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Abstract

At most how many edges can an ordered graph of n vertices have if it does not contain a
fixed forbidden ordered subgraph H? It is not hard to give an asymptotically tight answer to this
question, unless H is a bipartite graph in which every vertex belonging to the first part precedes
all vertices belonging to the second. In this case, the question can be reformulated as an extremal
problem for zero-one matrices avoiding a certain pattern (submatrix) P . We disprove a general
conjecture of Füredi and Hajnal related to the latter problem, and replace it by some weaker
alternatives. We verify our conjectures in a few special cases when P is the adjacency matrix
of an acyclic graph and discuss the same question when the forbidden patterns are adjacency
matrices of cycles. Our results lead to a new proof of the fact that the number of times that the
unit distance can occur among n points in the plane is O(n4/3).

1 Introduction

A simple graph G with a linear ordering on its vertex set V (G) is called an ordered graph. The edge
set of G is denoted by E(G). In the spirit of the fundamental problem of Turán-type extremal graph
theory [3], one can raise the following general question. What is the maximum number ex<(n,H) of
edges that an ordered graph on n vertices can have without containing a (not necessarily induced)
subgraph isomorphic to a fixed ordered graph H? The ordering of the vertices is inherited by the
subgraphs. An isomorphism between two ordered graphs is an isomorphism between the underlying
unordered graphs that respects the ordering of the vertices. If a graph does not contain H as an
ordered subgraph, it is called H-free. We assume H has at least one edge.

Define the interval chromatic number χ<(H) of an ordered graph H, as the minimum number of
intervals the (linearly ordered) vertex set of H can be partitioned into, so that no two vertices belong-
ing to the same interval are adjacent in H. By a simple application of the Erdős-Stone-Simonovits
theorem [6], one can easily describe the asymptotic behavior of ex<(n,H), unless χ<(H) = 2. The
easy proof is left to the reader. See also [5] for a similar result and proof.

Theorem 1 For any ordered graph H, the maximum number of edges that an H-free ordered graph
with n vertices can have satisfies

ex<(n,H) =

(

1 − 1

χ<(H) − 1

)(

n

2

)

+ o(n2).

✷
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This theorem naturally extends to families H of forbidden ordered subgraphs with χ<(H) :=
min{χ<(H)|H ∈ H}.

Note that the interval chromatic number is easily computable. Indeed, by a simple greedy
algorithm one can efficiently find an optimal partition of the vertex set of H into χ<(H) independent
intervals. This is in sharp contrast with the fact that even the approximation of the usual chromatic
number of a graph is an NP-hard task.

As shown by Theorem 1, determining the maximum number of edges of an H-free ordered graph
becomes more interesting when χ<(H) = 2. In this special case, it is more convenient to restrict
our attention to H-free ordered graphs G which themselves have interval chromatic number 2. The
vertices of such a graph can be enumerated as v1 < v2 < . . . < vn < vn+1 < . . . < vn+m so that
every edge of G connects some vi, i ≤ n to a vj , j > n. Let A = A(G) be a n × m adjacency matrix
whose rows and columns correspond to the vertices vi, i ≤ n and vj , j > n, respectively, and whose
entry ai,j−n = 1 if vivj is an edge of G, and 0 otherwise. A(G) is uniquely determined if G has
a unique decomposition into two independent intervals. This is the case, for example, if G has no
isolated vertices. Conversely, any n×m zero-one matrix A gives rise to an ordered graph G(A) with
χ<(G(A)) ≤ 2, whose vertices correspond to the rows and columns of A, and the adjacencies between
the two kinds of vertices depend on the corresponding entry of A. We always have G(A(G)) = G.

The weight w(A) of a zero-one matrix A is the number of its 1 entries. A zero-one matrix of
positive weight is called a pattern. Following [8], we say that a zero-one matrix A contains a pattern
P if P is a submatrix of A or if P can be obtained from a submatrix of A by changing some 1 entries
to 0. The corresponding submatrix of A is said to represent P . Notice that we can delete some
rows or columns of A to find the submatrix P , but we are not allowed to permute the remaining
rows and columns. If A does not contain P , we say that A avoids P . Let ex(n,m,P ) denote the
maximum weight of an n × m zero-one matrix that avoids P . For simplicity, write ex(n, P ) instead
of ex(n, n, P ). If a family P of patterns is forbidden, we use ex(n,P) to denote the corresponding
maximum weight. The problem of estimating these functions for various patterns has been considered
in [1, 2, 7, 8, 10, 13].

Let G and H be two ordered graphs with interval chromatic number 2, and assume that H has
a unique decomposition into two independent intervals. Then G is H-free if and only if A(G) avoids
A(H). Therefore, if G is H-free and the first and second intervals in its decomposition consist of n
and m elements, respectively, then its number of edges satisfies

|E(G)| ≤ ex(n,m,A(H)).

If we only assume that χ<(H) = 2, but there is no assumption on the host graph G, then the
situation is somewhat more complicated. Nevertheless, in Section 2 we prove the following general
result linking the solutions of the extremal problems for graphs and for patterns (matrices).

Theorem 2 Let H be an ordered graph with interval chromatic number 2, which has a unique
decomposition into two intervals that are independent sets. Then we have

ex(⌊n/2⌋, A(H)) ≤ ex<(n,H) = O(ex(n,A(H)) log n).

Moreover, if ex(n,A(H)) = O(nc) holds for some c > 1, then we have ex<(n,H) = O(nc).

We conjecture that if H is an ordered tree of interval chromatic number 2, then ex<(n,H) is only
at most slightly superlinear (Conjecture 1). In Section 3, we verify this statement in several special
cases.
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In Section 4, we consider the case when H is an ordered cycle (of even length) with χ<(H) = 2.
It is well known (see [3]) that there are (unordered) graphs with n vertices and with at least constant

times n1+ 1

2k edges that contain no cycle of length 2k or shorter. Therefore, by Theorem 2, in this
case the order of magnitude of ex<(n,H) is the same as that of the solution of the corresponding
matrix problem. In Section 4, we analyze the latter version of the question.

