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Abstract

We show that if a language has an interactive proof of logarithmic statistical
knowledge-complexity, then it belongs to the class AM N co—AM. Thus, if the poly-
nomial time hierarchy does not collapse, then N'P-complete languages do not have
logarithmic knowledge complexity. Prior to this work, there was no indication that
would contradict NP languages being proven with even one bit of knowledge. Our
result is a common generalization of two previous results: The first asserts that statis-
tical zero knowledge is contained in AM N co—AM [F-89, AH-91], while the second
asserts that the languages recognizable in logarithmic statistical knowledge complexity
are in BPPNP [GOP-94].

Next, we consider the relation between the error probability and the knowledge
complexity of an interactive proof. Note that reducing the error probability via rep-
etition is not free: it may increase the knowledge complexity. We show that if the
negligible error probability d(n) is less than 273%(") (where k(n) is the knowledge com-
plexity) then the language proven is in the third level of the polynomial time hierarchy
(specifically, it is in AMNP_ In the standard setting of negligible error probability,
there exist PSPACE-complete languages which have sub-linear knowledge complexity.
However, if we insist, for example, that the error probability is less than 2*”2, then
PSPACE-complete languages do not have sub-quadratic knowledge complexity, unless
PSPACE= %Y.

In order to prove our main result, we develop an AM protocol for checking that a
samplable distribution D has a given entropy h. For any fractions 6, €, the verifier runs
in time polynomial in 1/€ and log(1/d) and fails with probability at most ¢ to detect an
additive error € in the entropy. We believe that this protocol is of independent interest.
Subsequent to our work Goldreich and Vadhan [GV-98] established that the problem of
comparing the entropies of two samplable distributions if they are noticeably different
is a natural complete promise problem for the class of statistical zero knowledge (SZK).

*This research was performed while the authors were visiting the Computer Science Department at the
University of Toronto, preliminary version of this paper appeared in [PT-96]

"Dept. of Computer Science, Technion - Israel Institute of Technology, Haifa 32000, Israel. Email:
erez@cs.technion.ac.il.

'Rényi Institute, Hungarian Academy, POB. 127, Budapest, H-1364 Hungary. Partially supported by
the grants OTKA T-020914, T-030059, and FKFP 0607/1999. E-mail: tardos@renyi.hu



1 Introduction

The ability of a party M to compute a function depends on the information it accesses and
its computational power. This ability may increase when M interacts with another (possibly
more powerful or more informed) party. The knowledge complerity measure, introduced
by Goldwasser Micali and Rackoff [GMR-85, GMR-89], is meant to measure how much
party M has gained through the interaction in this respect, alternatively phrased as the
amount of knowledge gained by party M. The special case in which the interaction does not
increase the computational ability of M at all is well known as zero knowledge interaction.
A formulation of knowledge-complexity, for the case that it is not zero, has appeared in
[GP-91]. A very appealing suggestion, actually made by Goldwasser Micali and Rackoff, is
to characterize languages according to the knowledge-complexity of their interactive proof
systems [GMR-89].

The class of knowledge complexity 0 (better known as zero knowledge) stands at the
lowest, level of the knowledge complexity hierarchy, and at the top we have the class of
languages with polynomial knowledge complexity which includes all IP=PSPACE. Both for
zero-knowledge as for the knowledge complexity in general, there are three standard variants
of the definitions which result in three hierarchies of languages; that is, perfect, statistical
and computational. In this paper we will only be interested in the statistical and perfect
hierarchies.

Our main result is a relation between the knowledge complexity and the computational
complexity of languages. We show that languages with logarithmic knowledge complexity are
in AMnNco— AM. This result has a very interesting implication on languages in N'P. Recall
that if NP C co—AM then the polynomial time hierarchy collapses [BHZ-87]. Assuming
that the polynomial time hierarchy does not collapse, we get that NP-complete languages do
not have logarithmic knowledge complexity. Prior to our result, there was no indication that
would contradict all NP languages having knowledge complexity 1. Note that, if a one-way
function exists, then this differs significantly from the computational knowledge complexity
hierarchy for which A/P-complete languages have zero knowledge interactive proofs (and so
do PSPACE-complete languages) [GMW-86, IY-87, B+ 88].

1.1 Background on knowledge-complexity

Loosely speaking, an interactive-proof system for a language L is a two-party protocol, by
which a powerful prover can “convince” a probabilistic polynomial-time verifier of member-
ship in L, but will fail (with high probability) when trying to fool the verifier into “accepting”
non-members [GMR-89]. An interactive-proof is called zero-knowledge if the interaction of
any probabilistic polynomial-time machine with the predetermined prover, on common input
x € L, can be “simulated” by a probabilistic polynomial-time machine (called the simulator),
given only 2z [GMR-89]. We say that a probabilistic machine M simulates an interactive proof
if the output distribution of M is statistically close to the distribution of the real interaction
between the prover and the verifier.

The formulation of zero-knowledge presented above is known as statistical (almost-perfect)
zero-knowledge. If we require the distributions of the simulator to be equal to the distribu-
tion of the real interaction we get the perfect zero-knowledge. (Yet another alternative is



computational zero-knowledge but we do not consider it here.)

Loosely speaking, the knowledge-complexity of a protocol I1 is the best possible “quality”
of an efficient simulation of TI. Namely, we say that a prover leaks k(n) bits of knowledge
to the verifier if there is a probabilistic polynomial-time machine (“simulator”) M such that
on any input x € L, the machine M on input x, outputs a distribution, of which a subspace
of density at least 2 *(2D is statistically close to the distribution of the conversations in
the interaction between the prover and the verifier. For a formal definition and further
discussion, see Section 2.2.

