely on a.

(i) For any coalition C ⊂ [n] of size |C| = c− 1, for any C-strategy ρ, and for
any user j ∈ [n] \ C, we have

P [j ∈ σ(ρ(X))] ≤ ǫ.

(ii) For any coalition C ⊆ [n] of size |C| = c, and for any C-strategy ρ, we
have

P [C ∩ σ(ρ(X)) = ∅] < 0.99 .

While Theorems 1 and 2 claim properties much stronger than required for
an ǫ-secure fingerprint code, our lower bound result, Theorem 4, assumes prop-
erties of the code that are somewhat weaker then those required for ǫ-secure
codes. This makes the matching lower and upper bounds even more interesting.
Comparing the results of Theorems 1, 2, and 4 one can notice the following.
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1. The length of our codes Fncǫ are optimal within a constant factor amongst
codes satisfying the conditions of Theorem 4 if ǫ < 1/(100ca) for a fixed a > 1.
By Corollary 3, the length of the code Fnc ǫ

n
is optimal within a constant factor

amongst all codes for n users that are ǫ-secure against coalitions of size c if
ǫ < 1/(100ca) for a fixed a > 1 and ǫ < 1/nb for a fixed b > 0. The assumption
on ǫ seems to be reasonable, as in case ǫ ≥ 1/c, one can simply accuse everybody
independently with probability ǫ and both conditions of Theorem 4 are satisfied
with code length m = 0. See further remarks on ǫ-secure codes with high ǫ in
Section 6.

2. Between the two types of error probabilities, the important one that
has more effect on the code length is the “soundness error”, the probability
of accusing innocent users. The “completeness error”, the probability of not
accusing any of the pirates, can be arbitrarily chosen in a very wide interval
without having a significant effect on the optimal code length. Making the
completeness error vanish entirely seems to be difficult though. A code achieving
that would mix some of the deterministic features of the IPP codes with the
probabilistic properties of the Boneh-Shaw codes and the codes of this paper.

3. Our codes Fncǫ are binary, and have optimal length amongst codes over
arbitrary alphabets. This answers the problem raised by Lindkvist [10] if binary
codes are as good for fingerprinting as codes over larger alphabets. Lindkvist
gives the same answer but only for a very limited class of fingerprint codes. This
result is in sharp contrast with IPP codes that exist over larger alphabets, but
do not exist over a binary alphabet.

4. In Section 5, we introduce another model for fingerprinting, the unread-
able digit model, in which the pirates are more restricted in producing their
illegitimate copy ρ(X). In this model the pirates can put “unreadable digits”
in the positions of the illegitimate copy where they detected disagreement but
they cannot put a specific digit none of them has in that position. Naturally,
Theorems 1 and 2 remain true in this model (the code Fncǫ remains secure
against these more restricted pirate coalitions; see Lemma 5.3 for the precise
statement). We prove the lower bound stated in Theorem 4 in the unreadable
digit model (see Theorem 5) and get Theorem 4 as a corollary. Thus, we prove
that the unreadable digit model and the model considered in this section are
almost equivalent with respect to optimal code length. The importance of this
fact comes from certain applications where the unreadable digit model seems
to be more natural. If “digits” are implemented as complicated objects, we can
safely assume that the pirates cannot create well-formed digits none of their
documents contains, but they can simply put random noise in positions where
they detected disagreement. For the distributor this random noise will be an
unreadable digit.

5. The constant 0.99 in Theorem 4 is arbitrary. Our techniques work with
1 − ν in place of 0.99 if ǫ < (ν/c)a for some constant a > 1. For n = c, ǫ = ν/c
we can have a code of length m = 0: simply accuse a random user, each with
probability at most ǫ.
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3 Why the Innocent Is Not Accused

Proving that our fingerprint code works consists of proving Theorems 1 and 2.
In this section we prove Theorem 1, establishing that innocent users are not
likely to be accused.

Proof of Theorem 1: Let n, c, ǫ, j, C, and ρ be as in the theorem. As
j /∈ C we can consider performing the first phase of the construction of the
Fncǫ codes (i.e., selecting the values pi), performing the second phase for rows
j ∈ C (i.e., selecting the rows of X seen by ρ), and running the algorithm ρ all
before selecting row j of X . This way y = ρ(X) is fixed before the codeword
of player j is selected. We claim that not only is the overall probability of the
event j ∈ σ(ρ(X)) bounded by ǫ, but conditioned on any set of values pi and
y the probability of j ∈ σ(y) is bounded by ǫ. Clearly, proving this stronger
statement proves the theorem.

We have fixed values pi from [t, 1 − t] and a fixed string y ∈ {0, 1}m. We
choose Xji from {0, 1} independently with P [Xji = 1] = pi and define ui = Uji.

Recall that ui =
√

(1 − pi)/pi if Xji = 1 and ui = −
√

pi/(1 − pi) if Xji = 0.
Finally we set S =

∑m
i=1 yiui =

∑

i:yi=1 ui. User j is accused (i.e., j ∈ σ(y)) if
S > Z, so we need to prove that P [S > Z] < ǫ.

Consider the expected value E[eαS ] where e is the base of the natural loga-
rithm, and α = 1/(10c). Using the independence of the random variables ui we
have

E
[

eαS
]

= E





∏

i:yi=1

eαui



 =
∏

i:yi=1

E [eαui ] .