We call a sequence C = (p0, p1, . . . , p2k) of positions in a matrix A an orthogonal cycle if p0 = p2k

and the positions p2i and p2i+1 belong to the same row, while the positions p2i+1 and p2i+2 belong
to the same column, for every 0 ≤ i < k. If the entry of A in positions pi is 1 for all 0 ≤ i ≤ 2k, then
C is said to be an orthogonal cycle of A. Notice that, for any zero-one matrix A, each cycle of G(A)
(with a starting point and an orientation) corresponds to an orthogonal cycle of A. In general, an
orthogonal cycle of A corresponds to a walk in G(A) that starts and ends at the same vertex.

Given a position p = (i, j) of the matrix A and an orthogonal cycle C = (p0, p1, . . . , p2k), define
C(i, j) to be the number of times that the possibly self-intersecting polygon p0p1 . . . p2k encircles (in
the counter-clockwise direction) a point p′ = (i + 1/2, j + 1/2) of the plane. Here we interpret the
position (i, j) in a matrix as the point (i, j) or the Euclidean plane. Notice that this convention is
against the tradition of writing the first row of a matrix on top. Formally, let P (i, j) be the set of
positions (i′, j′) with i′ > i and j′ > j, and set

C(i, j) = |{0 < l ≤ k : p2l ∈ P (i, j)}| − |{0 < l ≤ k : p2l−1 ∈ P (i, j)}|.

An orthogonal cycle is said to be positive if C(i, j) ≥ 0 for every pair (i, j) and C(i, j) is strictly posi-
tive for at least one such pair. A collection C of orthogonal cycles is called positive if

∑

C∈C C(i, j) ≥ 0
for every (i, j) and there exists at least one (i, j) for which this sum is positive.

Let G be an ordered graph with interval chromatic number 2. It is easy to check that, for any
cycle of length 4, the corresponding entries of the adjacency matrix A(G), with a proper orientation,
form a positive orthogonal cycle. However, the entries of A(G) assigned to the edges of a cycle
of length 6 may or may not induce a positive orthogonal cycle. For obvious reasons, cycles of the
former type are called noncrossing hexagons. Katz [9] proved that the maximum weight of an n by n
zero-one matrix that avoids cycles of length four and noncrossing hexagons (or, equivalently, positive

orthogonal cycles of length at most 6) is O
(

n
3

2
−ε
)

for some ε > 0. This is somewhat stronger than

the trivial bound O
(

n
3

2

)

, which is tight when only 4-cycles are forbidden. Katz applied his result

to measure-theoretic problems.
The main result of Section 4 is the following.

Theorem 3 The maximum weight of an n by n zero-one matrix containing no positive orthogonal
cycle is O(n4/3). The order of magnitude of this bound cannot be improved.

In fact, we prove a stronger result (Theorem 5) that provides several counterexamples to a
conjecture of Füredi and Hajnal [8]. It also offers a new proof of the following well-known theorem
of Spencer, Szemerédi, and Trotter [12].

Corollary 1 [12] The number of unit distance pairs determined by n points in the plane is O(n4/3).

The proof of these facts, a counterexample to a related conjecture of Brass, Károlyi, and Valtr
[5], as well as some concluding remarks are presented in Section 5.

3



2 Ordered graphs vs. zero-one matrices

First, we establish Theorem 2 connecting the extremal problems for ordered graphs and matrices.
Roughly speaking, it shows that if we want to estimate the maximum number of edges that an H-free
ordered graph of n vertices can have, we do not lose much by restricting the search to ordered graphs
with interval chromatic number 2. For the proof, we need two simple observations summarized in
the following lemma. Throughout this paper, log always stands for logarithm of base 2.

Lemma 1 (i) For any ordered graph G of n vertices, one can find edge disjoint subgraphs Gi for

0 ≤ i ≤ ⌈log n⌉ such that E(G) = ∪⌈log n⌉
i=0 E(Gi) and each connected component of Gi has at

most ⌈n/2i⌉ vertices and interval chromatic number at most 2.

(ii) (Super-additivity) For any pattern P and for any positive integers n and m, we have

ex(n + m,P ) ≥ ex(n, P ) + ex(m,P ).

Proof. To show (i), denote the vertices of G by v0, . . . , vn−1. Let Gi consist of all edges vjvk ∈ E(G),
for which ⌊2ij/n⌋ = ⌊2ik/n⌋ but ⌊2i+1j/n⌋ 6= ⌊2i+1k/n⌋. These subgraphs obviously meet the
requirements.

To verify part (ii), we establish the super-additivity of the asymmetric version of the ex function:

ex(n1 + m1, n2 + m2, P ) ≥ ex(n1, n2, P ) + ex(m1,m2, P ).

Assume first that P = (pij) has at least a single 1 entry in its first row, at least one 1 in its last row,
and that the same holds for its first and last columns. Mark a 1 entry in the first row of P red, a 1
entry in the last row of P blue, and assume without loss of generality that the blue entry does not
lie to the right of the red one. Let A and B be n1 ×n2 and m1 ×m2 zero-one matrices, respectively,
that avoid P . Let us obtain the (n1 + m1) × (n2 + m2) matrix C by putting A and B together as
blocks along the main diagonal, and filling all the remaining positions by 0. We claim that C avoids
P . Suppose not. If the red entry of P is represented in block B or the blue entry is represented in
block A, then B or A would not avoid P , respectively. Thus, we can assume that the blue entry is
represented in B, and the red entry is represented in A. However, in this case the blue entry lies to
the right of the red one, which is impossible.