We say that a language L has knowledge complexity k(n) if there is an interactive proof
for L with knowledge complexity k(n). We consider the knowledge-complexity of a language
to be a very natural parameter, and we consider the question of how this parameter relates
to the complexity of deciding the language to be fundamental.

1.2 Previous work

The complexity of recognizing zero-knowledge languages was first considered by Fortnow
[F-89]. Building on his work, Aiello and Hastad [AH-91] (see also [H-94] for an intuition)
showed that zero knowledge languages are in AM N co—AM.

Bellare and Petrank [BP-92] bounded the computational complexity of languages which
have short interactive-proofs with low knowledge-complexity. Goldreich, Ostrovsky, and Pe-
trank [GOP-94] have extended this result showing that any language of logarithmic knowledge-
complexity can be recognized in BPPNP. This was the first relation found between a knowl-
edge complexity of a language (above zero) and its computational complexity. Their result
gave the first indication that PSPACE-complete languages do not have low (i.e., logarithmic)
knowledge complexity.

Goldreich, Ostrovsky, and Petrank have also showed that the difference between the
hierarchy of languages classified according to their perfect knowledge complexity and the
hierarchy of languages classified according to their statistical knowledge complexity is not big.
They showed how to transform interactive proofs of statistical knowledge-complexity k(n)
into interactive proofs of perfect knowledge-complexity k(n) 4+ O(logn). This transformation
refers only to knowledge-complexity with respect to the honest verifier. Namely, it is only
guaranteed that the interaction between the prover and the honest verifier, i.e., the verifier
that follows the protocol, can be simulated efficiently.

Aiello, Bellare, and Venkatesan [ABV-95] studied the class of languages which have k(n)
knowledge complexity on the average (see [GP-91, ABV-95] for a definition of knowledge
complexity on the average). They showed that languages with logarithmic average knowl-
edge complexity are in BPPVP. They also showed a closer relation between the perfect
and the statistical hierarchies of languages (for the case of average knowledge complexity).
They showed that the difference between these knowledge complexities is negligible for any
language. This result is also stronger in the sense that it is not restricted to the honest
verifier simulation. We remark that it is not known how to get such a close relation for the
worst-case knowledge complexity.



1.3 This work

Our main result is that languages having interactive proofs with logarithmic knowledge-
complexity are in AM N co—AM. The class AM is the class of languages that have two
round Arthur Merlin proofs, or equivalently, have a constant round interactive proof. (There
is no restriction on the knowledge complexity of this constant round interactive proof.) See
[BM-88, GS-89] for definitions of Arthur Merlin proofs, for some basic properties, and for
the equivalence of the definitions.

It was shown in [BHZ-87] that if NP C co—AM then the polynomial time hierarchy
collapses. It is believed that the polynomial time hierarchy does not collapse, and under
this assumption, our result implies that A/P-complete languages do not have logarithmic
knowledge complexity. Prior to this result, there was no indication that would contradict all
of the languages in A'P having knowledge complexity 1.

Our second result involves the connection of the soundness error probability and the
knowledge complexity of an interactive proof. We show that if a language has an interactive
proof with negligible error probability d(n) and statistical knowledge complexity k(n) and
if §(n) < 27%%( then the language is in AM~7” and so it is contained in the third level of
the polynomial time hierarchy. We note that one may use the techniques in [GOP-94] to
get a result for the case of logarithmic knowledge complexity. Specifically, if there exists an
interactive proof for L with error d(n) and logarithmic knowledge complexity k(n) and if
there exists a polynomial p(n) such that (1—4(n))?-27%) > §(n) +ﬁ, then the language in
in BPPVP. Our result applies only to negligible §(n) but allows any knowledge complexity
function that satisfies k(n) < 31og,(1/6(n)). Let us say a few words on the implications of
this result.

In the regular setting of zero-knowledge (or interactive proofs) it does not matter in the
definition if we allow the error probability to be as high as 1/3 or if we insist that it is as
small as 27" However, the standard approach to reducing the error probability involves
repeated applications of the interactive proof and thus may increase its knowledge complex-
ity. Therefore, when discussing the knowledge complexity, it seems important to fix the
error probability to some predetermined function. Following previous works we choose the
reasonable requirement that the error probability be negligible (i.e., asymptotically smaller
than any polynomial fraction).

Another aspect of this result concerns the trade-off between reducing the error and in-
creasing the knowledge complexity. Many past works considered the possibility of reducing
the error of a probabilistic algorithm while not increasing the number of coin-tosses as much
as the naive solution would. It would seem natural to ask the same question about the
knowledge complexity. In the naive method, we repeat the protocol ¢ times, so the knowl-
edge complexity increases by a factor of ¢ and the error probability (for simplicity assume
one-sided error) decreases from § into §*. Namely, the logarithm of 1/6 and the knowledge
complexity increase by the same factor. Assuming PSPACE# X! and in light of our result,
one shouldn’t expect to have a general method for doing much better than that. Namely, the
logarithm of 1/6 cannot increase substantially more rapidly than the knowledge complexity
for languages outside AMNP.



1.4 TImplications on the hint knowledge complexity:

Another implication of our second result concerns a rather esoteric definition of knowledge
complexity called the hint version of knowledge complexity. This definition was presented
in [GP-91] and was adequate in different scenarios (see [BCK-90]). Loosely speaking, an
interactive proof has knowledge complexity &(n) in the hint sense, if there is a function h(z)
of the input (the hint function) such that the interactive proof on input x can be simulated
efficiently given only x and the hint h(x), and |h(z)| < k(|z|). (The difference is that the
“help” which the simulator gets does not depend on the random coin-tosses of the verifier
or of the simulation. For an exact definition and detailed explanations see [GP-91].)

