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Abstrat

We show that if a language has an interative proof of logarithmi statistial

knowledge-omplexity, then it belongs to the lass AM\ o�AM. Thus, if the poly-

nomial time hierarhy does not ollapse, then NP-omplete languages do not have

logarithmi knowledge omplexity. Prior to this work, there was no indiation that

would ontradit NP languages being proven with even one bit of knowledge. Our

result is a ommon generalization of two previous results: The �rst asserts that statis-

tial zero knowledge is ontained in AM \ o�AM [F-89, AH-91℄, while the seond

asserts that the languages reognizable in logarithmi statistial knowledge omplexity

are in BPP

NP

[GOP-94℄.

Next, we onsider the relation between the error probability and the knowledge

omplexity of an interative proof. Note that reduing the error probability via rep-

etition is not free: it may inrease the knowledge omplexity. We show that if the

negligible error probability Æ(n) is less than 2

�3k(n)

(where k(n) is the knowledge om-

plexity) then the language proven is in the third level of the polynomial time hierarhy

(spei�ally, it is in AM

NP

. In the standard setting of negligible error probability,

there exist PSPACE-omplete languages whih have sub-linear knowledge omplexity.

However, if we insist, for example, that the error probability is less than 2

�n

2

, then

PSPACE-omplete languages do not have sub-quadrati knowledge omplexity, unless

PSPACE= �

P

3

.

In order to prove our main result, we develop an AM protool for heking that a

samplable distributionD has a given entropy h. For any frations Æ; �, the veri�er runs

in time polynomial in 1=� and log(1=Æ) and fails with probability at most Æ to detet an

additive error � in the entropy. We believe that this protool is of independent interest.

Subsequent to our work Goldreih and Vadhan [GV-98℄ established that the problem of

omparing the entropies of two samplable distributions if they are notieably di�erent

is a natural omplete promise problem for the lass of statistial zero knowledge (SZK).
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1 Introdution

The ability of a party M to ompute a funtion depends on the information it aesses and

its omputational power. This ability may inrease when M interats with another (possibly

more powerful or more informed) party. The knowledge omplexity measure, introdued

by Goldwasser Miali and Rako� [GMR-85, GMR-89℄, is meant to measure how muh

party M has gained through the interation in this respet, alternatively phrased as the

amount of knowledge gained by party M . The speial ase in whih the interation does not

inrease the omputational ability of M at all is well known as zero knowledge interation.

A formulation of knowledge-omplexity, for the ase that it is not zero, has appeared in

[GP-91℄. A very appealing suggestion, atually made by Goldwasser Miali and Rako�, is

to haraterize languages aording to the knowledge-omplexity of their interative proof

systems [GMR-89℄.

The lass of knowledge omplexity 0 (better known as zero knowledge) stands at the

lowest level of the knowledge omplexity hierarhy, and at the top we have the lass of

languages with polynomial knowledge omplexity whih inludes all IP=PSPACE. Both for

zero-knowledge as for the knowledge omplexity in general, there are three standard variants

of the de�nitions whih result in three hierarhies of languages; that is, perfet, statistial

and omputational. In this paper we will only be interested in the statistial and perfet

hierarhies.

Our main result is a relation between the knowledge omplexity and the omputational

omplexity of languages. We show that languages with logarithmi knowledge omplexity are

inAM\o�AM. This result has a very interesting impliation on languages in NP. Reall

that if NP � o�AM then the polynomial time hierarhy ollapses [BHZ-87℄. Assuming

that the polynomial time hierarhy does not ollapse, we get thatNP-omplete languages do

not have logarithmi knowledge omplexity. Prior to our result, there was no indiation that

would ontradit all NP languages having knowledge omplexity 1. Note that, if a one-way

funtion exists, then this di�ers signi�antly from the omputational knowledge omplexity

hierarhy for whih NP-omplete languages have zero knowledge interative proofs (and so

do PSPACE-omplete languages) [GMW-86, IY-87, B+ 88℄.

1.1 Bakground on knowledge-omplexity

Loosely speaking, an interative-proof system for a language L is a two-party protool, by

whih a powerful prover an \onvine" a probabilisti polynomial-time veri�er of member-

ship in L, but will fail (with high probability) when trying to fool the veri�er into \aepting"

non-members [GMR-89℄. An interative-proof is alled zero-knowledge if the interation of

any probabilisti polynomial-time mahine with the predetermined prover, on ommon input

x 2 L, an be \simulated" by a probabilisti polynomial-time mahine (alled the simulator),

given only x [GMR-89℄. We say that a probabilisti mahineM simulates an interative proof

if the output distribution of M is statistially lose to the distribution of the real interation

between the prover and the veri�er.

The formulation of zero-knowledge presented above is known as statistial (almost-perfet)

zero-knowledge. If we require the distributions of the simulator to be equal to the distribu-

tion of the real interation we get the perfet zero-knowledge. (Yet another alternative is

1



omputational zero-knowledge but we do not onsider it here.)

Loosely speaking, the knowledge-omplexity of a protool � is the best possible \quality"

of an eÆient simulation of �. Namely, we say that a prover leaks k(n) bits of knowledge

to the veri�er if there is a probabilisti polynomial-time mahine (\simulator")M suh that

on any input x 2 L, the mahine M on input x, outputs a distribution, of whih a subspae

of density at least 2

�k(jxj)

is statistially lose to the distribution of the onversations in

the interation between the prover and the veri�er. For a formal de�nition and further

disussion, see Setion 2.2.

We say that a language L has knowledge omplexity k(n) if there is an interative proof

for L with knowledge omplexity k(n). We onsider the knowledge-omplexity of a language

to be a very natural parameter, and we onsider the question of how this parameter relates

to the omplexity of deiding the language to be fundamental.

1.2 Previous work

The omplexity of reognizing zero-knowledge languages was �rst onsidered by Fortnow

[F-89℄. Building on his work, Aiello and Hastad [AH-91℄ (see also [H-94℄ for an intuition)

showed that zero knowledge languages are in AM\ o�AM.

Bellare and Petrank [BP-92℄ bounded the omputational omplexity of languages whih

have short interative-proofs with low knowledge-omplexity. Goldreih, Ostrovsky, and Pe-

trank [GOP-94℄ have extended this result showing that any language of logarithmi knowledge-

omplexity an be reognized in BPP

NP

. This was the �rst relation found between a knowl-

edge omplexity of a language (above zero) and its omputational omplexity. Their result

gave the �rst indiation that PSPACE-omplete languages do not have low (i.e., logarithmi)

knowledge omplexity.

Goldreih, Ostrovsky, and Petrank have also showed that the di�erene between the

hierarhy of languages lassi�ed aording to their perfet knowledge omplexity and the

hierarhy of languages lassi�ed aording to their statistial knowledge omplexity is not big.

They showed how to transform interative proofs of statistial knowledge-omplexity k(n)

into interative proofs of perfet knowledge-omplexity k(n)+O(logn). This transformation

refers only to knowledge-omplexity with respet to the honest veri�er. Namely, it is only

guaranteed that the interation between the prover and the honest veri�er, i.e., the veri�er

that follows the protool, an be simulated eÆiently.

Aiello, Bellare, and Venkatesan [ABV-95℄ studied the lass of languages whih have k(n)

knowledge omplexity on the average (see [GP-91, ABV-95℄ for a de�nition of knowledge

omplexity on the average). They showed that languages with logarithmi average knowl-

edge omplexity are in BPP

NP

. They also showed a loser relation between the perfet

and the statistial hierarhies of languages (for the ase of average knowledge omplexity).

They showed that the di�erene between these knowledge omplexities is negligible for any

language. This result is also stronger in the sense that it is not restrited to the honest

veri�er simulation. We remark that it is not known how to get suh a lose relation for the

worst-ase knowledge omplexity.
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1.3 This work

Our main result is that languages having interative proofs with logarithmi knowledge-

omplexity are in AM\ o�AM. The lass AM is the lass of languages that have two

round Arthur Merlin proofs, or equivalently, have a onstant round interative proof. (There

is no restrition on the knowledge omplexity of this onstant round interative proof.) See

[BM-88, GS-89℄ for de�nitions of Arthur Merlin proofs, for some basi properties, and for

the equivalene of the de�nitions.

It was shown in [BHZ-87℄ that if NP � o�AM then the polynomial time hierarhy

ollapses. It is believed that the polynomial time hierarhy does not ollapse, and under

this assumption, our result implies that NP-omplete languages do not have logarithmi

knowledge omplexity. Prior to this result, there was no indiation that would ontradit all

of the languages in NP having knowledge omplexity 1.

Our seond result involves the onnetion of the soundness error probability and the

knowledge omplexity of an interative proof. We show that if a language has an interative

proof with negligible error probability Æ(n) and statistial knowledge omplexity k(n) and

if Æ(n) � 2

�3k(n)

then the language is in AM

NP

and so it is ontained in the third level of

the polynomial time hierarhy. We note that one may use the tehniques in [GOP-94℄ to

get a result for the ase of logarithmi knowledge omplexity. Spei�ally, if there exists an

interative proof for L with error Æ(n) and logarithmi knowledge omplexity k(n) and if

there exists a polynomial p(n) suh that (1�Æ(n))

2

�2

�k(n)

> Æ(n)+

1

p(n)

, then the language in

in BPP

NP

. Our result applies only to negligible Æ(n) but allows any knowledge omplexity

funtion that satis�es k(n) �

1

3

log

2

(1=Æ(n)). Let us say a few words on the impliations of

this result.

In the regular setting of zero-knowledge (or interative proofs) it does not matter in the

de�nition if we allow the error probability to be as high as 1=3 or if we insist that it is as

small as 2

�n

3

. However, the standard approah to reduing the error probability involves

repeated appliations of the interative proof and thus may inrease its knowledge omplex-

ity. Therefore, when disussing the knowledge omplexity, it seems important to �x the

error probability to some predetermined funtion. Following previous works we hoose the

reasonable requirement that the error probability be negligible (i.e., asymptotially smaller

than any polynomial fration).