Next we use 1+u ≤ eu ≤ 1+u+u2, where the first inequality always holds, and
the second inequality holds for u < 1.7. Notice that ui ≤

√

(1 − t)/t ≤ t−1/2

and thus αui < 1. Using that ui has expectation zero and variance 1 we get

E [eαui ] ≤ E
[

1 + αui + α2u2
i

]

= 1 + αE [ui] + α2E
[

u2
i

]

= 1 + α2 ≤ eα2

.

E
[

eαS
]

=
∏

i:yi=1

E [eαui ] ≤
(

eα2
)|{i:yi=1}|

≤ eα2m.

Finally by the Markov inequality we have

P [S > Z] = P
[

eαS > eαZ
]

<
E
[

eαS
]

eαZ
≤ eα2m−αZ .

Here the exponent is α2m − αZ = −k = −⌈log(1/ǫ)⌉ thus

P [S > Z] < e−k ≤ ǫ

as claimed.
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4 Why Some Pirate Is Accused

In this section we turn to Theorem 2 stating that our fingerprint code accuses
one of the pirates with very high probability.

Proof of Theorem 2: Let n, c, ǫ, C, and ρ be as in the theorem. We assume
without loss of generality that C = [n], n ≤ c as the codewords of the users
outside C are irrelevant. Let (X, σ) be distributed according to the code Fncǫ.
Here σ is determined by X and p = (p1, . . . , pm). For simplicity we introduce
qi =

√

(1 − pi)/pi and recall the definition Uji = qi if Xji = 1 and Uji = −1/qi

if Xji = 0. Let us set y = ρ(X) and Sj =
∑m

i=0 yiUji for j ∈ C. Let

S =
∑

j∈C

Sj =

m
∑

i=1

yi

(

xiqi −
n − xi

qi

)

, (1)

where xi =
∑n

j=1 Xji denotes the number of ones in column i of X . Recall that
j ∈ C is accused (i.e., j ∈ σ(y)) if Sj > Z. Thus if S > nZ at least one pirate
in C must be accused. It is enough to bound the probability

P [C ∩ σ(ρ(X)) = ∅] ≤ P [S ≤ nZ].

The high level description of the proof is as follows. If the pirates would
be able to produce y = ρ(X) consisting of all zeros then we would have S = 0
and in particular our algorithm σ would accuse nobody. Unfortunately for the
pirates, for indices i such that column i of X consists of all ones they must
output yi = 1 by the marking condition, and this definitely increases S. They
may try to offset this increase by outputting some ones at indices i where column
i of X is mixed. By outputting 1 they decrease S if the column contains fewer
than the expected number of pin ones, and increase S if the column contains
more than that many ones. They know the number xi of ones of the column
but they do not know pi. We chose the distribution of pi such that the wins
and the losses almost cancel out and their choice for yi has almost no effect on
the expectation of S (more precisely on the exponential average E[e−αS ] for a
suitable α). The increase coming from the all one columns is thus impossible to
offset, and it is enough to make S > nZ with very high probability.

We set α = 1/(20c). In the first part of the proof we study the exponential
average E[e−αS ] and in Equation (2) we find the largest value it can take for any
C-strategy ρ. In the second part of the proof we study that formula closely. We
establish that the two formulae of which Mx in Equation (2) is the maximum
are very close to each other for 1 ≤ x ≤ n − 1. This represents establishing
that the choice of the C-strategy ρ has only a minor effect on the expectation.
Bounding the x = n case corresponds to calculating the effect on S of the all
one columns. In Equation (4) we establish a simple bound on the exponential
average. We finish the proof by bounding the probability of S ≤ nZ (and thus
the chance that nobody is accused by σ) using the Markov inequality.
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Using the rules of the second phase of the code generation we have

Ep,X

[

e−αS
]

= Ep

[

∑

X

(

e−αS
m
∏

i=1

(

pxi

i (1 − pi)
n−xi

)

)]

=
∑

X

Ep

[

e−αS
m
∏

i=1

(

pxi

i (1 − pi)
n−xi

)

]

.

The expectation in this formula is for the choice of p in the first phase or for p and
X as generated in the first and second phases of generating Fncǫ as indicated.
The summation is for all n by m 0-1 matrices X . The number of ones in column
i of X is denoted by xi. Using Equation (1) we have

Ep,X [e−αS] =
∑

X

Ep

[

m
∏

i=1

(

pxi

i (1 − pi)
n−xie

−αyi(xiqi−n−xi
qi

)
)

]

.

Here xi and y = ρ(X) is determined by X , while qi =
√

(1 − pi)/pi is deter-
mined by p. Notice that for fixed X term i of the product depends solely on pi,
thus these terms are independent. We have

Ep,X [e−αS ] =
∑

X

m
∏

i=1

Epi

[

pxi

i (1 − pi)
n−xie

−αyi(xiqi−n−xi
qi

)
]

.

The expectation on the right hand side is taken for the random variable pi.
To simplify the expression we let p be a random variable distributed identi-

cally with each pi, let q =
√

(1 − p)/p and introduce

E0,x = Ep

[

px(1 − p)n−x
]

,

E1,x = Ep

[

px(1 − p)n−xe−α(xq−n−x
q )
]

.