It was shown in [GP-91] that this definition does not seem to be adequate, because some
protocols in which only a polynomial number of bits are transferred, have exponential knowl-
edge complexity. Here, we claim that we can make a similar assertion for languages. Namely,
our result implies that a PSPACE-complete language has super-polynomial knowledge com-
plexity in the hint sense unless PSPACE= Y¥. This counter-intuitive assertion gives yet
another indication that the hint measure is not an adequate one.

To see that the above assertion is correct, note that the hint measure does not increase
when one uses sequential repetitions of the protocol. Also, note that if a protocol has knowl-
edge complexity k(n) in the hint measure, then it also has at most k(n) knowledge complexity
in the standard (fraction) measure considered here. Combining these two properties, we get
that if a language has an interactive proof with polynomial hint knowledge complexity & (n)
and some constant error probability, then this language also has an interactive proof with
k(n) knowledge complexity in the standard measure with negligible error probability 9—3k(n)
and thus this language is in the third level of the polynomial hierarchy.

1.5 Techniques used

We begin by establishing a separation property which separates x in the language from z not
in the language. This property is a modification of the separation property used in [AH-91].
Next, we have to show that this separation can be detected by an AM protocol. For this,
we employ the lower and upper bounds on set sizes as presented by [GS-89, F-89], and build
on them an AM approximation for the entropy of the output distribution of the simulator.
We believe that the protocol for approximating the entropy of a samplable distribution is of
independent interest. We note that it is sublimed from a protocol in [AH-91] which is used
there for a specific distribution.

In order to prove the validity of the separation property, we use techniques developed
in [GOP-94] which relate the distribution of conversations in the original interactive proof
with the distribution of conversations in a mental experiment in which the original verifier
interacts with the simulation-based prover, i.e., a prover that acts like the prover in the
simulation (see Section 2.3 for a formal definition of this prover).

Our main result is proven for perfect knowledge complexity and we employ a result from
[GOP-94] asserting that the distance between perfect and statistical knowledge complexity
is close enough for our result to hold for statistical knowledge complexity as well.

In our second result which relates the knowledge complexity and the error probability
we also employ techniques for deterministic bounds on set sizes developed in [Si-83, St-83,



JVV-86, BP-92].

1.6 Organization

In Section 2 we give the definitions and notations we use in the paper. In Section 3 we
present our AM protocol for proving the entropy of a samplable distribution. In Section
4 we provide an overview of the construction in [AH-91] and explain why it doesn’t work
in the case that the knowledge complexity is greater than 0. In Section 5 we present the
property of the simulator that tells apart inputs in the language from inputs not in the
language. The tools presented in the above sections are used in Section 6 to present our
main result: a constant round interactive proof for recognizing the languages in logarithmic
statistical knowledge complexity. In Section 7 we present our result relating error probability
to knowledge complexity of interactive proofs. In Section 8 we raise a few open questions.

2 Preliminaries

Let us state some of the definitions and conventions we use in the paper. Throughout this
paper we use n to denote the length of the input z. A function f : N — [0, 1] is called
negligible if for every polynomial p and all sufficiently large n f(n) < ﬁ Let the distance

p
between distributions D! and D? be

1
d(Dl, DZ) = 5 Z |PI‘ObD1[7’] — PrObDZ[T]|.
We say that an ensemble of distributions D] is statistically close to another ensemble D?
over a language L, if the function
fn) = max_{d(D} D%)}
Tr|l=n, ¢

is negligible.

2.1 Interactive proofs

We begin by recalling the definitions of interactive proofs presented by [GMR-89, B-85].
For formal definitions and motivating discussions the reader is referred to [GMR-89]. An
interactive proof is a protocol in which a (computationally unbounded, probabilistic) prover
P is interacting with a (probabilistic polynomial-time) verifier V. Intuitively, the goal of
the prover is to prove to the verifier V' that a given input is in a predetermined language.
Formally, we say that the pair (P, V') constitutes an interactive proof for a language L if
there exist negligible functions d, : N — [0, 1] the completeness error and 5 : N — [0, 1] the
soundness error such that

1. Completeness: If x € L then
Prob[(P,V)(x) accepts| > 1 — d.(n)

2. Soundness: If x ¢ L then for any prover P*
Prob [(P*,V)(x) accepts | < ds(n)



2.2 Knowledge Complexity

Let us define the statistical (and perfect) knowledge complexity measure of protocols (and
specifically of interactive proofs). We use the fraction definition of knowledge complexity as
presented by [GP-91]. For further intuition and motivation see [GP-91].

Throughout the rest of the paper, we only refer to knowledge-complexity with respect to
the honest verifier; namely, the ability to simulate the honest verifier’s view of its interaction
with the prover. (In the stronger definition, one considers the ability to simulate the point
of view of any efficient verifier while interacting with the prover.) This restriction only
strengthen the results presented in the paper.

Let (P,V)(x) be the random variable that is distributed according to the verifier’s view
of the (probabilistic) interaction between P and V on the input z. The view contains the
verifier’s random tape as well as the sequence of messages exchanged between P and V.

In order not to have to distinguish the view of the interaction from the conversation
itself we insist throughout the paper that the verifier ends the conversation with sending
his random coins as the last message. Note that it is important to include the coins of the
verifier in the output of the simulation, and calling this the last round of the interaction is
just notation. For simplicity we also require that the verifier starts the conversation, and
that the number of messages making up the conversation depends on the input length only.