Another aspet of this result onerns the trade-o� between reduing the error and in-

reasing the knowledge omplexity. Many past works onsidered the possibility of reduing

the error of a probabilisti algorithm while not inreasing the number of oin-tosses as muh

as the naive solution would. It would seem natural to ask the same question about the

knowledge omplexity. In the naive method, we repeat the protool t times, so the knowl-

edge omplexity inreases by a fator of t and the error probability (for simpliity assume

one-sided error) dereases from Æ into Æ

t

. Namely, the logarithm of 1=Æ and the knowledge

omplexity inrease by the same fator. Assuming PSPACE6= �

P

3

, and in light of our result,

one shouldn't expet to have a general method for doing muh better than that. Namely, the

logarithm of 1=Æ annot inrease substantially more rapidly than the knowledge omplexity

for languages outside AM

NP

.
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1.4 Impliations on the hint knowledge omplexity:

Another impliation of our seond result onerns a rather esoteri de�nition of knowledge

omplexity alled the hint version of knowledge omplexity. This de�nition was presented

in [GP-91℄ and was adequate in di�erent senarios (see [BCK-90℄). Loosely speaking, an

interative proof has knowledge omplexity k(n) in the hint sense, if there is a funtion h(x)

of the input (the hint funtion) suh that the interative proof on input x an be simulated

eÆiently given only x and the hint h(x), and jh(x)j � k(jxj). (The di�erene is that the

\help" whih the simulator gets does not depend on the random oin-tosses of the veri�er

or of the simulation. For an exat de�nition and detailed explanations see [GP-91℄.)

It was shown in [GP-91℄ that this de�nition does not seem to be adequate, beause some

protools in whih only a polynomial number of bits are transferred, have exponential knowl-

edge omplexity. Here, we laim that we an make a similar assertion for languages. Namely,

our result implies that a PSPACE-omplete language has super-polynomial knowledge om-

plexity in the hint sense unless PSPACE= �

P

3

. This ounter-intuitive assertion gives yet

another indiation that the hint measure is not an adequate one.

To see that the above assertion is orret, note that the hint measure does not inrease

when one uses sequential repetitions of the protool. Also, note that if a protool has knowl-

edge omplexity k(n) in the hint measure, then it also has at most k(n) knowledge omplexity

in the standard (fration) measure onsidered here. Combining these two properties, we get

that if a language has an interative proof with polynomial hint knowledge omplexity k(n)

and some onstant error probability, then this language also has an interative proof with

k(n) knowledge omplexity in the standard measure with negligible error probability 2

�3k(n)

and thus this language is in the third level of the polynomial hierarhy.

1.5 Tehniques used

We begin by establishing a separation property whih separates x in the language from x not

in the language. This property is a modi�ation of the separation property used in [AH-91℄.

Next, we have to show that this separation an be deteted by an AM protool. For this,

we employ the lower and upper bounds on set sizes as presented by [GS-89, F-89℄, and build

on them an AM approximation for the entropy of the output distribution of the simulator.

We believe that the protool for approximating the entropy of a samplable distribution is of

independent interest. We note that it is sublimed from a protool in [AH-91℄ whih is used

there for a spei� distribution.

In order to prove the validity of the separation property, we use tehniques developed

in [GOP-94℄ whih relate the distribution of onversations in the original interative proof

with the distribution of onversations in a mental experiment in whih the original veri�er

interats with the simulation-based prover, i.e., a prover that ats like the prover in the

simulation (see Setion 2.3 for a formal de�nition of this prover).

Our main result is proven for perfet knowledge omplexity and we employ a result from

[GOP-94℄ asserting that the distane between perfet and statistial knowledge omplexity

is lose enough for our result to hold for statistial knowledge omplexity as well.

In our seond result whih relates the knowledge omplexity and the error probability

we also employ tehniques for deterministi bounds on set sizes developed in [Si-83, St-83,
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JVV-86, BP-92℄.

1.6 Organization

In Setion 2 we give the de�nitions and notations we use in the paper. In Setion 3 we

present our AM protool for proving the entropy of a samplable distribution. In Setion

4 we provide an overview of the onstrution in [AH-91℄ and explain why it doesn't work

in the ase that the knowledge omplexity is greater than 0. In Setion 5 we present the

property of the simulator that tells apart inputs in the language from inputs not in the

language. The tools presented in the above setions are used in Setion 6 to present our

main result: a onstant round interative proof for reognizing the languages in logarithmi

statistial knowledge omplexity. In Setion 7 we present our result relating error probability

to knowledge omplexity of interative proofs. In Setion 8 we raise a few open questions.

2 Preliminaries

Let us state some of the de�nitions and onventions we use in the paper. Throughout this

paper we use n to denote the length of the input x. A funtion f : N ! [0; 1℄ is alled

negligible if for every polynomial p and all suÆiently large n f(n) <

1

p(n)

. Let the distane

between distributions D

1

and D

2

be

d(D

1

; D

2

) =

1

2

X

r

jProb

D

1

[r℄� Prob

D

2

[r℄j:

We say that an ensemble of distributions D

1

x

is statistially lose to another ensemble D

2

x

over a language L, if the funtion

f(n) = max

jxj=n; x2L

fd(D

1

x

; D

2

x

)g

is negligible.

2.1 Interative proofs

We begin by realling the de�nitions of interative proofs presented by [GMR-89, B-85℄.

For formal de�nitions and motivating disussions the reader is referred to [GMR-89℄. An

interative proof is a protool in whih a (omputationally unbounded, probabilisti) prover

P is interating with a (probabilisti polynomial-time) veri�er V . Intuitively, the goal of

the prover is to prove to the veri�er V that a given input is in a predetermined language.

Formally, we say that the pair (P; V ) onstitutes an interative proof for a language L if

there exist negligible funtions Æ



: N ! [0; 1℄ the ompleteness error and Æ

s

: N ! [0; 1℄ the

soundness error suh that

1. Completeness: If x 2 L then

Prob [(P; V )(x) aepts ℄ � 1� Æ



(n)

2. Soundness: If x 62 L then for any prover P

�

Prob [(P

�

; V )(x) aepts ℄ � Æ

s

(n)
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2.2 Knowledge Complexity

Let us de�ne the statistial (and perfet) knowledge omplexity measure of protools (and

spei�ally of interative proofs). We use the fration de�nition of knowledge omplexity as

presented by [GP-91℄. For further intuition and motivation see [GP-91℄.

Throughout the rest of the paper, we only refer to knowledge-omplexity with respet to

the honest veri�er; namely, the ability to simulate the honest veri�er's view of its interation

with the prover. (In the stronger de�nition, one onsiders the ability to simulate the point

of view of any eÆient veri�er while interating with the prover.) This restrition only

strengthen the results presented in the paper.

Let (P; V )(x) be the random variable that is distributed aording to the veri�er's view

of the (probabilisti) interation between P and V on the input x. The view ontains the

veri�er's random tape as well as the sequene of messages exhanged between P and V .

In order not to have to distinguish the view of the interation from the onversation

itself we insist throughout the paper that the veri�er ends the onversation with sending

his random oins as the last message. Note that it is important to inlude the oins of the

veri�er in the output of the simulation, and alling this the last round of the interation is

just notation. For simpliity we also require that the veri�er starts the onversation, and

that the number of messages making up the onversation depends on the input length only.

The prover and the veri�er speak in alternate rounds, the veri�er taking the odd numbered

rounds and the prover speaking in the even numbered rounds. We all a onversation valid

if all the moves by the veri�er are onsistent with its oin-ips (as given in the last message).

We denote by 

i

the i round pre�x of a onversation .

By the fration formulation of knowledge omplexity, we say that a protool has knowl-

edge omplexity k(n) if there exists an eÆient simulation of the protool that \partially"

sueeds in simulating the protool. (A \fully suessful" simulation implies that the protool

is zero knowledge.) The exat interpretation of \partially suessful" is that in order to show

that the knowledge omplexity is k(n), the simulator must have a subspae of its output dis-

tribution whih is of density at least 2

�k(n)

, and whih simulates the protool \suessfully".

The interpretation of a suessful simulation would be \exatly equal distributions" for per-

fet knowledge omplexity, and \statistially lose distributions" for statistial knowledge

omplexity.

We follow with the formal de�nition. In the de�nition we prefer to talk about a subspae

of the random tapes of the simulator rather than to talk about a subspae of the output

distribution of the simulator. Although the meaning is the same, it will be easier to work

with this de�nition when proving properties of knowledge omplexity.

De�nition 2.1 (knowledge-omplexity | fration version): Let �: N ! (0; 1℄. We say

that an interative proof (P; V ) for a language L has perfet (resp., statistial) knowledge-

omplexity log

2

(1=�(n)) in the fration sense if there exists a probabilisti polynomial-time

mahine M with the following good subspae property. For any x 2 L there is a subset of

M 's possible random tapes, denoted S

x

, suh that:

1. The set S

x

ontains at least a �(n) fration of the set of all possible oin tosses of M(x).

2. Conditioned on the event that M(x)'s oins fall in S

x

, the random variable M(x) is

identially distributed (resp., statistially lose) to (P; V )(x). Namely, for the perfet
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ase this means that for every �

Prob(M(x; !)=� j!2S

x

) = Prob((P; V )(x)=�)

whereM(x; !) denotes the output of the simulatorM on input x and oin tosses sequene

!.

Note that the de�nition of perfet (statistial, orr.) knowledge omplexity zero (i.e.,

when k = 0) exatly mathes the de�nition of perfet (and statistial, orr.) zero knowledge

as given in [GMR-89℄. For further motivation and disussion of zero knowledge, the reader

is referred to [GMR-89℄. From the above de�nitions of knowledge omplexity ombined with

the de�nitions of interative proofs, the knowledge omplexity lasses of languages an be

formulated:

De�nition 2.2 (knowledge-omplexity lasses):

� PKC(k(n)) = languages having interative proofs of perfet knowledge-omplexity k(n).

� SKC(k(n)) = languages having interative proofs of statistial knowledge-omplexity k(n).

A onnetion between the perfet and the statistial hierarhies was given in [GOP-94℄:

Theorem 1 [GOP-94℄

SKC(k(n)) � PKC(k(n) +O(logn))

Note that this result is only proved for the honest veri�er simulation|the de�nition of

knowledge omplexity presented here.