Each yi is either 0 or 1, furthermore if xi = 0 then yi = 0 and if xi = n then
yi = 1 by the marking condition. Thus we have

Ep,X [e−αS ] ≤
∑

X

m
∏

i=1

max∗(E0,xi
, E1,xi

),

where max∗ denotes the first term E0,xi
if xi = 0, the last term E1,xi

if xi = n
and the maximum of the two terms otherwise. Notice that this last bound does
not depend on the C-strategy ρ, and as the only assumption on y = ρ(X) is
the marking condition we have equality for some C-strategy ρ. As term i of
the product only depends on xi and the summation is for all 0-1 matrices X
we can switch the summation and the product to get our final bound on the
expectation of e−αS. It is still tight for some C-strategy ρ.

Ep,X [e−αS ] ≤
(

n
∑

x=0

(

n

x

)

Mx

)m

, (2)

12



where
M0 = E0,0, Mn = E1,n,

Mx = max(E0,x, E1,x) for 1 ≤ x ≤ n − 1.

We use eu ≤ 1+u+u2 that holds for u < 1.7 to bound the exponential term
in E1,x. If −α(xq − (n − x)/q) < 1.7 we have

e−α(xq−n−x

q
) ≤ 1 − α

(

xq − n − x

q

)

+ α2

(

xq − n − x

q

)2

.

We make the bound work for all q by adding the extra term χx(p)eα(n−x)/
√

1−p

to the right hand side. Here χx(p) is the characteristic function of the event
p ≥ 1 − α2(n − x)2, which is implied by −α(xq − (n − x)/q) > 1.

We remark that in the preliminary version [15] of this paper we chose α =√
t/c. This makes −α(xq − (n − x)/q) < 1 always hold, thus we could make

the proof simpler by getting rid of the term χx(p). Unfortunately, this small
value for α makes the computation yield a somewhat weaker error bound. This
weaker error bound is still more than enough to imply Corollary 3 for high c,
but we strive here for the strongest bounds achievable by these methods.

We have

px(1 − p)n−xe−α(xq−n−x

q ) ≤ px(1 − p)n−x −

αpx(1 − p)n−x

(

xq − n − x

q

)

+

α2px(1 − p)n−x

(

xq − n − x

q

)2

+

χx(p)(1 − p)n−xe
α(n−x)√

1−p .

Taking expectations we get

E1,x ≤ E0,x − αF1,x + α2F2,x + Rx,

where

F1,x = Ep

[

px(1 − p)n−x

(

xq − n − x

q

)]

,

F2,x = Ep

[

px(1 − p)n−x

(

xq − n − x

q

)2
]

≥ 0,

Rx = Ep

[

χx(p)(1 − p)n−xe
α(n−x)√

1−p

]

≥ 0.

The term F1,x is the most important. Our choice of the distribution for p makes
sure that it is small for 1 ≤ x ≤ n − 1. The specific choice of the distribution
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is used for this bound only. Recall that p = sin2 r with a uniform random
r ∈ [t′, π/2 − t′], where sin2 t′ = t. We have 1 − p = cos2 r, q = cot r and

F1,x =
1

π/2 − 2t′

∫ π/2−t′

t′
sin2x r cos2n−2x r(x cot r − (n − x) tan r)dr.

Notice that the primitive function of the integrand is f(r) = 1/2 sin2x r cos2n−2x r,
thus we have

F1,x =
f(π/2 − t′) − f(t′)

π/2 − 2t′
=

tn−x(1 − t)x − tx(1 − t)n−x

π − 4t′
.

For this calculation the choice t = 0 (no cutoff) would be optimal yielding
F1,x = 0 for 1 ≤ x ≤ n − 1. We need t > 0 in other calculations of this proof
and also in the proof of Theorem 1. The choice t = 1/(300c) is a compromise
yielding a small but nonzero value for F1,x. For 1 ≤ x ≤ n − 1 we use

F1,x ≥ − tx(1 − t)n−x

π − 4t′
< 0

and get

Mx = max(E0,x, E1,x) ≤ E0,x + α
tx(1 − t)n−x

π − 4t′
+ α2F2,x + Rx.

We also have M0 = E0,0 and since F1,n = (1−t)n−tn

π−4t′

Mn = E1,n ≤ E0,n − α
(1 − t)n − tn

π − 4t′
+ α2F2,n + Rn.

Next we estimate the summation in Equation (2)

n
∑

x=0

(

n

x

)

Mx ≤
n
∑

x=0

(

n

x

)

E0,x −

α
(1 − t)n −∑n

x=1

(

n
x

)

tx(1 − t)n−x

π − 4t′
+

α2
n
∑

x=0

(

n

x

)

F2,x +

n
∑

x=0

(

n

x

)

Rx. (3)

We bound each term separately:

n
∑

x=0

(

n

x

)

E0,x =

n
∑

x=0

(

n

x

)

Ep

[

px(1 − p)n−x
]

= Ep

[

n
∑

x=0

(

n

x

)

px(1 − p)n−x

]

= Ep[1] = 1;
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(1 − t)n −
n
∑

x=1

(

n

x

)

tx(1 − t)n−x = 2(1 − t)n − 1 ≥ 1 − 2nt;

n
∑

x=0

(

n

x

)

F2,x =

n
∑

x=0

(

n

x

)