The prover and the verifier speak in alternate rounds, the verifier taking the odd numbered
rounds and the prover speaking in the even numbered rounds. We call a conversation valid
if all the moves by the verifier are consistent with its coin-flips (as given in the last message).
We denote by ¢; the i round prefix of a conversation c.

By the fraction formulation of knowledge complexity, we say that a protocol has knowl-
edge complexity k(n) if there exists an efficient simulation of the protocol that “partially”
succeeds in simulating the protocol. (A “fully successful” simulation implies that the protocol
is zero knowledge.) The exact interpretation of “partially successful” is that in order to show
that the knowledge complexity is k(n), the simulator must have a subspace of its output dis-
tribution which is of density at least 27%() and which simulates the protocol “successfully”.
The interpretation of a successful simulation would be “exactly equal distributions” for per-
fect knowledge complexity, and “statistically close distributions” for statistical knowledge
complexity.

We follow with the formal definition. In the definition we prefer to talk about a subspace
of the random tapes of the simulator rather than to talk about a subspace of the output
distribution of the simulator. Although the meaning is the same, it will be easier to work
with this definition when proving properties of knowledge complexity.

Definition 2.1 (knowledge-complexity — fraction version): Let p: N — (0,1]. We say
that an interactive proof (P, V') for a language L has perfect (resp., statistical) knowledge-
complexity log,(1/p(n)) in the fraction sense if there erists a probabilistic polynomial-time
machine M with the following good subspace property. For any x € L there is a subset of
M’s possible random tapes, denoted S,, such that:

1. The set S, contains at least a p(n) fraction of the set of all possible coin tosses of M(x).

2. Conditioned on the event that M(x)’s coins fall in S,, the random variable M(z) is
identically distributed (resp., statistically close) to (P,V)(x). Namely, for the perfect



case this means that for every ¢
Prob(M(z,w)=¢|weS,) = Prob((P,V)(x)=¢)

where M(x,w) denotes the output of the simulator M on input x and coin tosses sequence
w.

Note that the definition of perfect (statistical, corr.) knowledge complexity zero (i.e.,
when k£ = 0) exactly matches the definition of perfect (and statistical, corr.) zero knowledge
as given in [GMR-89]. For further motivation and discussion of zero knowledge, the reader
is referred to [GMR-89]. From the above definitions of knowledge complexity combined with
the definitions of interactive proofs, the knowledge complexity classes of languages can be
formulated:

Definition 2.2 (knowledge-complexity classes):
e PKC(k(n)) = languages having interactive proofs of perfect knowledge-complexity k(n).
e SKC(k(n)) = languages having interactive proofs of statistical knowledge-complezity k(n).

A connection between the perfect and the statistical hierarchies was given in [GOP-94]:

Theorem 1 [GOP-94]
SKC(k(n)) € PKC(k(n) + O(logn))

Note that this result is only proved for the honest verifier simulation—the definition of
knowledge complexity presented here.

2.3 The simulation-based prover

An important ingredient in our proof is the notion of a simulation based prover, introduced
by Fortnow [F-89]. Consider a simulator M that outputs conversations of an interaction
between a prover P and a verifier V. We define a new prover Py, called the simulation-
based prover, which selects its messages according to the conditional probabilities induced
by the simulation. Namely, on a partial history A of a conversation, Py; outputs a message
a with probability

Prob(Py(h) =a) © Prob(Myy 1 =hoa | My, =h)

where M, denotes the ¢ message long prefix of the random conversation output by the
simulator M. Notice that P, is not defined for prefixes h output by M with zero probability.

In perfect zero knowledge if x € L then P, equals the original prover P. It is important
to note however that the behavior of P, is not necessarily close to the behavior of P if
the knowledge-complexity is greater than 0. This is the main reason why the AM protocol
presented by [AH-91] for the case of zero knowledge is inappropriate for the case of higher
(even 1) knowledge complexity.



2.4 Three distributions used throughout the paper

Let us define three distributions which are going to be used in all that follows. These are
distributions on conversations as output by running a protocol or invoking the simulator.
Here P and V' constitute an interactive proof for some language L, M is a simulator for
this interaction, and Py, is the simulation-based prover (see Section 2.3). We consider the
following three distributions:

1. The distribution of conversations output by the simulator. We denote the probability
that a conversation ¢ is output by the simulator by Proby[c].

2. The distribution of conversations in the original interactive proof (P, V). We denote
the probability that a conversation c is output by this interactive proof by Probp v[c].

3. Last, we consider the interaction between the simulation-based prover P,; and the
original verifier V. We denote the probability that a conversation c is output by this
interaction by Probep,, v[c].

All these distribution depend on the input x. In our notation we suppress x, the input
should be clear from the context. For the case of perfect knowledge complexity, an immediate
connection between the first and the second distributions follows from the definitions. For
any transcript ¢ we have Proby[c] > 275" . Probp vy[c], where k(n) is the perfect knowledge
complexity.

Consider now the probability of a conversation ¢ in the third distribution. We would
like to express Prob(p,, v)[c] using only probabilities of the form Proby[c;], where ¢; is the
i-round prefix of the conversation c. Let us partition the computation of Probep,, v)[c] to a
round-by-round computation:

d(n)

PI'Ob(PM’V) [C] = H PI"Ob(PM,V) [CZ'|CZ'_1],

i=1
where d(n) is the number of messages sent by P and V. Recall that d(n) is odd and the
terms with ¢ being odd are determined by the verifier V. Thus, if ¢ is valid, i.e., the verifier
moves are consistent with his coin-tosses and the history so far, then the product of all the
odd terms equals the probability of V' indeed picking the random tape specified in the end
of the conversation c. Thus,

d(n)—1

2
II Probe, vlcaisilea] = 2t
=0

where t(n) is the length of the random tape used by V.