Suppose next that, e.g., the first row of P contains no entry 1. For any matrix A, let A′ denote
the matrix obtained from A by removing its first row. Then A contains P if and only if A′ contains
P ′. Using this simple observation, it is not hard to see that ex(n,m,P ) = ex(n− 1,m, P ′)+m. This
implies that super-additivity is inherited from P ′ to P . Therefore, it must hold for every pattern
P . ✷

Proof of Theorem 2. The inequality ex<(n,H) ≥ ex(⌊n/2⌋, A(H)) directly follows from the
definitions: if A is an ⌊n/2⌋ × ⌊n/2⌋ zero-one matrix not containing A(H), then G(A) is an H-free
ordered graph on 2⌊n/2⌋ vertices whose number of edges coincides with the weight of A.

To prove the upper bound on ex<(n,H), consider an ordered graph G on n vertices that does
not contain H. Apply Lemma 1 (i) to partition the edges of G into subgraphs Gi satisfying the
conditions. Since any nontrivial connected component C of Gi is H-free, the matrix A(C) cannot
contain A(H). Thus, we have eC ≤ ex(nC , A(H)), where nC and eC denote the number of vertices
and the number of edges in C. If ex(n,A(H)) = O(nc) for some c > 1, then summing these estimates
over all i and over all connected components C of Gi, we obtain that |E(G)| = O(nc), as required.
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In the general case, summing over all connected components C of a fixed Gi and using the super-
additivity property in Lemma 1 (ii) we can conclude that |E(Gi)| ≤ ex(n,A(H)), and hence G has
at most (log n + 2)ex(n,A(H)) edges. ✷

As shown by Theorem 2, there is little difference between the extremal problems for ordered
graphs and for the corresponding zero-one matrices. In many cases, one cannot get rid of the
logarithmic factor in the second inequality. Consider, for instance, the ordered graph G4 with
vertices v1 < v2 < v3 < v4 and edges v3v1, v1v4, and v4v2. As an unordered graph, G4 is a path of
length 3. Now A(G4) is a 2× 2 matrix consisting of three 1 entries and a 0 entry. It is easy to verify
that ex(n,A(G4)) = 2n − 1.

On the other hand, let G be an ordered graph with vertices v1, . . . , vn, where vi is connected to
vj if and only if |i − j| is a power of 2. Clearly, G is G4-free and its number of edges is at least
n log n − n. Thus, in this case we have

ex<(n,G4) ≥ n log n − n ≥ log n

4
ex(n,A(G4)).

We remark that Lemma 1 (ii) concerning the super-additivity of the function ex(n, P ), does not
extend to arbitrary families of forbidden patterns. For instance, let P be the family consisting of all
n × n zero-one patterns of weight 1. Clearly, we have ex(i,P) = i2 for i < n, but ex(i,P) = 0 for
i ≥ n.

3 Trees

We say that an ordered graph is acyclic if its underlying unordered graph contains no cycles. The
aim of this section is to establish some partial results concerning the following conjecture.

Conjecture 1 For any acyclic ordered forbidden graph H with interval chromatic number 2, we
have ex<(n,H) ≤ n(log n)O(1).

Notice that, if true, this statement strongly characterizes acyclic ordered graphs H with χ<(H) ≤
2: for any other graph H, there exists ε > 0 such that ex<(n,H) ≥ n1+ε. Indeed, in view of
Theorem 1, if χ<(H) ≥ 3, the extremal function ex<(n,H) is quadratic. On the other hand, if H
has a cycle of length k (with any ordering), then its extremal function is at least as large as the

maximum number of edges that a Ck-free unordered graph of n vertices can have, which is Ω(n1+ 1

k ).
Conjecture 1 is stated with the upper bound n(log n)O(1). We do not know, however, any coun-

terexample to this conjecture with the stronger bound O(n log n), which has been proposed by Füredi
and Hajnal [8]. It would also be interesting to prove a weaker form of the same statement, according
to which ex<(n,H) = O(n1+ε) holds for any ε > 0.

In order to establish Conjecture 1 in some special cases, we need a couple of statements related
to the corresponding problems for zero-one matrices.

Lemma 2 Assume that the last column of a pattern P contains a single 1 entry, and let P ′ denote
the pattern obtained from P by removing this column. Then we have

ex(n, P ) = O





∑

i≥0

2iex(⌊n/2i⌋, P ′)



 ,
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and, consequently, ex(n, P ) = O (ex(n, P ′) log n) . Furthermore, if ex(n, P ′) = O(nc) holds for some
c > 1, then we have ex(n, P ) = O(nc).

Proof. It is sufficient to prove the first part of the statement, because it implies the last two claims,
just like in the proof of Theorem 2.

Let A be an n × m zero-one matrix, which avoids P and whose weight is maximum, that is, we
have w(A) = ex(n,m,P ). Assume that m is even and consider the submatrix A1 of A formed by all
rows of A that have no 1 entry in their last m/2 positions. Let A2 be the submatrix of A formed by
the remaining rows A. Denote by n1 and n2 the number of rows in A1 and A2, respectively, so that
we have n1 + n2 = n. Furthermore, for i = 1 and 2, let Ai1 and Ai2 denote the submatrices of Ai

formed by the first m/2 and by the last m/2 columns of Ai, respectively. Clearly, we have

ex(n,m,P ) = w(A) = w(A11) + w(A12) + w(A21) + w(A22),

where w(A12) = 0 holds, by definition. Since the other three matrices on the right-hand side are sub-
matrices of A, they all avoid P . Therefore, w(A11) ≤ ex(n1,m/2, P ) and w(A22) ≤ ex(n2,m/2, P ).
As for A21, it also avoids the pattern P ′. Indeed, if A21 had a submatrix representing P ′, adding to
it a column of A22 we would obtain a representation of P . Thus, we have w(A21) ≤ ex(n2,m/2, P ′).
This yields

ex(n,m,P ) ≤ ex(n1,m/2, P ) + ex(n2,m/2, P ) + ex(n2,m/2, P ′).