2.3 The simulation-based prover

An important ingredient in our proof is the notion of a simulation based prover, introdued

by Fortnow [F-89℄. Consider a simulator M that outputs onversations of an interation

between a prover P and a veri�er V . We de�ne a new prover P

M

, alled the simulation-

based prover, whih selets its messages aording to the onditional probabilities indued

by the simulation. Namely, on a partial history h of a onversation, P

M

outputs a message

� with probability

Prob(P

M

(h)=�)

def

= Prob(M

jhj+1

=hÆ�

�

�

�M

jhj

=h)

where M

t

denotes the t message long pre�x of the random onversation output by the

simulatorM . Notie that P

M

is not de�ned for pre�xes h output byM with zero probability.

In perfet zero knowledge if x 2 L then P

M

equals the original prover P . It is important

to note however that the behavior of P

M

is not neessarily lose to the behavior of P if

the knowledge-omplexity is greater than 0. This is the main reason why the AM protool

presented by [AH-91℄ for the ase of zero knowledge is inappropriate for the ase of higher

(even 1) knowledge omplexity.
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2.4 Three distributions used throughout the paper

Let us de�ne three distributions whih are going to be used in all that follows. These are

distributions on onversations as output by running a protool or invoking the simulator.

Here P and V onstitute an interative proof for some language L, M is a simulator for

this interation, and P

M

is the simulation-based prover (see Setion 2.3). We onsider the

following three distributions:

1. The distribution of onversations output by the simulator. We denote the probability

that a onversation  is output by the simulator by Prob

M

[℄.

2. The distribution of onversations in the original interative proof (P; V ). We denote

the probability that a onversation  is output by this interative proof by Prob

(P;V)

[℄.

3. Last, we onsider the interation between the simulation-based prover P

M

and the

original veri�er V . We denote the probability that a onversation  is output by this

interation by Prob

(P

M

;V)

[℄.

All these distribution depend on the input x. In our notation we suppress x, the input

should be lear from the ontext. For the ase of perfet knowledge omplexity, an immediate

onnetion between the �rst and the seond distributions follows from the de�nitions. For

any transript  we have Prob

M

[℄ � 2

�k(n)

�Prob

(P;V)

[℄, where k(n) is the perfet knowledge

omplexity.

Consider now the probability of a onversation  in the third distribution. We would

like to express Prob

(P

M

;V)

[℄ using only probabilities of the form Prob

M

[

i

℄, where 

i

is the

i-round pre�x of the onversation . Let us partition the omputation of Prob

(P

M

;V)

[℄ to a

round-by-round omputation:

Prob

(P

M

;V)

[℄ =

d(n)

Y

i=1

Prob

(P

M

;V)

[

i

j

i�1

℄;

where d(n) is the number of messages sent by P and V . Reall that d(n) is odd and the

terms with i being odd are determined by the veri�er V . Thus, if  is valid, i.e., the veri�er

moves are onsistent with his oin-tosses and the history so far, then the produt of all the

odd terms equals the probability of V indeed piking the random tape spei�ed in the end

of the onversation . Thus,

d(n)�1

2

Y

i=0

Prob

(P

M

;V)

[

2i+1

j

2i

℄ = 2

�t(n)

where t(n) is the length of the random tape used by V .

The terms that have an even i are determined by P

M

thus Prob

(P

M

;V)

[

2i

j

2i�1

℄ =

Prob

M

[

2i

j

2i�1

℄. Here P

M

is well de�ned if  is output by M with positive probability.

For a valid transript  with Prob

M

[℄ > 0 we thus have:

Prob

(P

M

;V)

[℄ = 2

�t(n)

�

d(n)�1

2

Y

i=1

Prob

M

[

2i

℄

Prob

M

[

2i�1

℄

(1)

For an invalid onversation  we trivially have Prob

(P

M

;V)

[℄ = 0. This simple rewriting of

Prob

(P

M

;V)

[℄ was �rst noted in [AH-91℄.

8



3 Approximating the entropy in a onstant number of

rounds

Our �rst tool is an AM protool for verifying the entropy of a polynomially samplable

distribution to within an auray of

1

poly

. We onsider this protool to be of independent

interest but emphasize that it is based on set size lower and upper bound protools of

[GS-89, F-89℄ and it is sublimed from a protool in [AH-91℄, whih is used there for a spei�

distribution. It is worth omparing this protool to the one given in [GV-98℄ for the same

purpose (or more exatly to approximate the di�erene of two entropies). Their publi oin

interative proof has the advantage of having strong zero-knowledge properties, ours has

the advantage of having a onstant number of rounds. The [GV-98℄ protool uses the set

size lower bound protool but instead of the upper bound protool they use an elaborate

\pushing game" from the paper [Oka-96℄, requiring more than onstant number of rounds.

We begin by explaining the setting.

Let D be a disrete distribution and we let Prob

D

[y℄ denote the weight of the element y

in this distribution. The entropy H(D) of D is de�ned as:

H(D) = �

X

y

Prob

D

[y℄ logProb

D

[y℄; (2)

where the sum extends for all values y in the range of D.

We all an ensemble D

x

of distributions polynomially samplable if there exist a polynomial

time randomized mahine whose output on input x is distributed aording to D

x

.

We state our result on approximating the entropy here but before the proof we reall the

set-size approximation protools needed for it.

Theorem 2 Let D

x

be a polynomially samplable ensemble of distributions. There exists a

onstant round upper bound interative proof and a onstant round lower bound interative

proof for the entropy H(D

x

) that on input x and Æ; �; � > 0 satis�es:

1. The veri�er runs in polynomial time in jxj, 1=�, and log(1=Æ).

2. If the prover plays optimally then the veri�er in the upper bound protool aepts with

probability at most Æ if H(f) � �+� and rejets with probability at most Æ if H(f) � �.

3. Similarly, if the prover plays optimally then the veri�er in the lower bound protool

aepts with probability at most Æ if H(f) � �� � and rejets with probability at most

Æ if H(f) � �.

We later refer to the lower bound protool mentioned in this theorem as an interative

proof for H(f) � � with auray � and error Æ.

As we shall see in Setion 3.2 omputing the entropy of a samplable distribution is

equivalent to omputing the average size of the set f

�1

(f(x)) in logarithmi sale. Here x is

taken uniformly from the domain f0; 1g

t

of the eÆiently omputable funtion f .

9



3.1 Protools for set sizes

For the sake of self ontainment, we inlude the set-size approximation protools. For a more

detailed desription the reader may refer to [F-89, AH-91℄.

The main tool in these protools is universal family of hash funtions (sometimes denoted

by universal

2

family of hash funtions) [CW-79℄. This is a olletion H of funtions mapping

a domain D to the a range R suh that for every point X 2 D and a random element h 2 H,

the value h(X) is uniformly distributed in R, and for two elements X 6= Y 2 D the values

h(X) and h(Y ) are independent. The existene of polynomial time universal families H

n;m

for D = f0; 1g

n

and R = f0; 1g

m

is well known (take for example the olletion of aÆne

linear maps over the two element �eld).

Let us begin with the lower-bound. Suppose we have a subset S of a larger domainD, and

we assume that the veri�er an hek if a given element X is in S. We onsider a universal

family of hash-funtions from D to a range R. Basially, in the following protool the prover

onvines the veri�er that the ardinality of the set S is bigger than the ardinality of the

range R. The protool is as follows:

The veri�er piks uniformly a random hash-funtion h from the family and a random

element Y 2 R and sends them to the prover. The prover responds with an element X 2 D.

The veri�er aepts if X 2 S and h(X) = Y .

The following lemma implies the soundness and ompleteness of the above protool. For

the simple proof see [AH-91℄.

Lemma 3.1 [GS-89℄ If the prover plays optimally then the aeptane probability p in the

above protool satis�es

1�

jRj

jSj

� p �

jSj

jRj

:

Another way to state the lemma is that if jSj < �jRj then the the veri�er aepts with

probability at most �, but if jRj < �jSj then the prover an make the veri�er rejet with

probability less than �.

Let us now desribe the set-size upper bound protool. Again, we assume that there is

a non-empty subset S of a domain D. This time, we do not require that the set will be

reognizable in polynomial time, but we have to assume that the veri�er has one element

X in S whih was seleted uniformly in S, and is unknown to the prover. Again, we use

a universal family of hash funtions from the domain D to a range R. The protool is as

follows:

The veri�er hooses a random hash-funtion h from the family and sends h and h(X) to

the prover. The prover responds with a value Z 2 D. The veri�er aepts if X = Z.

The following lemma implies the ompleteness and soundness of the protool.

Lemma 3.2 [F-89℄ If the prover plays optimally, then the aeptane probability p of the

above interative proof protool satis�es

1�

jSj � 1

jRj

� p �

jRj

jSj

:
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Another way to state the lemma is that if jRj < �jSj then the the veri�er aepts with

probability at most �, but if jSj � 1 < �jRj then the prover an make the veri�er rejet with

probability less than �.

The protool is from [F-89℄ and its orretness is proved there. Nevertheless, we inlude

the short proof here beause the upper bound proved there on the aeptane probability is

somewhat weaker and the proof (and the bound) is slightly more ompliated.

Proof: The prover an ertainly win if h(X) has a unique inverse image in S (whih is X).

Fix X 2 S, by the pairwise independene of the hash funtions family, the probability that

another �xed element of S is hashed to the same value as X is 1=jRj. Thus, the probability of

suh an element existing between the remaining jSj�1 elements in S is at most (jSj�1)=jRj

hene the lower bound on the probability p.

For the upper bound on the probability p, we assume, without loss of generality, that the

prover hooses its optimal response for every message he reeives deterministially. Let us �x

the hash funtion h. For any possible value � 2 R that the veri�er may send, the prover has

one (optimal) response Z = Z(�). So the prover has at most jRj di�erent possible answers

and it an only win if the random element X that the veri�er hooses in S is one of these

values (reall that the veri�er only aepts if X = Z). The probability that an X randomly

hosen in S will fall into this set of at most jRj element is at most jRj=jSj, and we are done

with the proof of the Lemma.