The terms that have an even i are determined by Py thus Probp,, vy[cailcei—1] =
Proby|coi|coi1]. Here Py is well defined if ¢ is output by M with positive probability.
For a valid transcript ¢ with Proby[c] > 0 we thus have:

d(n)—1

2 Prob i
Probp,,.v) [c] = 9—tn) H rO—M[Q]

i=1

S
N3

(1)

For an invalid conversation ¢ we trivially have Probp,, v)[c] = 0. This simple rewriting of
Probp,, v)[c] was first noted in [AH-91].

PI‘ObM [62171]



3 Approximating the entropy in a constant number of
rounds

Our first tool is an AM protocol for verifying the entropy of a polynomially samplable
distribution to within an accuracy of ﬁ. We consider this protocol to be of independent
interest but emphasize that it is based on set size lower and upper bound protocols of
[GS-89, F-89] and it is sublimed from a protocol in [AH-91], which is used there for a specific
distribution. It is worth comparing this protocol to the one given in [GV-98] for the same
purpose (or more exactly to approximate the difference of two entropies). Their public coin
interactive proof has the advantage of having strong zero-knowledge properties, ours has
the advantage of having a constant number of rounds. The [GV-98] protocol uses the set
size lower bound protocol but instead of the upper bound protocol they use an elaborate
“pushing game” from the paper [Oka-96], requiring more than constant number of rounds.
We begin by explaining the setting.

Let D be a discrete distribution and we let Probp[y] denote the weight of the element y
in this distribution. The entropy H (D) of D is defined as:

H(D) = - Probply]log Probp|y], (2)

where the sum extends for all values y in the range of D.

We call an ensemble D,, of distributions polynomially samplable if there exist a polynomial
time randomized machine whose output on input z is distributed according to D,.

We state our result on approximating the entropy here but before the proof we recall the
set-size approximation protocols needed for it.

Theorem 2 Let D, be a polynomially samplable ensemble of distributions. There exists a
constant round upper bound interactive proof and a constant round lower bound interactive
proof for the entropy H(D,) that on input x and 0,€, > 0 satisfies:

1. The verifier runs in polynomial time in |x|, 1/€, and log(1/J).

2. If the prover plays optimally then the verifier in the upper bound protocol accepts with
probability at most 6 if H(f) > a+e€ and rejects with probability at most § if H(f) < «.

3. Similarly, if the prover plays optimally then the verifier in the lower bound protocol
accepts with probability at most § if H(f) < o — € and rejects with probability at most
5 ifH(f) > a.

We later refer to the lower bound protocol mentioned in this theorem as an interactive
proof for H(f) > « with accuracy € and error §.

As we shall see in Section 3.2 computing the entropy of a samplable distribution is
equivalent to computing the average size of the set f~!(f(x)) in logarithmic scale. Here z is
taken uniformly from the domain {0,1}" of the efficiently computable function f.



3.1 Protocols for set sizes

For the sake of self containment, we include the set-size approximation protocols. For a more
detailed description the reader may refer to [F-89, AH-91].

The main tool in these protocols is universal family of hash functions (sometimes denoted
by universaly family of hash functions) [CW-79]. This is a collection H of functions mapping
a domain D to the a range R such that for every point X € D and a random element h € H,
the value h(X) is uniformly distributed in R, and for two elements X # Y € D the values
h(X) and h(Y') are independent. The existence of polynomial time universal families H, ,
for D = {0,1}" and R = {0,1}" is well known (take for example the collection of affine
linear maps over the two element field).

Let us begin with the lower-bound. Suppose we have a subset S of a larger domain D, and
we assume that the verifier can check if a given element X is in S. We consider a universal
family of hash-functions from D to a range R. Basically, in the following protocol the prover
convinces the verifier that the cardinality of the set S is bigger than the cardinality of the
range R. The protocol is as follows:

The verifier picks uniformly a random hash-function h from the family and a random
element Y € R and sends them to the prover. The prover responds with an element X € D.
The verifier accepts if X € S and h(X) =Y.

The following lemma implies the soundness and completeness of the above protocol. For
the simple proof see [AH-91].

Lemma 3.1 [GS-89] If the prover plays optimally then the acceptance probability p in the
above protocol satisfies

1—@<p<ﬁ.
IS =" 7 IR

Another way to state the lemma is that if |S| < ¢|R| then the the verifier accepts with
probability at most €, but if |R| < €|S| then the prover can make the verifier reject with
probability less than e.

Let us now describe the set-size upper bound protocol. Again, we assume that there is
a non-empty subset S of a domain D. This time, we do not require that the set will be
recognizable in polynomial time, but we have to assume that the verifier has one element
X in S which was selected uniformly in S, and is unknown to the prover. Again, we use
a universal family of hash functions from the domain D to a range R. The protocol is as
follows:

The verifier chooses a random hash-function h from the family and sends h and h(X) to
the prover. The prover responds with a value Z € D. The verifier accepts if X = 7.

The following lemma implies the completeness and soundness of the protocol.

Lemma 3.2 [F-89] If the prover plays optimally, then the acceptance probability p of the
above interactive proof protocol satisfies

[5] 1
<p< —.

1— <
R

10



Another way to state the lemma is that if |R| < ¢|S| then the the verifier accepts with
probability at most €, but if | S| — 1 < ¢|R| then the prover can make the verifier reject with
probability less than e.