Assume now that m = 2k. Applying the above bound recursively k times, we conclude that

ex(n,m,P ) ≤
k
∑

i=1

2i−1

∑

j=1

ex(nij,m/2i, P ′) + n,

where the nonnegative integers nij satisfy that
∑2i−1

j=1 nij ≤ n, for any 1 ≤ i ≤ k.
Every n×m matrix avoiding P ′ can be partitioned into ⌈n/m⌉ submatrices of size at most m×m,

so that we have ex(n,m,P ′) ≤ ⌈n/m⌉ex(m,P ′). This, in turn, implies

ex(n, P ) ≤
k
∑

i=1

(2i + 2i−1)ex(n/2i, P ′) + n,

if n = 2k. Thus, the first statement of the lemma holds for powers of 2, and, by the monotonicity of
the ex function, it is also true for all other values of n. ✷

There are several examples showing that the logarithmic factor in Lemma 2 cannot be always re-

moved. Let F =

(

1 1 0
1 0 1

)

. Füredi [7] and Bienstock-Győri [2] proved that ex(n,F ) = Θ(n log n),

while Tardos [13] found the sharper estimate ex(n,F ) = n log n + O(n). On the other hand, as men-
tioned before, the pattern F ′ obtained from F by removing its last column satisfies the equation
ex(n,F ′) = 2n − 1.

Applying Theorem 2 once and Lemma 2 several times, one can verify Conjecture 1 for a large
class of graphs. By symmetry, one can apply Lemma 2 to eliminate the first column or the first (last)
row of a pattern, provided that it has a single 1 entry. In particular, the conjecture holds for all
perfect matchings, i.e., ordered graphs H whose adjacency matrix A(H) has precisely one 1 in each
of its rows and columns. In fact, in this case, improving some earlier results of Alon and Friedgut
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[1], Marcus and Tardos [10] established a linear upper bound on ex(n,A(H)). The smallest ordered
graphs H for which Conjecture 1 cannot be proved in this way are paths of length 5 whose adjacency
matrix A(H) is





1 0 1
1 0 0
0 1 1





,

or one of the three other matrices that can be obtained from this one by rotation (or reflection).
Before proving Conjecture 1 for this path and for many other patterns, we propose a generalization

of Lemma 2 that would immediately imply Conjecture 1 in its full generality.

Conjecture 2 Let P be a pattern which has a column with a single 1 entry, and let P ′ denote the
pattern obtained from P by removing such a column. Then we have

ex(n, P ) = O(ex(n, P ′) log n).

Using the fact that every tree has a vertex of degree 1, it would follow from Conjecture 2 that

ex<(n,H) = O(n log|V (H)|−3 n)

holds for any ordered tree or forest H whose interval chromatic number is 2.
In the following two lemmas, we verify Conjecture 2 in some special cases.

Lemma 3 Let P = (pij) be a pattern whose j0-th column contains a single 1 entry at pi0j0 = 1.
Assume further that pi0(j0+1) = 1 and that there exists an index i1 with pi1(j0−1) = pi1(j0+1) = 1. Let
P ′ denote the pattern obtained from P by removing column j0. Then we have

ex(n, P ) = O(ex(n, P ′) log n).

Proof. Let A = (aij) be an n × n zero-one matrix which avoids P and whose weight is maximum,
that is, w(A) = ex(n, P ). For any i and j, let mij stand for the largest j′ < j with aij′ = 1. In the
case when no such j′ exists, mij is not defined.

For 0 ≤ l ≤ ⌊log n⌋, define an n×n zero-one matrix Al = (a
(l)
ij ), as follows. Set a

(l)
ij = 1 if aij = 1,

mij is defined, and j − 2l+1 < mij ≤ j − 2l. We have that,

⌊log n⌋
∑

l=0

w(Al) ≥ w(A) − n,

as
∑

Al contains each 1 entry of A with the exception of the first such entry in each row. Obviously,

if a
(l)
ij = a

(l)
ij′ = 1 and j < j′, then we have j + 2l ≤ j′. Now let A′

l denote the n × n zero-one matrix
obtained by deleting every other 1 entry in every row of Al but keeping w(A′

l) ≥ w(Al)/2. Clearly,
any two consecutive 1 entries in each row of A′

l are at least 2l+1 positions apart.
We claim that, for 0 ≤ l ≤ ⌊log n⌋, the matrix A′

l avoids P ′. Assume, to the contrary, that A′
l

has a submatrix B which represents P ′. Let column j0 −1 and column j0 of B be columns j′ < j′′ in
A′

l. Let rows i0 and i1 of B be rows i′ and i′′ in A′
l. As column j0 of B corresponds to column j0 + 1

of P , and we have pi1(j0−1) = pi1(j0+1) = pi0(j0+1) = 1, we obtain that A′
l has 1 entries in each of the

positions (i′′, j′), (i′′, j′′), and (i′, j′′). In particular, we have j′ + 2l+1 ≤ j′′. Now we consider the
submatrix C of A consisting of all rows and columns that constitute B and of the additional column
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mi′j′′ . As a
(l)
i′j′′ = 1, the value mi′j′′ is well defined and we have j′′ > mi′j′′ > j′′ − 2l+1 ≥ j′. Thus,

the new column is column j0 of C. As ai′mi′j′′
= 1, the submatrix C represents P , a contradiction.

Now the proof can be completed by simple calculation:

ex(n, P ) = w(A) ≤ n +

⌊log n⌋
∑

l=0

w(Al)

≤ n + 2

⌊log n⌋
∑

l=0

w(A′
l)

≤ n + 2

⌊log n⌋
∑

l=0

ex(n, P ′)

= O(ex(n, P ′) log n). ✷

The proof of the following lemma is very similar to that of Lemma 3 and is, therefore, left to the
reader.

Lemma 4 Assume that the pattern P = (pij) contains two columns j0 and j0 + 1, both of which
have precisely one 1 entry, at the positions pi0j0 = pi1(j0+1) = 1. Suppose further that pi0(j0−1) =
pi1(j0+2) = 1.