Although the set-size approximation protools just desribed are suÆient for the ap-

proximation of the entropy we need an improved lower bound protool later for our main

protool (spei�ally, for the seond step in the protool for reognizing L or L in Setion 6).

Therefore let us state this simple extension here. The ampli�ation we use is similar to the

one used by [JVV-86, BP-92℄. In order to approximate better the ardinality of the set S,

we simply use the above lower bound protool for the set S

m

, where m is an integer whih

depends on the desired auray.

Lemma 3.3 For every � > 0 and Æ > 0 there is two-round protool for lower bounding the

size of a set S � f0; 1g

n

in whih the veri�er is given a laimed lower bound s on jSj, and

a blak box for testing membership in S. The veri�er runs in polynomial time in n, 1=� and

log(1=Æ) and furthermore:

� If s � jSj then the prover an make the veri�er aept with probability at least 1� Æ.

� If s � jSj(1 + �) no prover an make the veri�er aept with probability above Æ.

We all suh a protool a proof for jSj � s with relative auray (1+ �) and error Æ. For

self ontainment, we inlude the standard proof.

Proof: Setting m appropriately (see below), we apply the protool of Lemma 3.1 for S

m

with a polynomial time universal family of hash funtions from f0; 1g

nm

to f0; 1g

bm log((1��=2)s)

.

By Lemma 3.1 we get that the prover an make the aeptane probability at least 1� (1�

�=2)

m

if jSj � s but it annot make the veri�er aept with probability more than (1� �=2)

m

if s � jSj(1 + �). Thus hoosing m = d

2

�

� log

1

Æ

e proves Lemma 3.3.

Note that a similar improvement over the upper bound protool would require the veri�er

being given m random elements in S whih are not known to the prover. This is not feasible

in our ase, and seems a hard demand in general.
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3.2 Approximating the entropy

As a �rst step toward the proof of Theorem 2 we get an expression for the entropy that is

more suitable for our purposes. As the distribution D

x

is the distribution of a polynomial

time randomized mahine on input x we may onsider this output as a funtion f(r) on the

random tape r. We �x the length of the random tape r to a suitable value t thus we have

r 2 f0; 1g

t

. Here f is omputable in polynomial time (given x). We rewrite the de�nition of

the entropy given by Equation 2 to get:

H(D

x

) = H(f) = �

X

y

X

r:f(r)=y

Prob(r) logProb

s

[f(s) = y℄

= �

X

r

Prob(r) logProb

s

(f(s) = f(r))

= �Exp

r

[log Prob

s

[f(s) = f(r)℄℄

= t� Exp

r

[log jf

�1

(f(r))j℄:

Here Prob(r) = 2

�t

is the probability of hoosing r when uniformly sampling f0; 1g

t

, Exp

r

denotes the expetation over a random r suh seleted, and Prob

s

denotes probability with

respet to a uniformly seleted s 2 f0; 1g

t

.

The idea of the protool is to measure an empirial average value as an approximation

to the expeted value of log jf

�1

(f(r))j. We generate a large polynomial number m of inde-

pendent random samples r

i

and approximate the expetation by �

1

m

P

m

i=1

log jf

�1

(f(r

i

))j.

We bound the probability of this approximation being far from the expetation by a variant

of the Cherno� bound.

However, we annot alulate the value inside the summation, i.e., given r

i

it is hard to

alulate log jf

�1

(f(r

i

))j. Therefore, we use the set size lower and upper bound protools

of [GS-89, F-89℄ for this. Note that for lower bounding the entropy we need to upper

bound jf

�1

(f(r

i

)j and vie versa. For the entropy lower bound protool one needs a uniform

random element in the set. Fortunately as r

i

is hosen uniformly in f0; 1g

t

it is also uniform

in f

�1

(f(r

i

)). The simplest approximation protools (i.e., the ones that only guarantee a

onstant fator approximations) are enough for our purposes beause we approximate the

produt

Q

m

i=1

jf

�1

(f(z

i

))j as a whole rather then eah of the sets separately.

We present both lower and upper bound protools, although for proving our main result

we use the lower bound protool only.

We are given a funtion f de�ned on f0; 1g

t

, an approximation parameter � > 0 and an

error parameter Æ > 0 and let the value � be the (lower or upper) bound on H(f) that the

prover would like to prove. Letm be a polynomial in t, 1=�, and log(1=Æ) to be spei�ed later.

First, we redue the error by using many opies of the funtion f . So onsider the funtion F

de�ned on the m-tuples of t-bit strings D = f0; 1g

mt

by F (r

1

; : : : ; r

m

) = (f(r

1

); : : : ; f(r

m

)).

For the upper bound we use a universal family of hash funtions H

mt;u

from D to f0; 1g

u

,

where u = bm(t � � � �=2) and for the lower bound protool we use a universal family of

hash-funtions H

mt;l

from D to f0; 1g

l

, where l = bm(t� �+ �=2).

We assume in both protools that the veri�er an ompute f(r) and thus also F (X).

Let us start with the upper bound protool.

� The veri�er uniformly piks a random X 2 D, a hash-funtion h 2 H

mt;u

and an

element Y 2 f0; 1g

u

. The veri�er sends F (X), h, and Y to the prover.
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� The prover responds with Z 2 D.

� The veri�er aepts i� F (Z) = F (X) and h(Z) = Y .

Let us also present the lower bound protool.

� The veri�er uniformly piks a random X 2 D and a hash-funtion h 2 H

mt;l

. The

veri�er sends F (X), h, and h(X) to the prover.

� The prover responds with Z 2 D.

� The veri�er aepts i� X = Z.

The following lemma states that the above protools satisfy the onditions of Theorem

2.

Lemma 3.4 The following holds for the above protools:

1. The veri�er in both protools runs in polynomial time in t, 1=�, and log(1=Æ) if it has

blak-box aess to f .

2. If the prover plays optimally then the veri�er in the upper bound protool aepts with

probability at most Æ if H(f) � �+� and rejets with probability at most Æ if H(f) � �.

3. Similarly, if the prover plays optimally then the veri�er in the lower bound protool

aepts with probability at most Æ if H(f) � �� � and rejets with probability at most

Æ if H(f) � �.

Proof: Clearly, the statement on the eÆieny of the veri�ation proess holds, sine the

veri�er only has to sample the domain f0; 1g

mt

, to sample h 2 H

mt;l

or h 2 H

mt;u

, and to

ompute h and F on given points. So let us onentrate on the error probabilities of the

protools.

The �rst soure of error in both protools is that for the uniformly hosenX = (x

1

; : : : ; x

m

)

the average a = 1=m

P

m

i=1

logProb

y

(f(y) = f(x

i

)) might deviate from its expeted value,

i.e., from �H(f), by more than �=4. Call suh a hoie of X bad, and let us bound the

probability of hoosing a bad X using the Hoe�ding Equation [Hoe-63℄ (a variant of the

Cherno� bound). This inequality asserts that the probability of the average of m identially

distributed independent variables deviating from the expeted value by at least E is at most

2e

�2E

2

m=R

2

where R is the size of the range of the random variables. We an learly make

this less than Æ=2 by hoosing m > 8t

2

log(1=Æ)=�

2

. So this soure of error ontributes only

Æ=2 to the error probability. Let us ontinue and hek the error probability that we get

from the set-size lower and upper bound protools.

In both protools, we use the set size approximation protools on the set F

�1

(F (X)) for

the spei� X hosen by the veri�er. The ardinality of this set is

jF

�1

(F (X))j =

m

Y

i=1

jf

�1

(f(x

i

))j

=

m

Y

i=1

2

t

� Prob

y

(f(y) = f(x

i

))

= 2

m(t+a)
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where a is the empirial average de�ned above. Thus, if the hoie of X is not bad then we

get

2

m(t�H(f)��=4)

< jF

�1

(F (X))j < 2

m(n�H(f)+�=4)

: (3)

Suppose X is not bad, and thus ardinality of F

�1

(F (X)) is within the bounds spei�ed

in Equation 3. If the upper bound �, laimed by the prover is valid, i.e., H(f) � �, then by

Lemma 3.1 the veri�er rejets with probability at most

2

u

=2

m(t�H(f)��=4)

< 2

�m�=4+1

:

If however H(f) � � + � then the probability of aeptane is at most 2

m(t�H(f)+�=4)

=2

u

<

2

�3m�=4

. Both these error probabilities an be made less than Æ=2 by makingm > 4(log(1=Æ)+

2)=�. This proves the laims on the entropy upper bound protool.

The proof for the lower bound protool is similar. Notie that onditioned on any value

Y = F (X) sent by the veri�er to the prover, the atual value of X is a uniformly distributed

random element of the set F

�1

(Y ). Thus the set-size upper bound protool and Lemma 3.2

is appliable, and we are done with the proof of Theorem 2.

3.3 Remarks

A remark on publi oins: The statement of this theorem an be strengthened into

an approximation proedure in AM (i.e., the veri�er only having publi oin tosses) by

applying the standard tehniques of transforming an interative proof to an Arthur-Merlin

game [GS-89℄. The upper bound protool is already an Arthur-Merlin game as it does not

hurt if the prover learns X. Obviously, this an not be said about the lower bound protool.

A remark on the omplexity of the funtion f : In the protool derived from the

previous remark Arthur evaluates f at the end of the game. This allows us to use the

protool to approximate the entropy not only of polynomial time omputable funtions but

also for funtions for whih f(x; y)jf(x) = yg 2 AM and jf(x)j is polynomially bounded in

jxj. To this end, we only have to modify the protool so that Merlin helps Arthur evaluate

the funtion.

A remark about perfet ompleteness: Finally, one an redue the rejetion probability

when the bound is orret to zero by standard tehniques [GMS-87℄ making a one-sided error

Arthur-Merlin game.

4 An overview of the tehniques in [AH-91℄

The main result of this paper is that SKC(O(logn)) � AM\ o� AM. This generalizes

the result of Fortnow [F-89℄ and Aiello and Hastad [AH-91℄ stating SZK � AM\o�AM.