The protocol is from [F-89] and its correctness is proved there. Nevertheless, we include
the short proof here because the upper bound proved there on the acceptance probability is
somewhat weaker and the proof (and the bound) is slightly more complicated.

Proof: The prover can certainly win if A(X) has a unique inverse image in S (which is X).
Fix X € S, by the pairwise independence of the hash functions family, the probability that
another fixed element of S is hashed to the same value as X is 1/|R|. Thus, the probability of
such an element existing between the remaining |S| —1 elements in S is at most (|S|—1)/|R|
hence the lower bound on the probability p.

For the upper bound on the probability p, we assume, without loss of generality, that the
prover chooses its optimal response for every message he receives deterministically. Let us fix
the hash function h. For any possible value o € R that the verifier may send, the prover has
one (optimal) response Z = Z(«). So the prover has at most |R| different possible answers
and it can only win if the random element X that the verifier chooses in S is one of these
values (recall that the verifier only accepts if X = Z). The probability that an X randomly
chosen in S will fall into this set of at most |R| element is at most |R|/|S|, and we are done
with the proof of the Lemma.

Although the set-size approximation protocols just described are sufficient for the ap-
proximation of the entropy we need an improved lower bound protocol later for our main
protocol (specifically, for the second step in the protocol for recognizing L or L in Section 6).
Therefore let us state this simple extension here. The amplification we use is similar to the
one used by [JVV-86, BP-92]. In order to approximate better the cardinality of the set S,
we simply use the above lower bound protocol for the set S™, where m is an integer which
depends on the desired accuracy.

Lemma 3.3 For every € > 0 and § > 0 there is two-round protocol for lower bounding the
size of a set S C {0,1}™ in which the verifier is given a claimed lower bound s on |S|, and
a black box for testing membership in S. The verifier runs in polynomial time in n, 1/€ and
log(1/9) and furthermore:

e [f s < |S| then the prover can make the verifier accept with probability at least 1 — 0.

e If s> |S|(1+¢€) no prover can make the verifier accept with probability above 6.

We call such a protocol a proof for |S| > s with relative accuracy (1+¢) and error ¢. For
self containment, we include the standard proof.

Proof: Setting m appropriately (see below), we apply the protocol of Lemma 3.1 for S™
with a polynomial time universal family of hash functions from {0, 1} to {0, 1}lmles((1=¢/2)s)]
By Lemma 3.1 we get that the prover can make the acceptance probability at least 1 — (1 —
€/2)™ if | S| > s but it cannot make the verifier accept with probability more than (1 —¢/2)™
if s > |S](1+¢€). Thus choosing m = [2-log ;] proves Lemma 3.3. W

Note that a similar improvement over the upper bound protocol would require the verifier
being given m random elements in S which are not known to the prover. This is not feasible
in our case, and seems a hard demand in general.
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3.2 Approximating the entropy

As a first step toward the proof of Theorem 2 we get an expression for the entropy that is
more suitable for our purposes. As the distribution D, is the distribution of a polynomial
time randomized machine on input = we may consider this output as a function f(r) on the
random tape r. We fix the length of the random tape r to a suitable value ¢ thus we have
r € {0,1}'. Here f is computable in polynomial time (given x). We rewrite the definition of
the entropy given by Equation 2 to get:

H(D,)=H(f) = —>_ Y. Prob(r)logProbf(s) = ]

v rif(r)=y

= — Z Prob(r) log Prob,(f(s) = f(r))

= —Exp,[logProb[f(s) = f(r)]]
=+ — Exp,[log [f(f(r)]].

Here Prob(r) = 27" is the probability of choosing r when uniformly sampling {0, 1}, Exp,
denotes the expectation over a random r such selected, and Prob, denotes probability with
respect to a uniformly selected s € {0, 1}".

The idea of the protocol is to measure an empirical average value as an approximation
to the expected value of log |f~'(f(r))|. We generate a large polynomial number m of inde-

pendent random samples 7; and approximate the expectation by —L 37 log|f*(f(r:))].

We bound the probability of this approximation being far from the e)?pectation by a variant
of the Chernoff bound.

However, we cannot calculate the value inside the summation, i.e., given r; it is hard to
calculate log |f~1(f(r;))|. Therefore, we use the set size lower and upper bound protocols
of [GS-89, F-89] for this. Note that for lower bounding the entropy we need to upper
bound |f~1(f(r;)| and vice versa. For the entropy lower bound protocol one needs a uniform
random element in the set. Fortunately as r; is chosen uniformly in {0, 1}" it is also uniform
in f~'(f(r;)). The simplest approximation protocols (i.e., the ones that only guarantee a
constant factor approximations) are enough for our purposes because we approximate the
product [T, |f~1(f(2;))] as a whole rather then each of the sets separately.

We present both lower and upper bound protocols, although for proving our main result
we use the lower bound protocol only.

We are given a function f defined on {0, 1}, an approximation parameter ¢ > 0 and an
error parameter § > 0 and let the value o be the (lower or upper) bound on H(f) that the
prover would like to prove. Let m be a polynomial in ¢, 1 /¢, and log(1/§) to be specified later.
First, we reduce the error by using many copies of the function f. So consider the function F’
defined on the m-tuples of ¢-bit strings D = {0,1}™ by F(ri,...,rm) = (f(r1), .-, f(rm))-
For the upper bound we use a universal family of hash functions H,,, from D to {0,1}*,
where u = |m(t — a — ¢/2)| and for the lower bound protocol we use a universal family of
hash-functions H,,,; from D to {0,1}!, where [ = |[m(t — o+ €/2)].