If there exists a row i2 with pi2(j0−1) = pi2(j0+2) = 1, then we have

ex(n, P ) = O(ex(n, P ′) log2 n),

where P ′ is obtained from P by removing columns j0 and j0 + 1. ✷

By multiple application of Theorem 2 and Lemmas 2 and 3, one can easily verify Conjecture 1 for
all ordered graphs on at most 6 vertices. For ordered graphs on 7 vertices, we can proceed similarly
(also using Lemma 4), except when the adjacency matrix of the forbidden ordered subgraph is
equivalent (up to rotation or reflection) to one of the following two patterns:





0 1 0 1
1 0 0 1
1 0 1 0









0 1 0 1
1 0 1 0
1 0 0 1





For these “exceptional” ordered paths of length 6 (a couple of which are depicted in Figure 1), our
methods break down. We do not know any upper bound better than O(n5/3), which follows from
the fact that the corresponding bipartite graph contains no K3,4.

Figure 1.
Two exceptional paths of length 6.
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4 Cycles

To formulate our results, we have to consider the following five properties of n×N zero-one matrices
M . Properties (a) and (a’) correspond to infinite families of forbidden subgraphs, among them many
ordered cycles. The necessary definitions can be found in the Introduction.

(a) No collection of orthogonal cycles of M is positive.

(a’) No orthogonal cycle of M is positive.

(b) M can be obtained from an n × N real matrix M ′ = (m′
i,j) by replacing each 0 entry by 1

and each nonzero entry by 0. For every 1 ≤ i < n and 1 ≤ j < N , the matrix M ′ satisfies
di,j := m′

i+1,j+1 − m′
i+1,j − m′

i,j+1 + m′
i,j > 0.

(b’) There is a bivariate twice continuously differentiable real function f satisfying d
dx

d
dyf(x, y) > 0

for all x and y and real values x1 < x2 < . . . < xn, y1 < y2 < . . . < yN such that M = (mi,j)
is defined by

mi,j =

{

1 if f(xi, yj) = 0
0 otherwise.

(c) M can be obtained from a matrix M ′′ whose entries are 0, 1, and −1, by replacing each 0 entry
by a 1 and each ±1 entry by 0. Every 2× 2 submatrix (bij)

j=1,2
i=1,2 of M ′′ satisfies at least one of

the following four conditions: either b11 = +1, or b12 = −1, or b21 = −1, or b22 = +1.

We start with the simple connections between the conditions (a) and (a’), and (b) and (b’),
respectively.

Lemma 5 For any zero-one matrix M , we have

(i) (a)⇒(a’);

(ii) (b)⇔(b’);

(iii) if G(M) is connected, then (a)⇔(a’).

Proof. We just sketch the simple proofs.
Part (i) is trivial.
For part (ii), (b’)⇒(b) assume M is obtained from the function f as in condition (b’). We define

M ′ = (m′
i,j) by setting m′

i,j = f(xi, yj). Notice that

di,j =

∫ xi+1

xi

∫ yj+1

yj

(

d

dx

d

dy
f(x, y)

)

dy dx > 0.

For the reverse implication (b)⇒(b’), assume that M can be obtained from the matrix M ′ = (m′
i,j)

in the way described in condition (b). Set xi = i for 1 ≤ i ≤ n and yj = j for 1 ≤ j ≤ N and define
f0(i, j) = m′

i,j for integers 1 ≤ i ≤ n and 1 ≤ j ≤ N . Next we extend f0 as a bilinear function to
each of the boxes [i, i + 1]× [j, j + 1] for integers 1 ≤ i < n and 1 ≤ j < N , separately. The resulting
function f0 is continuously defined on [1, n] × [1, N ] and satisfies d

dx
d
dyf(x, y) = di,j > 0 if x and

y are not integers and i and j are their integer parts. However, f is not necessarily differentiable
at points with at least one integer coordinate. We define f as a twice continuously differentiable
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approximation of f0 satisfying the condition on the positive mixed derivative everywhere. We can
make sure that f agrees with f0 on the integer points. Finally, we extend f to the entire real plane
keeping the mixed derivative positive everywhere. This function shows that M satisfies (b′).

To establish part (iii) (a’)⇒(a), one has to “combine” the orthogonal cycles of M in a positive
collection into one big orthogonal cycle. To combine two orthogonal cycles C ′ = (p0, . . . , p2k) and
C ′′ = (q0, . . . , q2l) of M , consider a sequence of positions (r1, r2, . . . , r2s) that represent a path in
G(M) from the vertex corresponding to the row of p0 to the vertex corresponding to the row of q0.
Now C = (p0, p1, . . . , p2k−1, r1, r2, . . . , r2s, q0, q1, . . . , q2l−1, r2s, r2s−1, . . . , r1, p0) is another orthogonal
cycle of M and we have C(i, j) = C ′(i, j) + C ′′(i, j) for every i and j. ✷

The following 6 × 6 matrix shows that the (a)⇒(a’) implication cannot be always reversed.

















0 0 1 0 0 1
0 0 0 1 1 0
1 0 0 0 1 0
0 1 0 0 0 1
0 1 1 0 0 0
1 0 0 1 0 0

















Theorem 4 For any zero-one matrix M , conditions (a)–(c) satisfy the following implications:
(a)⇔(b)⇒(c).

Proof. First we show that (b)⇒(a). Assume that an n × N matrix satisfies condition (b). For any
orthogonal cycle C = (p0, . . . , p2k), easy calculation gives

n−1
∑

i=1

N−1
∑

j=1

C(i, j)di,j =
2k−1
∑

l=0

(−1)lm′
pl

,

where m′
pl

represents the entry of the matrix M ′ in position pl. If C is an orthogonal cycle of M ,
then the right hand side is clearly 0. Let C be a collection of orthogonal cycles of M . Summing the
above equations we get

n−1
∑

i=1

N−1
∑

j=1

(

∑

C∈C

C(i, j)

)

di,j = 0.

The linear combination of the positive terms di,j is zero, therefore one of the coefficients is negative
or all are zero. This proves property (a).