Ep

[

px(1 − p)n−x

(

xq − n − x

q

)2
]

= Ep

[

n
∑

x=0

(

n

x

)

px(1 − p)n−x

(

xq − n − x

q

)2
]

To further simplify this expression let 0 < p < 1 be fixed and consider
the independent identically distributed random variables Uj for j ∈ [n] with

P [Uj = q] = p and P [Uj = −1/q] = 1−p, where q =
√

(1 − p)/p. These random
variables have expectation 0 and variance 1, so we have E[(

∑n
j=1 Uj)

2] = n. This
expectation is for a fixed p with respect to the random variables Uj . Formally
spelling out this expectation yields exactly the formula inside the expectation
for p in the last displayed equation. This implies

n
∑

x=0

(

n

x

)

F2,x = Ep[n] = n.

For the last error term

Rx = Ep

[

χx(p)(1 − p)n−xe
α n−x√

1−p

]

we have Rx = 0 for x > n−
√

t/α as in this case χx(p) = 0 for p ∈ [t, 1− t]. (Re-
call that choosing α somewhat smaller we can get rid of this error term entirely.)
For any 0 ≤ x ≤ n the function (1− p)n−xeα(n−x)/

√
1−p is monotone decreasing

in [t, 1− t], so for x ≤ n−
√

t/α the maximum of χx(p)(1 − p)n−xeα(n−x)/
√

1−p

for p ∈ [t, 1 − t] is at p = 1 − α2(n − x)2. Thus we have

Rx ≤ e(α(n − x))2(n−x).

Using
(

n
x

)

≤ ( ne
n−x )n−x and nα ≤ cα = 1/20 we get

n
∑

x=0

(

n

x

)

Rx ≤
⌊n−

√
t/α⌋

∑

x=0

(

ne

n − x

)n−x

e(α(n − x))2(n−x)

= e

⌊n−
√

t/α⌋
∑

x=0

(e3n(n − x)α2)n−x

< e

⌊n−
√

t/α⌋
∑

x=0

19−(n−x)

< 3 · 19−⌈
√

t/α⌉.
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Now we can estimate each term in Equation (3):

n
∑

x=0

(

n

x

)

Mx < 1 − α
1 − 2nt

π − 4t′
+ α2n + 3 · 19−⌈

√
t/α⌉ < 1 − α/4.

We used n ≤ c, α = 1/(20c) and t = 1/(300c) here. To be honest the last
inequality above works for c ≥ 7 only. For smaller values of c one needs to
compute Rx exactly to prove the estimate.

By Equation (2) we have

Ep,X [e−αS ] < (1 − α/4)m < e−αm/4. (4)

By the Markov inequality and m = 100c2k, Z = 20ck we get

P [S ≤ nZ] ≤ P [S ≤ cZ] ≤ e−αm/4

e−αcZ
= e−α(m/4−cZ) ≤ ǫc/4.

As mentioned in the beginning of this proof, if S > nZ then C ∩ σ(ρ(X)) is not
empty, so the above bound proves the theorem.

5 The Unreadable Digit Model and the Lower

Bound on Code Length

In this section we give the definition of the unreadable digit model of finger-
printing, which we have already mentioned in Sections 1 and 2. We compare
it to the standard (arbitrary digit) model in Lemma 5.3. We prove our lower
bound on the code length in this model, see Theorem 5. The lower bound in
the standard model (Theorem 4) follows as a corollary. Note that for binary
codes the two models are trivially equivalent.

Definition 5.1. A unreadable digit fingerprint code of length m for n users
over the alphabet Σ is a distribution over the pairs (X, σ), where X is an n by m
matrix over Σ and σ is an algorithm that takes a string y ∈ Σ′m (the illegitimate
copy) as input, and produces a subset σ(y) ⊆ [n] := {1, 2, . . . , n} (the set of
accused users). Here Σ′ = Σ∪{?}, where ? /∈ Σ represents the unreadable digit.
For ∅ 6= C ⊆ [n] an unreadable digit C-strategy is an algorithm ρ that takes the
submatrix of X formed by the rows with indices in C as input, and produces a
string y = ρ(X) ∈ Σ′m as output and satisfies the following (strong marking)
conditions. For all positions 1 ≤ i ≤ m the digit yi is either ? or one of the
digits Xji with j ∈ C. Furthermore, if for some i all the values Xji for j ∈ C
agree then yi 6=?. We say that an unreadable digit fingerprint code is ǫ-secure
against coalitions of size c if for any C ⊆ [n] of size |C| ≤ c and any unreadable
digit C-strategy ρ the error probability

P [σ(ρ(X)) = ∅ or σ(ρ(X)) 6⊆ C]

is at most ǫ.
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At first the unreadable digit model may appear to be incomparable with
the arbitrary digit model. It introduces a new possibility (creating unreadable
digits) for the pirates and simultaneously restricts their choices with respects
to digits in Σ. A closer look will tell however, that the pirates can replace any
unreadable digit with any fixed digit a ∈ Σ without increasing their chance to
be caught. This simple observation is formalized in Lemma 5.3. We start with
some definitions.