We assume in both protocols that the verifier can compute f(r) and thus also F'(X).

Let us start with the upper bound protocol.

e The verifier uniformly picks a random X € D, a hash-function h € H,,;, and an
element Y € {0, 1}*. The verifier sends F(X), h, and Y to the prover.

12



e The prover responds with Z € D.
e The verifier accepts iff F(Z) = F(X) and h(Z) =Y.
Let us also present the lower bound protocol.

e The verifier uniformly picks a random X € D and a hash-function h € H,, ;. The
verifier sends F'(X), h, and h(X) to the prover.

e The prover responds with Z € D.
e The verifier accepts iff X = 7.

The following lemma states that the above protocols satisfy the conditions of Theorem
2.

Lemma 3.4 The following holds for the above protocols:

1. The verifier in both protocols runs in polynomial time in t, 1/€, and log(1/d) if it has
black-box access to f.

2. If the prover plays optimally then the verifier in the upper bound protocol accepts with
probability at most 6 if H(f) > a+e€ and rejects with probability at most § if H(f) < «.

3. Similarly, if the prover plays optimally then the verifier in the lower bound protocol
accepts with probability at most § if H(f) < o — € and rejects with probability at most
6 if H(f) > .

Proof: Clearly, the statement on the efficiency of the verification process holds, since the
verifier only has to sample the domain {0,1}™, to sample h € Hyyy or h € Hpyy, and to
compute h and F' on given points. So let us concentrate on the error probabilities of the
protocols.

The first source of error in both protocols is that for the uniformly chosen X = (x4, ..., zy)
the average a = 1/m Y%, log Prob,(f(y) = f(z;)) might deviate from its expected value,
i.e., from —H(f), by more than ¢/4. Call such a choice of X bad, and let us bound the
probability of choosing a bad X using the Hoeffding Equation [Hoe-63] (a variant of the
Chernoff bound). This inequality asserts that the probability of the average of m identically
distributed independent variables deviating from the expected value by at least F is at most
2¢ 2E*m/R* \where R is the size of the range of the random variables. We can clearly make
this less than §/2 by choosing m > 8t?log(1/§)/€*. So this source of error contributes only
d/2 to the error probability. Let us continue and check the error probability that we get
from the set-size lower and upper bound protocols.

In both protocols, we use the set size approximation protocols on the set F~!(F(X)) for
the specific X chosen by the verifier. The cardinality of this set is

F(F(X)| = ﬁ )]

= f[th - Prob, (f(y) = f(x;))

_ 2m(t+a)
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where a is the empirical average defined above. Thus, if the choice of X is not bad then we
get

om(t—H(f)—€/4) |F*1(F(X))| < om(n—H(f)+e/4) (3)

Suppose X is not bad, and thus cardinality of F~!'(F (X)) is within the bounds specified
in Equation 3. If the upper bound «, claimed by the prover is valid, i.e., H(f) < «, then by
Lemma 3.1 the verifier rejects with probability at most

2u/2m(t—H(f)—e/4) < 2—m6/4+1.

If however H(f) > a + ¢ then the probability of acceptance is at most 2m(¢—H()+e/4) /ou <
273m¢/4_ Both these error probabilities can be made less than 6 /2 by making m > 4(log(1/6)+
2)/e. This proves the claims on the entropy upper bound protocol.

The proof for the lower bound protocol is similar. Notice that conditioned on any value
Y = F(X) sent by the verifier to the prover, the actual value of X is a uniformly distributed
random element of the set F~1(Y). Thus the set-size upper bound protocol and Lemma 3.2
is applicable, and we are done with the proof of Theorem 2. [

3.3 Remarks

A remark on public coins: The statement of this theorem can be strengthened into
an approximation procedure in AM (i.e., the verifier only having public coin tosses) by
applying the standard techniques of transforming an interactive proof to an Arthur-Merlin
game [GS-89]. The upper bound protocol is already an Arthur-Merlin game as it does not
hurt if the prover learns X. Obviously, this can not be said about the lower bound protocol.
A remark on the complexity of the function f: In the protocol derived from the
previous remark Arthur evaluates f at the end of the game. This allows us to use the
protocol to approximate the entropy not only of polynomial time computable functions but
also for functions for which {(x,y)|f(z) =y} € AM and |f(z)| is polynomially bounded in
|z|. To this end, we only have to modify the protocol so that Merlin helps Arthur evaluate
the function.

A remark about perfect completeness: Finally, one can reduce the rejection probability
when the bound is correct to zero by standard techniques [GMS-87] making a one-sided error
Arthur-Merlin game.

4 An overview of the techniques in [AH-91]

The main result of this paper is that SKC(O(logn)) € AM Nco— AM. This generalizes
the result of Fortnow [F-89] and Aiello and Hastad [AH-91] stating SZK C AMnNco— AM.
Let us start by recalling the underlying techniques of the [AH-91] paper. This is done both
because we are going to use some of the same techniques and to see why they don’t suffice
by themselves for our purposes.
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4.1 The ideas in [AH-91]

The proof in [AH-91] is as follows. First, they present a property of the simulation that
holds if and only if & € L. Their proof then contains two parts: First they prove that indeed
this property characterizes the case x € L versus the case ¢ L, and second they show how
this property and its negation can be proven in AM.

We alter their argument a little bit. A similar simplified argument can also be found
n [GV-98]. For simplicity we only consider perfect zero-knowledge here. We may assume
without loss of generality that the simulator outputs mostly valid, accepting transcripts. If
this is not the case, then the verifier can verify that = ¢ L without interaction with the
prover simply by invoking the efficient simulator.