(a)⇒(b) We prove that for an n × N zero-one matrix M either (b) or the negation of (a) holds.
Consider the n by N real matrix M ′ = (m′

i,j) that has 0 in place of all 1 entries of M and distinct
real variables at all of the remaining positions. Consider the inequalities di,j := m′

i+1,j+1 − m′
i+1,j −

m′
i,j+1 + m′

i,j > 0 on these variables. The strict linear inequalities determine an open region in the
variable space, so if this region in nonempty, we can find a solution where no variable is zero. In this
case, condition (b) is satisfied.

In the opposite case, when our inequalities do not have a solution, Farkas’s lemma states the
existence of a positive linear combination of these inequalities yielding 0 > 0. Let ki,j ≥ 0 be the
coefficient of di,j > 0 in such a linear combination. We can assume that these coefficients are integers,
so that ki,j is a nonnegative integer for all i and j, and not all of them are zero. We define ki,j = 0
if i = 0 or n, or if j = 0 or N .
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We build an oriented multigraph G∗ on the vertex set {vi,j : 1 ≤ i ≤ n, 1 ≤ j ≤ N} as follows.
There are two types of edges in G∗: For any 1 ≤ i ≤ n, 1 ≤ j < N , we connect vi,j and vi,j+1 by
|ki−1,j − ki,j| horizontal edges. If ki−1,j > ki,j, these edges are directed toward vi,j, otherwise they
are directed toward vi,j+1. Similarly, for any 1 ≤ i < n, 1 ≤ j ≤ N , vi,j and vi+1,j are connected
by |ki,j−1 − ki,j| vertical edges directed toward vi+1,j or vi,j , depending on whether ki,j−1 > ki,j or
the other way around. It is easy to verify that in this graph every vertex has the same indegree
and outdegree. Therefore, the edge set of G∗ can be partitioned into directed cycles. Whenever
M has a zero at a position (i, j), we know that the variable m′

i,j will cancel at the combination
∑

ki,jdi,j. This implies that the numbers of incoming and outgoing horizontal edges incident to any
such vertex vi,j must coincide. Therefore, the cycles of the edge partition can be chosen so that none
of them “bends” at such vertices, i.e., all of their bends occur at positions where M has an entry
1. We cannot exclude self-crossing cycles that pass through the same vertex more than once. The
orthogonal cycles corresponding to edge partitions with the above property are orthogonal cycles of
M . Moreover, it is easy to argue that they form a collection C that satisfies

∑

C∈C C(i, j) = ki,j for
all i and j. This shows that condition (a) does not hold for M .

(b)⇒(c) Suppose that M can be obtained from M ′ = (m′
i,j) in the way described in (b), and

define a matrix M ′′ = (m′′
i,j) by setting m′′

i,j = sign(m′
i,j). Consider the submatrix of M ′′ defined by

the rows i1 < i2 and columns j1 < j2. We have m′
i2,j2

−m′
i1,j2

−m′
i2,j1

+mi1,j1 =
∑j2−1

i=j1

∑j2−1
j=j1

di,j > 0.
This implies that at least one of the following conditions must be satisfied: m′

i1,j1
or m′

i2,j2
is positive,

or m′
i1,j2

or m′
i2,j1

is negative. ✷

We remark that condition (a’), which is somewhat weaker than (a), also implies (c) as can be
shown by constructing the corresponding matrix M ′′ entry by entry. The following 6 × 6 matrix
satisfies condition (c) for M ′′, but the corresponding matrix M does not have property (a). Thus,
the implication (b)⇒(c) cannot be always reversed.

















0 + + 0 + +
− 0 0 − + +
− 0 − − − 0
− + 0 − 0 +
+ + + 0 0 +
0 + − − − 0

















Theorem 5 (i) The maximum weight of an n × n zero-one matrix with property (c) is O(n4/3).

(ii) For arbitrarily large values of n, there exist n×n zero-one matrices of weight Ω(n4/3) that satisfy
condition (b’) (and thus conditions (a), (a’), (b), and (c) are also satisfied).

Proof. (i) Let M be n × n zero-one matrix satisfying condition (c), and let M ′′ = (m′′
ij) be the

corresponding matrix with −1, 0, and 1 entries.
For a fixed 0 ≤ i ≤ n, we define a linear ordering on the symbols pij, where 1 ≤ j ≤ n. For

1 ≤ j < j′ ≤ n, set pij′ < pij if there exists a row 1 ≤ i′ ≤ i with m′′
i′j ≥ 0 and m′′

i′j′ ≤ 0. Otherwise,
set pij < pij′ .

To see that this definition indeed gives rise to a linear order, we have to check that for 1 ≤ j <
j′ < j′′ ≤ n we cannot have pij < pij′ < pij′′ < pij, nor can it occur that pij < pij′′ < pij′ < pij .
To exclude the first possibility, assume pij′′ < pij . Then there exists 1 ≤ i′ ≤ i such that m′′

i′j ≥ 0
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and m′′
i′j′′ ≤ 0. If m′′

i′j′ ≥ 0, then we have pij′′ < pij′, while if m′′
i′j′ ≤ 0, it follows that pij′ < pij. In

either case, we obtain a contradiction.
To exclude the second possibility assume that pij′′ < pij′ < pij . Then there exist suitable indices

1 ≤ i′ ≤ i and 1 ≤ i′′ ≤ i such that m′′
i′j ≥ 0, m′′

i′j′ ≤ 0, m′′
i′′j′ ≥ 0, and m′′

i′′j′′ ≤ 0. We claim that for
i∗ = max(i′, i′′) we have m′′

i∗j ≥ 0 and m′′
i∗j′′ ≤ 0, and hence pij′′ < pij , which is a contradiction. This

claim is trivial for i′ = i′′. If i′ < i′′, the claim follows from condition (c) applied to the submatrix
determined by rows i′ and i′′ and columns j and j′. If i′ > i′′, it follows from condition (c) applied
to the submatrix determined by rows i′ and i′′ and columns j′ and j′′.