Definition 5.2. Let Σ be a finite alphabet and let Σ′ = Σ ∪ {?} for some
? /∈ Σ and let a ∈ Σ be arbitrary. Let us denote by fa the transformation
fa : Σ′∗ → Σ∗ that replaces each occurrence of ? by a and leaves all other digits
unchanged. Let F be an (arbitrary digit) fingerprint code over the alphabet Σ.
By Fa we denote the unreadable digit fingerprint code (X, σ ◦ fa) where (X, σ)
is distributed according to F .

Lemma 5.3. If an (arbitrary digit) fingerprint code F over the alphabet Σ is
ǫ-secure against any coalition of size c then the unreadable bit fingerprint code
Fa (for a ∈ Σ) is also ǫ-secure against any coalition of size c. Moreover, if C is
an arbitrary coalition and j is an arbitrary user then we have

max
ρ

P [j ∈ σ(ρ(X))] ≥ max
ρ′

P [j ∈ σ′(ρ′(X))],

max
ρ

P [C ∩ σ(ρ(X)) = ∅] ≥ max
ρ′

P [C ∩ σ′(ρ′(X)) = ∅],

where the maxima are taken over C-strategies ρ, and unreadable digit C-strategies
ρ′, while the probabilities are according to the distributions F on (X, σ) and Fa

on (X, σ′).

Proof: All the complicated looking statements of the lemma follow from the
simple observation, that for an unreadable digit C-strategy ρ′ the function ρ =
fa ◦ ρ′ is an (arbitrary digit) C-strategy and σ(ρ(X)) = σ′(ρ′(X)) for any X if
σ′ = σ ◦ fa.

Lemma 5.3 tells us that the arbitrary digit model (studied in most of this
paper) demands more of a fingerprint code than the unreadable digit model. In
particular, the fingerprint code Fncǫ can be trivially extended to a unreadable
digit fingerprint code (Fncǫ)0 (we simply treat unreadable digits as zeros), and
this code satisfies all the nice properties stated in Theorems 1, 2 and Corollary
3. Also by Lemma 5.3 the arbitrary digit and the unreadable digit models
are equivalent over a binary alphabet. Over larger alphabets such a direct
equivalence does not hold but Lemma 5.3 tells us which model is stronger.
Lindkvist [10] studied the relative power of fingerprinting over binary and larger
alphabets and concluded that for a severely limited class of fingerprint codes
a binary alphabet is just as powerful as arbitrary alphabets are. The main
results of this paper (Theorems 1, 2, 5) answer both these questions in full
generality: for reasonable error parameters the optimal code length is the same
within a constant factor for both models of fingerprinting and over an alphabet
of arbitrary size at least two.
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To make our lower bound in Theorem 4 work in both models we state it in
the unreadable digit model. By Lemma 5.3 Theorem 4 follows.

Theorem 5. Let F be an unreadable digit fingerprint code of length m over
an arbitrary alphabet Σ for n users. Let 3 ≤ c ≤ n be an integer and 0 < ǫ <
1/(100ca) a real, where a > 1 is a constant. If F satisfies the conditions (i) and
(ii) below, then

m ≥ dac2 log(1/ǫ),

where da > 0 depends solely on a.

(i) For any coalition C ⊂ [n] of size |C| = c−1, any unreadable digit C-strategy
ρ, and any user ℓ ∈ [n] \ C

P [ℓ ∈ σ(ρ(X))] ≤ ǫ.

(ii) For any coalition C ⊆ [n] of size |C| = c and any unreadable digit C-
strategy ρ

P [C ∩ σ(ρ(X)) = ∅] < 0.99

Independent of our paper Peikert, Shelat, and Smith in [11] prove a numer-
ically almost identical lower bound for the length of binary fingerprint codes.
Their result only applies to a limited class of codes with a strong bound on
the number of column types: the number of non-equal columns of the matrix
X produced by the code. In the code constructed by Boneh and Shaw [3] the
number of column types was severely limited. Our construction typically yields
matrices with all the columns different. For such codes the bound in [11] is not
applicable. Nevertheless, some of the techniques of the lower bound proofs in
[11] and in this paper are similar and we shall comment on these similarities.

As the proof uses an esoteric measure of distance for distributions (Rényi
divergence) we motivate the choice here.

Assume we have a fingerprint code (X, σ) satisfying conditions (i) and (ii)
of Theorem 5. We concentrate on the set [c] of the first c users only. Consider
the pirate coalition Cℓ = [c] \ {ℓ} containing all these users but user ℓ ∈ [c].
Our goal is to give a randomized Cℓ-strategy ρℓ to this coalition such that the
output ρℓ(X) of this strategy is almost the same for all ℓ ∈ [c]. Here we think
of X and σ as being fixed, and the randomization coming from the randomized
strategy ρℓ. (This simplification is not fully justified and will not be used in the
formal proof. Instead, we ensure the distributions of the triples (X, σ, ρℓ(X))
are close to each other.)

The randomized strategies ρℓ we use are very simple. We call this type of
randomized strategies bias strategies. In a bias C-strategy ρ the pirates decide
independently for each digit yi of y = ρ(X) if it is ? or the most popular digit si

they see on position i. The probability of yi = si is determined by a bias function
based on how many of the pirates in C see si at position i in their codewords.
The bias function must give P [yi = si] = 1 if all of their codewords agree at
position i to satisfy the marking condition, while if the most popular digit is
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not seen in the majority of the rows we have P [yi =?] = 1 to accommodate for
the case when the most popular digit is not unique.