Let us start by realling the underlying tehniques of the [AH-91℄ paper. This is done both

beause we are going to use some of the same tehniques and to see why they don't suÆe

by themselves for our purposes.
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4.1 The ideas in [AH-91℄

The proof in [AH-91℄ is as follows. First, they present a property of the simulation that

holds if and only if x 2 L. Their proof then ontains two parts: First they prove that indeed

this property haraterizes the ase x 2 L versus the ase x 62 L, and seond they show how

this property and its negation an be proven in AM.

We alter their argument a little bit. A similar simpli�ed argument an also be found

in [GV-98℄. For simpliity we only onsider perfet zero-knowledge here. We may assume

without loss of generality that the simulator outputs mostly valid, aepting transripts. If

this is not the ase, then the veri�er an verify that x 62 L without interation with the

prover simply by invoking the eÆient simulator.

The distinguishing property is atually the magnitude of a relative entropy. They on-

sider two distributions: The distribution of onversations output by the simulator, and

the distribution of onversations output by the interation of the original veri�er V with

the simulation-based prover P

M

as in Setion 2.4. If x 2 L then the relative entropy

H(M(x)jj(P

M

; V )(x)) is zero as the two distributions atually oinide, as we onsider per-

fet zero knowledge. However if x 62 L then muh of the weight in M(x) is onentrated on

the set of aepting transripts and that set has negligible weight in (P

M

; V )(x). It is well

known (and easy to see) that the relative entropy H(M(x)jj(P

M

; V )(x)) is large in suh a

ase. Reall that by the de�nition of relative entropy:

H(M(x)jj(P

M

; V )(x)) =

X



Prob

M

[℄ � log

Prob

M

[℄

Prob

(P

M

;V)

[℄

:

(We use the notations of Setion 2.4.)

It is shown in [AH-91℄ how to prove that this relative entropy is big or small in AM.

Using the approximation of the entropy desribed in Setion 3, we an o�er a more ompat

presentation of that protool.

Reall Equation 1 from Setion 2.4. For any valid transript  with Prob

M

[℄ > 0 it holds

that

Prob

(P

M

;V)

[℄ = 2

�t(n)

�

d(n)�1

2

Y

i=1

Prob

M

[

2i

℄

Prob

M

[

2i�1

℄

;

where t(n) is the number of random bits used by the veri�er V and d(n) is the (odd) number

of rounds in the protool.

Using Equation 1 we may rewrite the relative entropy

H(M jj(P

M

; V )) =

X



Prob

M

[℄ log

Prob

M

[℄

Prob

(P

M

;V)

[℄

=

X



Prob

M

[℄ �

2

4

log Prob

M

[℄ + t(n)�

d(n)�1

X

i=1

(�1)

i

log Prob

M

[

i

℄

3

5

= t(n)�

d(n)

X

i=1

(�1)

i

X



Prob

M

[℄ � logProb

M

[

i

℄

= t(n) +

d(n)

X

i=1

(�1)

i

H

M

(

i

):
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Here H

M

(

i

) is the entropy of the �rst i messages generated by M . So it remains to notie

that these d(n) entropies an be approximated in parallel in AM, whih follows from Theorem

2.

4.2 Generalizing these tehniques

Let us onsider what happens with the relative entropy H(M(x)jj(P

M

; V )(x)) if the knowl-

edge omplexity is not zero. It is still big in the ase x 62 L for similar reasons. However

if x 2 L, even for the ase that k(n) = 1, only half of the distribution generated by the

simulator has to be idential to the one generated by P and V and the rest is arbitrary.

This \bad half" of the distributionM an be onentrated on a single transript  for whih

Prob

M

[℄ > 1=2 but Prob

(P

M

;V)

[℄ = 2

�n

thus making H(M(x)jj(P

M

; V )(x)) big although

x 2 L. Therefore, this relative entropy is not able to distinguish between x 2 L and x 62 L.

Note that in our example there is one (or a few) bad onversations that make the relative

entropy beome large. We an express the relative entropy as an expetation:

H(M(x)jj(P

M

; V )(x)) = Exp

2M

[log

Prob

M

[℄

Prob

(P

M

;V)

[℄

℄:

We are going to laim that even though approximating the expeted value is not helpful,

approximating the tail of the involved distribution will do the work.

In ase x 2 L the good part of the distribution M (the part that really simulates (P; V ))

onsists of mostly aepting transripts , and for most of them Prob

M

[℄=Prob

(P

M

;V)

[℄ is lim-

ited. This is easy to see for the real interation (P; V ), i.e., for the fration Prob

M

[℄=Prob

(P;V)

[℄,

but it requires an involved alulation for the interation (P

M

; V ) (see next setion).

If x 62 L however, (P

M

; V ) is mostly rejeting and thus if M outputs many aepting

transripts then Prob

M

[℄=Prob

(P

M

;V)

[℄ is very big for most of them. See the easy argument

in the next setion.

These observations lead us, in order to separate between the ase of x 2 L and the ase

of x 62 L, to onsider the probability that a onversation  output by M is aepting and

has a small ratio Prob

M

[℄=Prob

(P

M

;V)

[℄. This probability will be substantially bigger in the

ase x 2 L than in the ase x 62 L.

5 The di�erene between x 2 L and x 62 L

In this setion we formalize and prove the separation property motivated at the end of the

preeding setion. In the next setion we use this property in the ase of logarithmi perfet

knowledge omplexity to show that x 2 L (or x 62 L) in a onstant round interative proof.

Thus, we get that L 2 AM \ o�AM. In Setion 7 we use the same property to lower

bound the error probability of an interative proof of a language outside AM

NP

in terms of

its knowledge omplexity.

We all a valid transript  that leads to aeptane an aepting transript. We denote

this ondition by A().
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Lemma 5.1 Let (P; V ) be an interative proof for a language L. Let Æ

s

(n) be the soundness

error probability and k(n) be the perfet knowledge omplexity of this proof and suppose

that the ompleteness error probability Æ



(n) is at most 1=4. Let M be the orresponding

simulator and P

M

the simulation-based prover. Let x be a string of length n and let k = k(n)

and Æ = Æ

s

(n).

1. If x 62 L then the simulator outputs aepting onversations that have a small ratio

with very small probability. Formally:

Prob

M

"

A() ^

Prob

M

[℄

Prob

(P

M

;V)

[℄

� 2

k+3

#

� 2

k+3

Æ:

2. Whereas if x 2 L then the simulator has a substantial probability of outputting aepting

transripts with a small ratio. Formally,

Prob

M

"

A() ^

Prob

M

[℄

Prob

(P

M

;V)

[℄

� 2

k+2

#

� 2

�(k+2)

Disussion: In our appliations Æ � 2

k+3

is muh smaller than 2

�(k+2)

thus the lemma

separates the x 2 L and x 62 L ases. Note that the bound on the ratio slightly di�er in

the two ases. This di�erene is important sine we will not be able to ompute this ratio

preisely for a given transript when applying the lemma. However, we will have means to

approximate this ratio, and thus, we need the gap.

Proof: We begin by proving part 1 of the lemma. Let b = 2

k+3

. Let A be the set of

aepting onversation for whih the ratio is small. Namely, for all  2 A, we have

Prob

M

[℄ � Prob

(P

M

;V)

[℄ � b:

We have to show that Prob

M

[A℄ is small.

First, by the de�nition of A, we know that

Prob

M

[A℄ � Prob

(P

M

;V)

[A℄ � b (4)

(simply sum over all onversations in A). We know that sine the onversations in A are

aepting and sine, by the soundness property of the interative proof, no prover is able to

onvine the veri�er to aept with probability greater than Æ, we have

Prob

(P

M

;V)

(A) � Æ: (5)

Combining Equations 4 and 5 we get that Prob

M

[A℄ � Æ �b as needed for part 1 of the lemma.

For part 2 of the lemma we need a general tool onneting the distribution generated by

the original prover P and the veri�er V to the distribution generated by P

M

and V . Lemma

5.2 establishes this onnetion. This lemma is impliit in [GOP-94℄.

Lemma 5.2 [GOP-94℄: Let k be the perfet knowledge omplexity of the interation be-

tween the probabilisti parties P and V , and let M be the orresponding simulator, P

M

the

simulation-based prover. Then, for any set A of onversations it holds that:

Prob

(P

M

;V)

[A℄ � (Prob

(P;V)

[A℄)

2

� 2

�k

:
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For self ontainment, we provide the proof in the Appendix. Let us now use it to �nish

the proof of part 2 of Lemma 5.1. Consider the set A

0

for whih the ratio in the lemma is

big. Namely, let A

0

onsist of the transripts  for whih

Prob

M

[℄

Prob

(P

M

;V)

[℄

� 2

k+2

By the de�nition of the set A

0

(i.e., we sum over all onversations in A

0

), we get

Prob

M

[A

0

℄ � Prob

(P

M

;V)

[A

0

℄ � 2

k+2

(6)

Using Lemma 5.2 we get that

Prob

(P

M

;V)

[A

0

℄ � (Prob

(P;V)

[A

0

℄)

2

� 2

�k

(7)

Combining Equations 6 and 7 we get

Prob

(P;V)

[A

0

℄ �

q

Prob

M

[A

0

℄=2 � 1=2:

Let A be the set of aepting transripts for whih

Prob

M

[℄

Prob

(P

M

;V)

[℄

� 2

k+2

:

Note that A ontains all aepting onversations not in A

0

. In the original interation (P; V ),

all onversations are valid and only an Æ



(n) � 1=4 fration is not aepting. Therefore,

Prob

(P;V)

[A℄ � 1� Prob

(P;V)

[A

0

℄� Æ



(n) �

1

4

:

We onlude by realling that there is a subspae of density at least 2

�k

in the simulation

that is idential to the interation between P and V and thus

Prob

M

[A℄ � 2

�k

� Prob

(P;V)

[A℄ � 2

�(k+2)

and we are done with the proof of part 2 of Lemma 5.1.

6 The main theorem

We now use the above mahinery to introdue a onstant round interative proof for the

language L and its omplement. Using [GS-89, BM-88℄, we get that L is in AM\ o�AM.

Formally, we prove the following theorem.