Let us represent pij (0 ≤ i ≤ n, 1 ≤ j ≤ n) by points in the plane, denoted by the same symbols.
For a fixed i, we choose the points pij on the line y = i, ordered from left to right according to the
linear order defined above. For 1 ≤ j ≤ n, we draw a y-monotone curve lj connecting the points
{pij}n

i=0. This can be done in a such a way that lj and lj′ cross at most once between the horizontal
lines y = i − 1 and y = i. Moreover, such a crossing occurs if and only if the order of p(i−1)j and
p(i−1)j′ is different from that of pij and pij′ .

It is clear from the definition that if pij′ < pij for some 0 ≤ i ≤ n and 1 ≤ j < j′ ≤ n, then we
also have pi′j′ < pi′j for all i < i′ ≤ n. Thus, the total number of intersections between the curves lj
and lj′ is at most one. In other words, these curves form a collection of pseudolines.

For any 1 ≤ i ≤ n, consider the set of indices Ji = {j | mij = 0}. Let j, j′ ∈ Ji, j < j′. By the
definition of the ordering, it is clear that pij′ < pij. On the other hand, it follows from condition
(c) that p(i−1)j < p(i−1)j′ . Thus, the pseudolines lj, j ∈ Ji must pairwise cross each other between
the horizontal lines y = i − 1 and y = i. Modifying these pseudolines within the horizontal strip
i− 1 < y < i, we can make sure that all of them pass through the same point Pi. Thus, we obtain a
collection of n pseudolines lj and a set of n points Pi in the plane. The number of point-pseudoline
incidences between them is exactly the same as the number of 1 entries in the matrix M . According
to Székely’s celebrated result [11], the number of incidences between n points and n pseudolines is
O(n4/3), which proves part (i).

(ii) Consider a collection of n straight lines and n points in the plane with Ω(n4/3) incidences between
them. Assume that all points have distinct x coordinates, all lines have distinct slopes, and none
of them is vertical. The standard example of a point set and a line set with many incidences is an√

n × √
n integer grid with the n lines containing the highest number of points. There are many

parallel lines in this example, but we can get rid of them (along with the vertical lines and the points
with identical x coordinates) using a generic projective linear transformation that keeps the number
of incidences unchanged. Denote the points by Pi = (xi, vi) with x1 < x2 < . . . < xn, and the lines
by li : y = yix + wi with y1 < y2 < . . . < yn.

Let
f(x, y) = xy − f1(x) + f2(y),

where f1 and f2 are twice continuously differentiable functions such that f1(xi) = vi and f2(yi) = wi.
Clearly, we have d

dx
d
dyf(x, y) = 1 > 0. Furthermore, defining the matrix M = (mij) as in condition

(b’), we have mij = 1 if and only if f(xi, yj) = 0, which happens if and only if Pi is incident to lj .
Thus, the weight of M satisfies w(M) = Ω(n4/3), as required. ✷
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5 Geometric consequences and concluding remarks

A. First we deduce Corollary 1, the best known bound on the number of unit distances determined
by n points in the plane, from Theorem 5.

Proof of Corollary 1. Let P be a set of n points in the plane. Let l be a line in general position;
i.e., assume that l does not pass through any point in P and that the orthogonal projections of
the elements of P onto l are all distinct. Let l partition the point set P into two subsets, P1 and
P2, containing n1 and n2 elements, respectively, where n1 + n2 = n. Construct an n1 × n2 matrix
A = (apq), as follows. Let the rows (and columns) of A correspond to the points of P1 (and P2,
respectively), in the order of their projections to l. Let the entry apq in the row of A corresponding
to p ∈ P1 and in the column corresponding to q ∈ P2 depend on the Euclidean distance d(p, q)
between p and q:

apq =







−1 if d(p, q) < 1
0 if d(p, q) = 1
1 if d(p, q) > 1.

We claim that M ′′ := A satisfies the requirement in condition (c) formulated at the beginning
of Section 4. To see this, assume without loss of generality that l is horizontal and let p, q, r,
and s be points in P with p and q below l, and r and s above l. Furthermore, let q be to the
right of p, and let s be to the right of r. We need to show that at least one of the following four
inequalities are valid: d(p, r) < 1, d(p, s) > 1, d(q, r) > 1, d(q, s) < 1. (See Figure 2.) Indeed, if
the four points form a convex quadrilateral in the order pqsr, then this follows from the fact, that
the sum of the lengths of its two diagonals is larger than the total lengths of two opposite edges:
d(p, s) + d(q, r) > d(p, r) + d(q, s). If this is not the case, then p or q is not above the line rs, or r or
s is not below the line pq. Let us assume that p or q is not above the line rs. Then rs must intersect
l at a point x. Point x is either to the left of r or to the right of s. Assume without loss of generality
that the first possibility holds. Then p or q is to the left of x, so p (which is to the left of q) must be
in the quadrant to the left of x and above l. This implies d(p, r) < d(p, s), so we have d(p, r) < 1 or
d(p, s) > 1.

p
q

r

l

s

x

r

s

p

l

Figure 2.

We can apply Theorem 5 (i) to conclude that A has O(n4/3) zero entries. In other words, the
number of pairs of points that determine distance one and are separated by the line l is at most
O(n4/3).

We finish the proof by choosing a random direction and, again randomly, placing infinitely many
parallel lines in the chosen direction so that the distance between any two consecutive lines is 2. Let
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L denote the family of selected lines. For any l ∈ L, let Pl denote the set of points p ∈ P within
distance 1 of l. All the unit distance pairs of point in P that l separates are in Pl, so l separates
O(|Pl|4/3) pairs.