Let us first see what happens if identically distributed outputs ρℓ(X) were
possible to achieve. What is the accused set σ(ρℓ(X)) in this case? According
to condition (i) this set does not contain any of the players with probability
more than ǫ, but according to (ii) it contains one of them with probability at
least 1/100. The contradiction is clear as ǫ < 1/(100c). Unfortunately, identical
distributions are impossible to achieve as for ℓ 6= ℓ′ the pirate coalition Cℓ and
Cℓ′ may see a different number of the most popular digit at any given position.
Fortunately, this difference is bounded by 1. Thus, we have to study some kind
of distance between these distributions.

The proof technique of [11] is almost identical to ours up to this point. They
use the same pirate coalitions, similar very simple strategies and even their
bias function is similar to ours. Their solution to the non-identical distributions
obtained is to designate a target distribution (the uniform distribution on the so
called ideal words) and they prove that with some small probability the output
will hit this target distribution. However, this small probability exponentially
decreases with the number of column types, and it becomes useless if there are
too many column types.

The simplest measure to consider is the usual distance in distribution. This
is the maximal difference in the probabilities of any event according to the two
distributions. It is easy to verify, that no matter how we choose the bias function
the difference of 1 in the number of appearances of the most popular digit may
cause a difference 1/c in the probability P [yi =?]. Thus, the distribution of a
single digit may differ by as much as 1/c. The distance of the total distributions
ρℓ(X) and ρℓ′(X) is at most the sum of these distances as in each pirated copy
each digit is independent (recall, that we consider X fixed). Thus, if the number
of positions m = o(c) the resulting total distributions are close to each other.
But for m > c this approach gives nothing.

A better choice for the distance measure is the information theoretic diver-
gence. For technical reasons we must consider divergence from a common target
distribution (obtained by the coalition of all c players by a similar bias strat-
egy). With the correct choice of the bias function one can guarantee that any
individual digit contributes only O(1/c2) to the divergence. (This phenomenon
can be best understood through the following example: Suppose you have a
biased coin: it gives heads with probability 1/2 + 1/c. The distribution of your
coin is in distance 1/c from the fair distribution but you need Θ(c2) coin flips
to realize the bias.) These divergences add up for the independent positions.
Unfortunately, the properties (i) and (ii) of Theorem 5 do not guarantee a high
divergence for the total distributions ρℓ(X), these divergences can be as low as
O(log(1/ǫ)/c). We are thus back at a linear bound.

The correct choice of the distance measure is the higher order Rényi di-
vergence. This esoteric version of informational divergence was introduced by
Alfréd Rényi in [12]. It has seldom been used since. Again, we have to measure
Rényi divergence from a common target distribution ρ(X) that is obtained by
the coalition of all c players by a similar bias [c]-strategy. Rényi divergence still
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has the property that each digit contributes O(1/c2), and these contributions
simply add up for the independent digits. But with the correct choice of the
parameters conditions (i) and (ii) of Theorem 5 now imply a total divergence of
Ω(log(1/ǫ)) between ρ(X) and ρℓ(X) for at least one value of ℓ. See the detailed
calculation in the proof of Theorem 5.

Definition 5.4. Rényi divergence of order α + 1 (α > 0) between the discrete
random variables Q and R is defined as

Hα+1(Q||R) =
1

α
log

(

∑

x

(P [Q = x])α+1

(P [R = x])α

)

,

where the summation extends over the values x taken by the random variable Q
with positive probability. The divergence is only defined if all these values are
also taken with positive probability by the random variable R.

Notice that these divergences depend only on the separate distributions of
the variables Q and R and not on their joint distribution. The following basic
properties of Rényi divergences are well known and have straightforward one
line proofs.

(a) If Q1 and Q2 are independent and R1 and R2 are independent, then

Hα+1((Q1, Q2)||(R1, R2))

= Hα+1(Q1||R1) + Hα+1(Q2||R2).

(b)
eαHα+1((Q,S)||(R,S)) = E[eαHα+1((Q|S=s0)||(R|S=s0))],

where the expectation is taken for the value s0 of the random variable S.

(c) For any function f

Hα+1(f(Q)||f(R)) ≤ Hα+1(Q||R).

(d) If the random variables Q and R take values from {0, 1} and P [Q = 1] = q,
P [R = 1] = s, 0 < s < 1, then

Hα+1(Q||R) ≥ 1

α
log

(

qα+1

sα

)

.

Furthermore, if q/s < 10, (1 − q)/(1 − s) < 10, then

Hα+1(Q||R) = O

(

(q − s)2

s(1 − s)

)

,

where the constant hidden in the O notation depends only on α.
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Using the properties above we make the proof of the Theorem 5 outlined
above formal.
Proof of Theorem 5: We start by describing the pirate coalitions C and the
unreadable digit bias C-strategies the proof is based on. We concentrate on the
first c users only. We apply condition (i) for ℓ ∈ [c], Cℓ = [c] \ {ℓ} and the
probabilistic unreadable digit Cℓ-strategy ρℓ defined below. We use condition
(ii) with the coalition C0 = [c] and the probabilistic unreadable digit C0-strategy
ρ0 defined below.