Theorem 3

SKC(O(logn)) � AM\ o�AM
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We will only show that

PKC(O(logn)) � AM\ o�AM

sine it was shown in [GOP-94℄ (see Theorem 1) that

SKC(O(logn)) = PKC(O(logn)):

We remark that the theorem in [GOP-94℄ only applies for the honest veri�er simulation,

but it suÆes for us sine we are only using the simulation of the honest veri�er. Reall

that a language is in SKC(O(logn)) if it has an interative proof with statistial knowledge

omplexity O(logn) and negligible error.

So let us begin by realling the setting. We have a language L whih is in PKC(k(n))

for some k(n) = O(logn). Namely, there is an interative proof (P; V ) for L, and there is

a simulator M whih runs eÆiently and outputs a distribution on onversations between

P and V . We also onsider the distribution of onversations generated by an interation

between the simulation based prover P

M

and the original veri�er V (see Setion 2).

Notie that in the separation result Lemma 5.1 the probability is a polynomial fration

in one ase and it is negligible in the other.

In our protool on input x of length n the new veri�er V

0

, with the help of the new prover

P

0

, approximates the probability that a onversation , output by the simulator M(x), is

aepting and satis�es log

Prob

M

[℄

Prob

(P

M

;V)

[℄

� k + 2:5, where k = k(n). The veri�er V

0

does that

by running the simulator M a large (yet polynomial) number of times, and heking what

is the fration of the onversations that satisfy these onditions. The probability that the

simulator outputs suh a onversation is then very well approximated by the fration of the

atual output onversations that satisfy these properties.

It is easy to hek if a onversation is aepting but in order to approximate Prob

M

[℄ and

Prob

(P

M

;V)

[℄, the veri�er needs the prover's help. The approximations of these probabilities

will translate into approximations of set sizes. Atually, approximating Prob

M

[℄ will require

one set approximation, and approximating Prob

(P

M

;V)

[℄ will require approximations of d�1

sets (where d = d(n) is the number of rounds in the interation). Sine we only know how to

approximate set sizes (and not how to ompute them exatly) in a onstant round interation

of P

0

and V

0

, we really need the di�erene in the thresholds in the separation property of

Lemma 5.1.

We approximate the sizes of the sets involved in the following way. The prover states

the size of the set and then he proves orresponding lower and upper bounds. As explained

in Setion 3, lower bounds (and even aurate ones) are easy to get. The veri�er only has

to be able to reognize elements in the sets involved and this will turn out easy. However,

there is a problem with the upper bounds. In order to get upper bounds, we must let the

veri�er have a \hidden" random element in eah of the sets that have to be bounded. As it

turns out, the random seed of M produing the onversation  is suh an element for any of

the d sets to be approximated. Unfortunately, this hidden random element an only be used

one. After that, the seed is not hidden any more, and annot be used for all the other sets.

To solve this, we begin by \believing" the prover instead of heking the upper bounds.

Namely, we hek all lower bounds on the stated sizes and we do not hek any upper bound.

We use the given values in the protool as if they were veri�ed. After that, we hek that

\most" of them were \almost" orret in the following manner. We use all the given set
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sizes to ompute a related entropy. This is a seond use of these values, but now we don't

have to trust the outome. We an atually hek it sine we know how to approximate the

entropy using Theorem 2. Sine the heating prover annot heat in the lower bounds, then

all his heatings have to be biased into stating smaller set sizes than the sizes atually are.

This bias would lead to a wrong entropy alulation and later to rejetion.

In order to present the protool, let us �rst explain how the probabilities Prob

M

[℄ and

Prob

(P

M

;V)

[℄ are stated in terms of set sizes. As in the proof of Lemma 5.2 we de�ne 
 to be

the set of the possible random tapes of the simulator M and for a pre�x of a onversation h

let 


h

be all the random tapes with whihM outputs a onversation starting with h. Clearly,

Prob

M

[℄ = j




j=j
j. Using Equation 1 from Setion 2.4 one gets that for valid transripts 

with Prob

M

[℄ > 0

Prob

(P

M

;V)

[℄ = 2

�t

�

d�1

2

Y

i=1

j




2i

j

j




2i�1

j

:

Here t = t(n) is the length of the random tape of V , d = d(n) is the (odd) number of messages

exhanged by P and V and 

i

denotes the i-message pre�x of . Reall our onvention that

V speaks in odd rounds and P speaks in even rounds. Denoting the length of the random

tape of M by t

0

= t

0

(n) we have j
j = 2

t

0

and for valid transripts  with Prob

M

[℄ > 0

log

Prob

M

[℄

Prob

(P

M

;V)

[℄

= t� t

0

�

d(n)

X

i=1

(�1)

i

log j




i

j: (8)

It remains to approximate the sizes of the sets 




i

for all i = 1; 2; : : : ; d(n).

Let us set the following parameters. The probability of error is set to Æ

0

= 2

�n

, the quality

of approximations is set to � = 2

�k(n)�9

=(d(n))

2

, and the number of simulator onversations

that we hek is ` = dn(t

0

(n))

2

=�

2

e. Notie that as a funtion of n Æ

0

is negligible, � is a

polynomial fration and ` is a polynomial.

The protool for reognizing L on input x

The veri�er V

0

piks ` random onversations 

1

; : : : ; 

`

from the distribution generated by

M and sends them to P

0

.

The prover P

0

states the numbers !

j

i

(laimed to be the sizes of 




j

i

) for all i = 1; 2; : : : ; d(n)

and j = 1; : : : ; `. Then, he proves the veri�er V

0

that !

j

i

is a lower bound on the size of the

set 




j

i

for all i = 1; 2; : : : ; d(n) and j = 1; : : : ; `. All the lower bounds are done in parallel

using the protool of Lemma 3.3 and with relative auray 1 + � and error probability Æ

0

.

If the prover fails to prove any of the bounds, then the veri�er rejets and halts.

The veri�er V

0

omputes, for eah of the onversations 

j

(j = 1; 2; : : : ; `) an approximation

of log(Prob

M

[

j

℄=Prob

(P

M

;V)

[

j

℄) by omputing v

j

= t(n) � t

0

(n) �

P

d(n)

i=1

(�1)

i

log!

j

i

. Then

the veri�er ounts the number of onversations whih are aepting and for whih v

j

�

k(n) + 2:5. It rejets if this number is below ` � 2

�k(n)�3

. Next, the veri�er uses the values

!

j

i

stated by the prover to ompute for eah round i (1 � i � d(n)) the empirial entropy

h

i

= 1=`

P

`

j=1

(t

0

(n)� log!

j

i

).
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Finally, the prover P

0

proves that h

i

� � is a lower bound on the entropy H(

i

) for eah

round i = 1; 2; : : : ; d(n). The random variable 

i

represents the output of the simulator M

trunated to the �rst i rounds. He proves these d lower bounds with auray � and error Æ

0

in parallel using the protool of Theorem 2. If any of these protools ends in rejetion then

the veri�er rejets. Otherwise, it aepts.

The protool for L:

The protool for L is atually the same protool exept that we reverse the rule for rejetion

in the third part of the protool for L. The modi�ed veri�er rejets if the number of indies

j for whih 

j

is aepting and v

j

� k(n) + 2:5 is greater than ` � 2

�k(n)�3

.

In order to prove Theorem 3 it is enough to prove the following lemma.

Lemma 6.1 The above protool is a onstant round interative proof for L while the modi�ed

protool is a onstant round interative proof for the omplement of L.

Proof: Clearly the protool has a onstant number of rounds sine the protools for bounds

on set sizes and the entropy value an be performed in a onstant number of rounds. Let us

go on and prove the soundness and ompleteness properties of this interative proof. Sine

k(n) = O(logn) and the soundness and ompleteness error probabilities Æ

s

(n) and Æ



(n) are

negligible, we may assume in what follows that Æ

s

(n) < 2

�2k(n)�7

and Æ



(n) < 1=4. This is

true for large enough n.

A ommon soure of error for both protools and for both soundness and ompleteness,

omes from the possibility that the number of \good" onversations output by the simulator

is far from its expeted value. Namely, for x 2 L, the frequeny of the onversations 

that are aepting, and have log(Prob

M

[℄=Prob

(P

M

;V)

[℄) � k + 3 amongst the ` random

onversations output by M , is substantially di�erent from the atual probability of suh a

onversation being output byM . The Cherno� bound limits the probability of the di�erene

being at least � to 2e

�2�

2

`

. Notie that this error probability is negligible. The same argument

applies for x 62 L and the di�erene between the atual and empirial probability of aepting

onversations with log(Prob

M

[℄=Prob

(P

M

;V)

[℄) � k + 2.

A similar soure of error is the possibility that for some i = 1; : : : ; d the empirial entropy

H

i

= 1=`

P

`

j=1

(t

0

� log j




j

i

j), determined by the ` hosen points, is far from the real entropy

H(

i

) of the distribution spae. As in Setion 3 we use Hoe�ding inequality to bound the

probability of this di�erene exeeding � by 2e

�2�

2

`=t

02

. This error probability is also negligible.

We all a hoie of the random onversations 

j

(j = 1; 2; : : : ; `) bad if any of the above

disrepanies our. The probability of the veri�er getting a bad set of onversations when

invoking the simulator in the �rst step is negligible.

We begin with the ompleteness property of the protool for L. So suppose we apply this

protool on an input x 2 L. If the hoie of the onversations is not bad and the prover gives

the orret values !

j

i

= j




j

i

j then by Lemma 5.1 (2) rejetion an ome only from errors in

the set size lower bound protools or the entropy lower bound protools. Sine we run only

(` + 1)d suh protools and sine the probability to make an error in any one of them is at
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most Æ

0

= 2

�n

, then the probability of suh error is at most (` + 1)dÆ

0

whih is negligible.

The proof of ompleteness of the protool for L is similar using Lemma 5.1 (1).

We now turn to proving the soundness. Consider again the protool for L but this time

on an input x 62 L. Suppose that the set of ` onversations output by the simulator is not

bad. The prover has three possible strategies when stating the values !

j

i

.

Possibility 1: The values !

j

i

stated by the prover ontain one value whih is a

little higher than it should be: The �rst heating strategy is when the prover states the

values !

j

i

(1 � i � d, 1 � j � `) suh that one of them satis�es !

j

i

> (1 + �)j




j

i

j In this

ase he passes the lower bound protool with probability at most Æ

0

. So assume that for all

the values !

j

i

stated by the prover it holds that !

j

i

� (1 + �)j




j

i

j, i.e., the stated values are

never too high.