As the sets Pl are disjoint we have
∑

l∈L |Pl| ≤ n. The total number of unit distance pairs

separated by a member of L is
∑

l∈L O(|Pl|4/3) = O(n4/3). Since each unit distance pair of points
has a positive constant chance of being separated by a member of L, the result follows. ✷

Note that the above argument does not use any specific property of the Euclidean norm. For
any strictly convex norm N , one can slightly modify the proof to show that a set P of n points
in the plane has O(n4/3) pairs at N -distance 1. Let l be a line in general position that splits P
into two parts P1 and P2. Consider a unit circle with respect to the N -norm centered at a point
of l, and take a tangent t to this circle at one of its intersection points with l. Order the elements
of P1 and P2 according to their projections onto l, parallel to t. Define the matrix A = (apq) for
p ∈ P1, q ∈ P2 by letting apq = sign(dN (p, q) − 1). As in the Euclidean case, one can show that
A meets the requirements on M ′′ in condition (c). Thus, Theorem 5 implies that the number of
unit-N -distance pairs in P separated by l is O(n4/3). We proceed by randomly choosing a direction
and, again randomly, placing infinitely many lines in this direction such that the N -distance between
any pair of consecutive lines is two. The number of unit-N -distance point pairs in P separated by at
least one of these lines is still O(n4/3. The probability that a segment of N -distance one is cut by a
line belonging to the family is bounded from below by a positive constant depending on N . Hence,
the number of unit-N -distance pairs is O(n4/3, where the constant of proportionality depends on
N . We can get rid of the dependence on N by first applying an affine transformation that brings
the norm N close to the Euclidean norm. In other words, we can assume without loss of generality
that 1 ≤ dN (x, y)/d(x, y) ≤ 2 for all points x 6= y. Now the probability that a unit-N -distance
pair is separated by one of the lines in our random collection is bounded from below by a positive
absolute constant. Thus, with respect to any strictly convex norm, the number of unit distance pairs
determined by a set of n points in the plane is O(n4/3), where the constant of proportionality does
not depend on N .

According to Brass [4] and Valtr [14], there exist strictly convex norms with respect to which
the maximal number of unit distances among n points in the plane is Θ(n4/3). Therefore, one can
hope to make further progress in bounding the number of unit distance pairs by finding forbidden
patterns characteristic of the Euclidean norm.

This is the first proof of this result, that does not use any combinatorial tool other than a
“forbidden pattern” argument. Our proof cannot be considered entirely independent, because the
proof of Theorem 5 was based on Székely’s O(n4/3) upper bound on the number of incidences between
n points and n pseudolines in the plane, from where one can directly deduce Corollary 1.

Note that Theorem 5 involves an infinite class of forbidden patterns. It would be interesting
to come up with an alternative argument using only a finite number of forbidden configurations,
perhaps only 4-cycles and noncrossing hexagons.

B. For any unordered graph H0, let ex0(n,H0) stand for the maximal number of edges that a simple
unordered graph with n vertices can have if it does not contain H0 as a (not necessarily induced)
subgraph.

Füredi and Hajnal [8] conjectured that for every ordered graph H with interval chromatic number
2, the extremal function ex(n,A(H)) is close to ex0(n,H0), where H0 denotes the unordered graph
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obtained from H by disregarding the ordering of the vertices. More precisely, they asked whether

ex(n,A(H)) = O(ex0(n,H0) log n)

holds for all ordered graphs H with χ<(H) = 2.
We answer this question in the negative. Let H be any even cycle of length k ≥ 8, whose vertices

are ordered in such a way that χ<(H) = 2 and the 1 entries of A(H) form a positive orthogonal
cycle. (It is easy to see that such an ordering exists.) Obviously, no matrix satisfying condition (a)
or (a’) can contain A(H). By Theorem 5 (ii), there exist n × n zero-one matrices of weight Ω(n4/3)
which satisfy condition (a). Thus, we have ex(n,A(H)) = Ω(n4/3). On the other hand, H0 = Ck

and, by the Bondy–Simonovits theorem (see [3]), we have ex0(n,Ck) = O
(

n1+ 2

k

)

. For k ≥ 8, these

two bounds are far apart.
Let us remark that Füredi and Hajnal, perhaps having doubts about their conjecture, also asked

if their statement holds at least for trees. This problem is still open and it can be regarded as a
strong version of our Conjecture 1.

C. Braß, Károlyi, and Valtr [5] studied cyclically ordered graphs and asked whether the vertices of
every graph H0 can be cyclically ordered so that the extremal functions of the unordered and ordered
graphs differ by at most a constant factor. Without precisely defining cyclically ordered (in their
terminology, “convex geometric”) graphs, we note that their conjecture would immediately imply
that the vertices of any connected bipartite graph H0 can be ordered in such a way that the resulting
ordered graph H has interval chromatic number 2 and satisfies

ex(n, {A(H), (A(H))T }) = O(ex0(n,H0)).

Our counterexample to this conjecture is a tree of seven vertices: let H0 consist of three paths
of length 2, joined at a common endpoint. Since H0 is a tree, we have ex0(n,H0) = O(n). It is
easy to see that for any ordering H of H0 of interval chromatic number 2 the matrix A(H) contains

the pattern F =

(

1 1 0
1 0 1

)

or one of the seven other patterns obtainable from F by rotation

or reflection. If A(H) contains F , then ex(n, {A(H), (A(H))T }) ≥ ex(n, {F,F T }), where the latter
extremal function is Θ(n log n) as proved in both of the papers [2, 7]. By symmetry we have to

consider only one more pattern: let us assume A(H) contains F1 =

(

1 0 1
1 1 0

)

. In this case we

have ex(n, {A(H), (A(H))T }) ≥ ex(n, {F1, F
T
1 }). Here we also have ex(n, {F1, F

T
1 }) = Θ(n log n) as

proved in [13]. (An earlier lower bound of Ω(n log n/ log log n) is proved in [2].) In neither case does
the required inequality hold: the left-hand side is larger than the right-hand side by a factor of log n.

D. It is tempting to make the following “optimistic” conjecture that can be regarded as the “least
common denominator” of the two conjectures disproved above.

Conjecture 3 The vertices of any unordered graph H0 can be ordered in such a way that for the
resulting ordered graph H we have ex<(n,H) = O(ex0(n,H0) log n).
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