Let us start with the c = 3 case, here the unreadable digit Cℓ-strategies
are simpler and somewhat different from the c > 3 case. For ρ0 we take the
deterministic algorithm producing y = ρ0(X), with ith digit (1 ≤ i ≤ m)
yi = s ∈ Σ if Xji = s for at least two of the three indices j ∈ C0 and yi =?
if all three values Xji for j ∈ C0 are distinct. For ρℓ with ℓ ∈ [c] we take the
randomized algorithm producing each output allowed for an unreadable digit
Cℓ-strategy with equal probability. In other words, for ℓ ∈ [c] the digits of the
output y = ρℓ(X) are independent and for 1 ≤ i ≤ m yi = s if Xji = s for both
j ∈ Cℓ, and if the values Xji are different for the two j ∈ Cℓ, then yi takes one
of the these two values or ? with probability 1/3 each.

For the definition of the strategies ρℓ for c > 3 we need some preparations.
Let the real function f be defined by f(x) = 0 if x ≤ 0, f(x) = 3x2 − 2x3 if

0 ≤ x ≤ 1, and f(x) = 1 for x ≥ 1. This function was chosen for the following
property that can be easily verified.

(*) If the reals u and v satisfy 0 < v < 1, u ≤ 3v and 1 − u ≤ 3(1 − v) then
f(u) ≤ 9f(v), 1 − f(u) ≤ 9(1 − f(v)) and

(f(u) − f(v))2

f(v)(1 − f(v))
= O

(

(u − v)2
)

.

For 0 ≤ ℓ ≤ c and 1 ≤ i ≤ m let kℓ
i be the maximum multiplicity of a digit

among the digits Xji with j ∈ Cℓ, and let sℓ
i be one of the digits with this

multiplicity.
We define the bias unreadable digit Cℓ-strategy ρℓ for 0 ≤ ℓ ≤ c ≥ 4 with

the following rules. For fixed X and ℓ, the digits of y = ρℓ(X) are chosen
independently from yi ∈ {sℓ

i , ?} with

P [yi = sℓ
i ] =







f
(

2kℓ
i−c+1
c−1

)

if ℓ > 0

f
(

2k0
i
−c−1

c−3

)

if ℓ = 0.

To check that ρℓ is indeed an unreadable digit Cℓ-strategy we need to check the
marking condition: if kℓ

i = |Cℓ| then yi = sℓ
i . Notice that yi = sℓ

i happens with
positive probability only if sℓ

i is the absolute majority of the digits Xji with
j ∈ Cℓ, and in this case there is no ambiguity in the definition of sℓ

i .
By condition (ii) P [C ∩ σ(ρ0(X)) = ∅] < 0.99. Here the probability is

according to the distribution F on (X, σ) and according to the random choices
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taken in ρ0. Thus there is a user j ∈ [c] accused by σ(ρ0(X)) with probability
more than 1/(100c). Assume without loss of generality that this is true for user
1 and we have

P [1 ∈ σ(ρ0(X))] >
1

100c
. (5)

We contrast this with the bound given by condition (i):

P [1 ∈ σ(ρ1(X))] ≤ ǫ. (6)

Our goal is to finish the proof by showing that if the code F is not long
enough then the distributions (ρ0(X), X, σ) and (ρ1(X), X, σ) are too close to
each other to let the separation stated in Inequalities (5) and (6) happen.

Let α be a positive parameter to be set later depending solely on the constant
a in the theorem.

Let us first consider the random variables y = ρ0(X) and y′ = ρ1(X) for an
arbitrary fixed X .

For c = 3 it is straightforward to see, that

Hα+1(yi||y′
i) = O(1) = O(1/c2).

Our first goal is to prove a similar bound for c > 3.
Suppose c > 3. For 1 ≤ i ≤ m we have yi ∈ {s0

i , ?} and P [yi = s0
i ] > 0 only

if k0
i ≥ c/2 + 1 in which case s0

i appears at least k0
i − 1 ≥ c/2 times among the

digits Xji for j ∈ C1, thus s0
i is an absolute majority here too, and s1

i = s0
i .

Thus, both yi and y′
i take value from {s1

i , ?} and by the definition

q = P [yi = s1
i ] = f(q0) with q0 =

2k0
i − c − 1

c − 3
,

r = P [y′
i = s1

i ] = f(r0) with r0 =
2k1

i − c + 1

c − 1
.

Here k0
i = k1

i or k0
i = k1

i + 1. Now r = 0 implies q = 0 and similarly r = 1
implies q = 1, in both cases Hα+1(yi||y′

i) = 0. If we have 0 < r < 1 then we
also have q0 ≤ 3r0 and (1− q0) ≤ 3(1− r0), thus property (*) of the function f
yields q ≤ 10r, 1 − q ≤ 10(1 − r) and

(q − r)2

r(1 − r)
= O((q0 − r0)

2).

Straitforward calculations yield the bound |q0 − r0| = O(1/c). Using the last
two observations and property (d) of the Rényi divergence we get

Hα+1(yi||y′
i) = O

(

(q − r)2

r(1 − r)

)

= O

(

1

c2

)

.