Possibility 2: The values !

j

i

stated by the prover ontain a fration 15�d being

somewhat lower than they should be. A seond possibility is that the prover states the

numbers !

j

i

suh that out of the ` � d numbers !

j

i

, there are 15�d

2

` whih are smaller by a

fator of 2

�1=(3d)

than the size of 


j

i

. In this ase, there must be a round i (1 � i � d) for

whih !

j

i

< 2

�1=(3d)

j




j

i

j for at least 15�d` numbers out of the ` possible indies j. Sine the

�rst possibility does not hold, we also know that !

j

i

< (1 + �)j




j

i

j for all the values !

j

i

. In

this ase, the veri�er's approximation h

i

is far from the real empirial entropy H

i

:

h

i

=

1

`

`

X

j=1

(t

0

� log!

j

i

)

>

1

`

`

X

j=1

(t

0

� log j




j

i

j)� log(1 + �) +

15�d

3d

= H

i

� log(1 + �) + 15�=3:

However, sine we have ruled out bad sampling of the simulator, the empirial entropy H

i

is lose to the real entropy H(

i

), i.e., H

i

� H(

i

)� �. Thus:

h

i

� H

i

+ 3� � H(

i

) + 2�:

So when the prover tries to show that h

i

�� � H(

i

) (using the entropy lower bound protool)

he will sueed with probability at most Æ

0

.

Possibility 3: Neither of the above happen. In this ase we are going to show that the

number of onversations for whih the veri�er omputes v

j

� k+2:5 is less then ` �2

�k�3

and

thus the veri�er rejets. If neither of the above two possibilities happen then for all indies

exept for at most 15�d

2

` pairs (i; j) we have

2

�1=(3d)

� j




j

i

j � !

j

i

� (1 + �)j




j

i

j: (9)

Furthermore, the number of onversations 

j

for whih Equation 9 holds for all rounds i is at

least `�15�d

2

`. For suh a onversation 

j

, the veri�er's approximation of log(Prob

M

[

j

℄=Prob

(P

M

;V)

[

j

℄)

is orret to within 1/3. Namely,

v

j

= t� t

0

�

d

X

i=1

(�1)

i

log!

j

i
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� t� t

0

�

d

X

i=1

(�1)

i

log j


j

i

j � 1=3

= log(

Prob

M

[

j

℄

Prob

(P

M

;V)

[

j

℄

) � 1=3

We all these onversations \well approximated". Therefore, if a onversation is well approxi-

mated, and v

j

� k+2:5, then we also get that for this onversation log(Prob

M

[

j

℄=Prob

(P

M

;V)

[

j

℄) �

k + 3. By Lemma 5.1 (1), we know that the probability that a onversation output by the

simulator is aepting and having log(Prob

M

[

j

℄=Prob

(P

M

;V)

[

j

℄) < k+3 is at most Æ

s

(n)�2

k+3

.

Also, sine the set of onversations is not bad, then the atual fration of onversations for

whih log(Prob

M

[

j

℄=Prob

(P

M

;V)

[

j

℄) < k + 3 is at most Æ

s

(n) � 2

k+3

+ �.

Thus the number of \good onversations" ounted by the veri�er is limited to (2

k+3

Æ

s

(n)+

�)` + 15�d

2

`. By the setting of � and the assumption Æ

s

(n) < 2

�2k�7

we get that this is at

most 2

�k�3

` and the veri�er rejets.

Thus the overall aeptane probability is negligible, and we proved the soundness of the

protool.

For the soundness of the protool for the omplement of L we take x 2 L and suppose the

veri�er does not hoose a bed set of onversations. We onsider the same three possibilities

for the values !

j

i

as above. In the �rst two ases the aeptane probability is at most Æ

0

for

the same reasons. In the third ase reall that Æ



(n) < 1=4 and use Lemma 5.1 (2) to show

that the veri�er sees more than 2

�k�3

` aepting onversations with v

j

� k + 2:5 and thus

the veri�er rejets.

A remark about the preision of alulations: During the protool, the veri�er is

required to ompute v

j

= t � t

0

�

P

d

i=1

(�1)

i

log!

j

i

and h

i

= 1=`

P

l

j=1

(t

0

� log!

j

i

), whih

involves alulations with real numbers. One solution is to let him ompute 2

v

j

and 2

`h

i

whih only involves multipliations of integer frations. Another solution is to use rounding

suh that the result is aurate to within �=2 and make the protool itself be aurate to

within a �=2 approximation error. Thus the overall approximation error is below �.

7 The onnetion between knowledge and error

In this setion we state that if a language L has an interative proof whose soundness error

probability is small ompared to its knowledge omplexity then L has limited omputational

omplexity. Our result is as follows:

Theorem 4 If there is a interative proof for a language L with perfet knowledge omplexity

k(n), soundness error probability Æ(n) � 2

�(2k(n)+6)

, ompleteness error probability below 1=4

and if k(n) is omputable in polynomial time, then L 2 AM

NP

.

Remarks: The term AM

NP

refers to an AM protool in whih the veri�er has aess to

an NP-omplete orale (the omputationally unbounded prover doesn't need one). Using

standard tehniques, it an be shown that AM

NP

� �

P

3

, and therefore all languages having

this type of interative proof must be in the third level of the polynomial time hierarhy.
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(The AM � �

P

2

result is stated in [B-85℄ and the proof relativizes.) Note also that k(n) has

to be omputable in polynomial time in n and not in logn, so the restrition is quite liberal.

We also remark that in this theorem our expliit bounds on the error probability replaes

the requirement for them in the de�nition of the interative proof: they need not be negligible.

As mentioned in the abstrat, standard de�nitions of interative proofs allow any negligi-

ble error probability. In this ase, one has PSPACE-omplete languages whih have sub-linear

knowledge omplexity. This an be dedued from the result [LFKN-90, Sh-90℄ that PSPACE-

omplete languages have interative proofs using standard padding tehniques. Applying

enough polynomial padding to a PSPACE-omplete language it remains PSPACE-omplete

but the interative proof for it beomes sub-linear in length and thus in the knowledge it

reveals. However, if we insist, for example, that the error probability is less than 2

�n

2

,

then PSPACE-omplete languages do not have sub-quadrati knowledge omplexity, unless

PSPACE= �

P

3

.

Proof: The proof is based on the observation that Lemma 5.1 still separates the ele-

ments of L from the non-elements. Let us all a onversation  good if it is aepting and

log(Prob

M

[℄=Prob

(P

M

;V)

[℄) < k(n) + 2:5. When x 2 L the probability of M outputting a

good onversation is muh bigger than when x 62 L. But if k(n) is super-logarithmi then

both of these probabilities may be negligible. Thus, the proedure of sampling the simulator

for a polynomial number of times and ounting good onversations is not useful any more.

Instead, we let the prover prove that there are \many" random seeds making the simulator

M output good onversations. This is a set-size lower bound protool.

In the set size lower bound desribed in Setion 3.1 it is required that the veri�er is able to

reognize elements in the set. In our ase, heking if  is aepting is simple, but we do not

know how to approximate log(Prob

M

[℄=Prob

(P

M

;V)

[℄) in polynomial time. By Equation 8

in Setion 6, this approximation omes down to approximating set-sizes. Note that all these

sets whih need to be approximated are reognizable in polynomial time. It is shown in

[Si-83, St-83, BP-92℄ how to approximate the ardinality of a set S, whih is reognizable in

polynomial time, using eÆient probabilisti omputation with aess to an NP orale. The

approximation there fails with negligible probability to give an approximation with relative

auray 1 +

1

poly

.

We apply the protool of Lemma 3.3 to prove jSj > 2

�(k(n)+2)


 with relative auray

1=2 and negligible error, where S is the set of random tapes that ause M to produe good

onversations and 
 is the set of all random tapes of M . Instead of the blak-box aess to

membership in S we have a randomized proess of approximating log(Prob

M

[℄=Prob

(P

M

;V)

[℄)

with Equation 8. We an set the relative auray of eah set-size approximation to within

1=(3d(n)) and the error of these approximations negligible again. This does not give exat

membership test in S but exept for negligible error it aepts if the random tape produes an

aepting onversation  with log(Prob

M

[℄=Prob

(P

M

;V)

[℄) < k(n) + 2 while it rejets exept

for a negligible probability if the output is not aepting or if log(Prob

M

[℄=Prob

(P

M

;V)

[℄) >

k(n) + 3. Lemma 5.1 shows that this is enough for our purposes.

We an use [GOP-94℄ again to extend the above result to statistial knowledge omplexity.

Here however it is not enough to ite Theorem 1, we atually need some of the details of

the transformation of the interative proof in that theorem. This more detailed statement

is impliit in [GOP-94℄.
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Lemma 7.1 [GOP-94℄ Let (P; V ) be an interative proof for a language L with statistial

knowledge omplexity k(n) soundness error Æ

s

(n) and ompleteness error Æ



(n). Then there

exists a prover P

0

suh that (P

0

; V ) is an interative proof for L with perfet knowledge

omplexity k(n)+O(logn), with ompleteness error Æ



(n)+Æ

0

(n) for some negligible fration

Æ

0

(n), and with the same soundness error Æ

s

(n).

Note that we added spei� statement on how the transformation [GOP-94℄ preserves the

errors in the transformation: the soundness error does not hange at all (sine the veri�er is

not modi�ed) and the ompleteness error only inreases by a negligible fration.

Corollary 7.2 If there is a interative proof for a language L with statistial knowledge

omplexity k(n), negligible soundness error probability Æ

s

(n) < 2

�3k(n)

and ompleteness

error probability below 1=5 and if k(n) is omputable in polynomial time, then L 2 AM

NP

.

Proof: By Lemma 7.1 the same language L has an interative proof with perfet knowledge

omplexity k

0

(n) = k(n)+O(logn), the same soundness error probability and with omplete-

ness error probability below 1=4 for large enough n. We have that Æ

s

(n) < 2

�(2k

0

(n)+6)

also

holds for large enough n sine Æ

s

(n) is both negligible and bounded by 2

�3k(n)

. Thus Theorem

4 is appliable and proves Corollary 7.2.

8 Open questions

Many questions regarding the relation between knowledge omplexity and omputational

omplexity are still open. Can one show a higher (onditional) lower bound on the knowl-

edge omplexity of NP-omplete languages or even of PSPACE-omplete languages? Any

suh bound implies PSPACE6= BPP so one would only expet suh results with omplex-

ity assumptions like the polynomial time hierarhy not ollapsing. But no suh (ondi-

tional) lower bound, whih is higher than the super-logarithmi lower bound we give here,

is known on the knowledge omplexity of any language. Does the unlikely assumption

PSPACE = PKC(log

2

n) imply that the polynomial hierarhy ollapses (or another simi-

lar onsequene)?

Let us now onsider the low end of the knowledge omplexity hierarhy. In view of the

results presented in this paper, there is no di�erene between the limitations known today

for zero knowledge languages and languages with logarithmi knowledge omplexity. Could

one show that these lasses ollide? Namely, does SKC(O(logn)) = SKC(0)? Is it even

true that SKC(1) = SKC(0)? Or an one give indiations that this is not the ase?

It is also open how rih the knowledge omplexity hierarhy of languages is. For example,

Is there a onstant fator ollapse? Namely, is SKC(2k(n)) = SKC(k(n))?

The statement of Theorem 3 is symmetri, it laims the same about the languages having

low knowledge omplexity and about their omplements. The same annot be said about

Theorem 4 and Corollary 7.2. This asymmetry omes from the more demanding require-

ments of set size upper bound protools. Theorem 4 implies that languages having ertain

interative proofs are in �

P

3

. Can one prove that the same languages are in �

P

3

? A bolder

goal would be to prove that ertain knowledge omplexity lasses, say SKC(O(logn)) are
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losed under omplementation. This would extend the work in [Oka-96, GV-98℄ establishing

this for SZK.

Our main result (Theorem 3) bounds the omputational omplexity of languages having

negligible error interative proofs leaking only logarithmi knowledge. It is not lear what

an be said if the soundness error probability is allowed to be high. Our tehniques break

down as soon as Lemma 5.1 does not provide a separation.
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Appendix: Proof of Lemma 5.2

The following Lemma is impliit in [GOP-94℄. It was proven there as part of the proof of

Lemma 4.2 where it was shown for a spei� set A of aepting onversations. One should

note that the proof holds for any set A. For the sake of self ontainment we provide their

proof here.

Lemma 5.2 (restated): Let k be the perfet knowledge omplexity of the interation be-

tween the probabilisti parties P and V , and let M be the orresponding simulator, P

M

the

simulation-based prover. Then, for any set A of onversations it holds that:

Prob

(P

M

;V)

[A℄ � (Prob

(P;V)

[A℄)

2

� 2

�k

:

The intuition of the proof is as follows. The set A has probability Prob

(P;V)

[A℄ when P

interats with V and it has probability at least 2

�k

� Prob

(P;V)

[A℄ in the output of the

simulation, whih an be thought of as P

M

interating with V

M

. (The simulation-based

veri�er V

M

is de�ned similarly to the simulation-based prover P

M

.) When we look at a

kind of \intermediate" interation between P

M

and V , we intuitively expet the probability

Prob

(P

M

;V)

[A℄ to be in-between the two probabilities or above the minimum of the two. This

is not neessarily true, i.e., the probability of events in the intermediate interation is not

always in between the two interations, but this intuition does lead to the above Lemma,

whih looses an additional fator as Prob

(P;V)

[A℄ is squared. The formal details follow.

Proof: Reall that the perfet simulation means that there is a subset of the random tapes

of the simulator, denoted S, whih has density at least 2

�k

and suh that if we pik a random

tape in S and run the simulation then we get exatly the distribution of onversations that

are output during the original interation of P and V .

We begin by de�ning subsets of the possible random tapes of the simulator. Let 
 be

all the possible random tapes of the simulator, let S be the \good" subspae of this set

mentioned above. Let 	 be the set of good random tapes of the simulator on whih the

simulator outputs onversations in the set A.
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For any pre�x h of a onversation, we de�ne three orresponding subsets: 


h

is the set

of random tapes that make the simulation output a onversation of whih h is a pre�x. S

h

ontains the random tapes in S with the same property, i.e., S

h

= 


h

\ S. And last, we

de�ne 	

h

= S

h

\ 	. This is the set of random tapes in the \good" subset on whih the

simulator outputs onversations in the set A having pre�x h.

So let's hek a few properties of these sets. First, S = S

�

and 
 = 


�

(where � is

the empty string). Seond, jS

�

j=j


�

j � 2

�k

, this is the density of S in the random tapes

of the simulator. Sine the simulator on a uniformly hosen random tape in S outputs the

distribution of the original interation between P and V , it also holds that Prob

(P;V)

[A℄ =

j	

�

j=jS

�

j. Another useful expression is that given a partial history h, the probability that the

simulation-based prover outputs the message � on a given history h is exatly j


hÆ�

j=j


h

j.

We may write the probability that the original veri�er answers � on a given history h as

jS

hÆ�

j=jS

h

j.

We would like to show that

Prob

(P

M

;V)

[A℄ � (Prob

(P;V)

[A℄)

2

� 2

�k

: (10)

Using the fat that Prob

(P;V)

[A℄ =

j	

�

j

jS

�

j

, we have

 

j	

�

j

jS

�

j

!

2

�

jS

�

j

j


�

j

�

�

Prob

(P;V)

[A℄

�

2

� 2

�k

(11)

and sine j	



j � jS



j � j




j for every , and 	



is empty for a omplete transript  62 A, we

have

Prob

(P

M

;V)

[A℄ � Exp



"

j	



j

2

jS



j � j




j

#

: (12)

Here and in the rest of this appendix Exp



denotes the expetation over the random onver-

sation  output by P

M

and V . Note that a problem rises here for onversations  that have

positive probability in the interation (P

M

; V ) but annot our in the original interation

(P; V ). In this ase, we have jS



j = j	



j = 0 and in the above expetation we get a division

of zero by zero. Thus, we modify the expetation to sum only over onversations that have

positive probability in the original interation (P; V ). In other words, in this expetation,

we de�ne j	



j

2

=(jS



j � j




j) to be zero for onversations  with S



= ;. Using Equation 11

and 12 we get that in order to prove that Equation 10 holds, it is enough to show that

Exp



"

j	



j

2

jS



j � j




j

#

� Exp



"

j	

�

j

2

jS

�

j � j


�

j

#

: (13)

Equation 13 involves a relation between sets desribing full onversations (on the left

side) and sets desribing empty onversations (on the right side). We shall prove that the

same inequality holds for any inrease of one round in the onversations involved in the set

desription and thus by transitivity we shall get that Equation 13 holds. For any round i, let



i

denote the �rst i rounds of a given onversation . We will show that for all 0 � i � d� 1

(where d is the number of rounds) it holds that

Exp



"

j	



i+1

j

2

jS



i+1

j � j




i+1

j

#

� Exp



"

j	



i

j

2

jS



i

j � j




i

j

#

(14)

27



Atually, we will show something stronger. We will show that for any pre�x h of a onver-

sation that has positive probability in the original interation (P; V ) (i.e., with S

h

6= ;), it

holds that

X

�

Prob

(P

M

;V)

(h Æ �jh) �

j	

hÆ�

j

2

jS

hÆ�

j � j


hÆ�

j

�

j	

h

j

2

jS

h

j � j


h

j

(15)

Where the summation is over all possible messages � that might follow the history h in the

original interation (P; V ). Having proven Equation 15, we get that this also holds when

we take the expetation over all possible h of length i and Equation 14 holds as well. So it

remains to prove Equation 15 and we shall do that separately for � being played in a prover

round (i.e., by the simulation-based prover) and for � being played in a veri�er round (by

the original veri�er).

Prover's step: The left term of Equation 15 in this ase is

X

�

Prob(P

M

(h) = �) �

j	

hÆ�

j

2

jS

hÆ�

j � j


hÆ�

j

=

X

�

j


hÆ�

j

j


h

j

�

j	

hÆ�

j

2

jS

hÆ�

j � j


hÆ�

j

The last equality is true sine (by de�nition) P

M

behave exatly like the simulator ats in

prover steps. By the Cauhy-Shwartz inequality we an write

1

j


h

j

X

�

j	

hÆ�

j

2

jS

hÆ�

j

�

1

j


h

j

�

(

P

�

j	

hÆ�

j)

2

P

�

jS

hÆ�

j

:

The sets 	

hÆ�

over all � satisfying S

hÆ�

6= ; are a partition of the set 	

h

sine 	

hÆ�

� S

hÆ�

.

Thus, it holds that

P

�

j	

hÆ�

j = j	

h

j. The same is true also for S

hÆ�

and S

h

. Thus the

expression on the right equals

j	

h

j

2

jS

h

j � j


h

j

as needed.

Veri�er's step: The left term of Equation 15 in this ase is

X

�

Prob(V (h) = �) �

j	

hÆ�

j

2

jS

hÆ�

j � j


hÆ�

j

=

X

�

jS

hÆ�

j

jS

h

j

�

j	

hÆ�

j

2

jS

hÆ�

j � j


hÆ�

j

The last equality is true sine V behave exatly like the simulator ats on the random tapes

in S. Using Cauhy-Shwartz again, the above is equal to

1

jS

h

j

�

X

�

j	

hÆ�

j

2

j


hÆ�

j

�

j	

h

j

2

jS

h

j � j


h

j

Note again that the sets 	

hÆ�

over all � satisfying S

hÆ�

6= ; are a partition of the set 	

h

sine

	

hÆ�

� S

hÆ�

. The sets 


hÆ�

over all � suh that S

hÆ�

6= ; are not neessarily a partition of




h

as nonempty parts orresponding to � with S

hÆ�

= ; may be missing. Thus, we an only

laim that

P

�

j


hÆ�

j � j


h

j, but this is good enough for us, and we are done with the proof

of Lemma 5.2.
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