The hidden constant in the O notation here and elsewhere in this section depends
only on α and thus on the exponent a in the theorem.
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Next we apply property (a) of the Rényi divergence. Recall that we still
consider X to be fixed, and thus all the digits of both y and y′ are independent.
So we have

Hα+1(y||y′) = O
(m

c2

)

. (7)

Our next goal is to consider (X, σ) to be distributed according to F and
prove

Hα+1

(

(ρ0(X), X, σ)||(ρ1(X), X, σ)
)

= O
(m

c2

)

. (8)

Indeed, by property (b) of the Rényi divergence the above divergence is an
exponential average of the corresponding divergences with fixed (X, σ). As
Equation (7) bounds all those divergences, the bound also holds for their mean
and Equation (8) is verified.

Now we apply property (c) of the Rényi divergence for the function

g(y, X, σ) = χ1∈σ(y) =

{

1 if 1 ∈ σ(y)

0 if 1 /∈ σ(y)
,

that tells if user 1 is accused. From Equation (8) we get

Hα+1(χ1∈σ(ρ0(X))||χ1∈σ(ρ1(X))) ≤ Hα+1((ρ0(X), X, σ)||(ρ1(X), X, σ)) = O
(m

c2

)

.

Inequalities (5) and (6) and property (d) of the Rényi divergence show that the
left hand side is at least

1

α
log

(

1

(100c)α+1ǫα

)

≥ a − 1

2a + 10
log(1/ǫ).

The last bound can be made true by setting α = 12/(a− 1), where a > 1 is the
exponent in the ǫ < 1/(100ca) condition of the theorem.

Putting the last two displayed equations together we get

m = Ω(c2 log(1/ǫ))

with the constant in the Ω notation depending only on a, as required.

6 Concluding Remarks

1. Guth and Pfitzmann in [7] introduce a relaxation of the marking condition.
They assume the following relaxed version of the marking condition: At any
position where the codeword of all pirates agree the pirates still have a δ prob-
ability of being able to output a different digit. This happens independently
for all the positions of agreement and if they can output a different digit they
are not restricted at all in the digit they output. This models the situations
where the users cannot detect the positions in a digital document where the
fingerprint is embedded but they are allowed to modify a δ fraction of the entire
document, thus also modifying some digits of the fingerprint code where such
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modification is against the marking condition. If the fingerprint is embedded in
digital images, audio or video files this relaxation seems to be natural.

Although the pirates are less restricted in their output in this case, they
cannot fool our fingerprint codes Fncǫ much better. Indeed, the proof of Theo-
rem 1 does not use the marking condition, thus remains valid in this model too.
The proof of Theorem 2 however heavily depends on the marking condition.
The proof is based on bounding the expectation of a random variable, and the
main term in the bound comes from the contribution of the positions where all
codewords coincide and the marking condition applies. A closer look however
reveals that it is enough that the marking condition applies for a large fraction
of these positions of agreement and thus exactly the same argument gives a
similar bound in the relaxed model of Guth and Pfitzmann. More precisely, the
following holds:

Theorem 2’. Consider the Fncǫ code and let δ < 1/2, let C ⊆ [n] be a coalition
of size |C| ≤ (1− 2δ)c, and let ρ be any C-strategy in the relaxed model of Guth
and Pfitzmann. We have

P [C ∩ σ(ρ(X)) = ∅] < ǫc/4,

where the probability is according to the distribution on (X, σ) defined by the
code Fncǫ.

Notice that for Theorem 2’ to work for coalitions of size c we only have to
consider the code Fnc′ǫ for c′ = ⌈c/(1 − 2δ)⌉, a code that is only a constant
factor longer than Fncǫ for any fixed δ < 1/2. Also notice that for any binary
fingerprint code if δ ≥ 1/2 even a single pirate can output a uniform random
sequence, thus all fingerprinting is impossible in this case.

2. The situation when only a fraction of the fingerprint code can be retrieved
from the illegitimate copy can be handled very similarly. If a random positive
fraction of the fingerprint code is retrieved, then the code Fnc′ǫ with some c′ =
O(c) is ǫ-secure against coalitions of size c. To apply the accusation algorithm,
simply treat all unknown digits as zeros.

3. Consider the high-error case of ǫ ≥ 1/c. Assume that for an (unreadable
digit) fingerprint code somebody is accused from all coalitions of size at most
c with at least one percent probability and no fixed innocent person is accused
with more than ǫ probability. Using coalitions of size substantially smaller
than c Theorem 4 implies that the code length is Ω(1/ǫb) for arbitrary b < 2
(the hidden constant depends on b). It is easy to see that if we change the
accusation algorithm of the fingerprint code Fnc′ǫ′ with c′ = ⌊2/ǫ⌋ and ǫ′ = ǫ/2
by letting it accuse each user independently with probability ǫ/2 in addition to
those accused by the original algorithm we get a fingerprint code satisfying the
above requirements with length m = O(log(1/ǫ)/ǫ2).

4. Let us end the paper with a philosophical remark on fingerprinting and
cryptography. It seems that fingerprinting is a cryptographic primitive whose
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mathematical analysis does not depend on complexity assumptions, and com-
putational complexity does not seem to play any role here. Notice however, that
the complexity assumption exists, it is hidden in the marking condition. The
marking condition (or even its relaxation) is based on the assumption that the
users cannot detect the positions in a digital document where the fingerprint
is hidden unless they see a difference in their copies of the document. In most
cases this assumption translates to some kind of a complexity assumption.
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