The distinguishing property is actually the magnitude of a relative entropy. They con-
sider two distributions: The distribution of conversations output by the simulator, and
the distribution of conversations output by the interaction of the original verifier V' with
the simulation-based prover P,; as in Section 2.4. If x € L then the relative entropy
H(M (x)||(Pa, V) (x)) is zero as the two distributions actually coincide, as we consider per-
fect zero knowledge. However if z ¢ L then much of the weight in M (z) is concentrated on
the set of accepting transcripts and that set has negligible weight in (Pys, V)(z). It is well
known (and easy to see) that the relative entropy H (M (z)||(Py, V)(x)) is large in such a
case. Recall that by the definition of relative entropy:

Proby[¢]

H(M(z)||(Py, V) (z)) =Y Proby|c] - log m.

(We use the notations of Section 2.4.)

It is shown in [AH-91] how to prove that this relative entropy is big or small in AM.
Using the approximation of the entropy described in Section 3, we can offer a more compact
presentation of that protocol.

Recall Equation 1 from Section 2.4. For any valid transcript ¢ with Proby[c] > 0 it holds
that

d(n)—1
n) . ﬁ PI‘ObM[CQi] ,
i—1 PI‘ObM[CQZ',l]
where ¢(n) is the number of random bits used by the verifier V" and d(n) is the (odd) number

of rounds in the protocol.
Using Equation 1 we may rewrite the relative entropy

PI"Ob(pM V) [C] = 2_t(

PI‘ObM[ ]
H(M\||(Py,V)) = Prob clo—
(P, V) = 3 Probulelog o
d(n)— 1
= Y Proby|c] - |log Probul[c] + ¢(n )" log Proby[c;]
c 1=1
d(n) .
= t(n) — Y _(—1)"D_ Probylc] - log Probul[c;]
i—1 c

d(n)
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Here H)js(c;) is the entropy of the first i messages generated by M. So it remains to notice
that these d(n) entropies can be approximated in parallel in AM, which follows from Theorem
2.

4.2 Generalizing these techniques

Let us consider what happens with the relative entropy H (M (z)||(Pys,V)(x)) if the knowl-
edge complexity is not zero. It is still big in the case x ¢ L for similar reasons. However
if x € L, even for the case that k(n) = 1, only half of the distribution generated by the
simulator has to be identical to the one generated by P and V and the rest is arbitrary.
This “bad half” of the distribution M can be concentrated on a single transcript ¢ for which
Proby[c] > 1/2 but Probp,, vyc] = 27" thus making H(M (z)||(Pa, V)(z)) big although
x € L. Therefore, this relative entropy is not able to distinguish between x € L and x ¢ L.

Note that in our example there is one (or a few) bad conversations that make the relative
entropy become large. We can express the relative entropy as an expectation:

Proby[c]

H(M(z)||(Pa, V)(2)) = EchEM[logm -

We are going to claim that even though approximating the expected value is not helpful,
approximating the tail of the involved distribution will do the work.

In case z € L the good part of the distribution M (the part that really simulates (P, V))
consists of mostly accepting transcripts ¢, and for most of them Proby[c]/Probp,, v[c] is lim-
ited. This is easy to see for the real interaction (P, V'), i.e., for the fraction Proby[c]/Probe v)[c],
but it requires an involved calculation for the interaction (P, V') (see next section).

If © ¢ L however, (Py, V) is mostly rejecting and thus if M outputs many accepting
transcripts then Proby[c]/Probep,, vy[c] is very big for most of them. See the easy argument
in the next section.

These observations lead us, in order to separate between the case of x € L and the case
of x € L, to consider the probability that a conversation ¢ output by M is accepting and
has a small ratio Proby[c]/Probp,, vy[c]. This probability will be substantially bigger in the
case r € L than in the case = &€ L.

5 The difference between x € L and = &€ L

In this section we formalize and prove the separation property motivated at the end of the
preceding section. In the next section we use this property in the case of logarithmic perfect
knowledge complexity to show that 2z € L (or z ¢ L) in a constant round interactive proof.
Thus, we get that L € AM N co—AM. In Section 7 we use the same property to lower
bound the error probability of an interactive proof of a language outside AMN7P in terms of
its knowledge complexity.

We call a valid transcript ¢ that leads to acceptance an accepting transcript. We denote
this condition by Ac(c).
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Lemma 5.1 Let (P,V) be an interactive proof for a language L. Let 65(n) be the soundness
error probability and k(n) be the perfect knowledge complexity of this proof and suppose
that the completeness error probability d.(n) is at most 1/4. Let M be the corresponding
simulator and Py the simulation-based prover. Let x be a string of length n and let k = k(n)

and § = ds(n).

1. If x ¢ L then the simulator outputs accepting conversations that have a small ratio
with very small probability. Formally:

Proby|c] < okt

_ < k35,
PI‘Ob(pM,V) [C] o -

Proby [Ac(c) A

2. Whereas if x € L then the simulator has a substantial probability of outputting accepting
transcripts with a small ratio. Formally,

Proby [Ac(c) A M < k42| > o=(k+2)
PI'Ob(pM V) [C]

Discussion: In our applications ¢ - 25%3 is much smaller than 2=**2 thus the lemma
separates the x € L and = ¢ L cases. Note that the bound on the ratio slightly differ in
the two cases. This difference is important since we will not be able to compute this ratio
precisely for a given transcript when applying the lemma. However, we will have means to
approximate this ratio, and thus, we need the gap.

Proof: We begin by proving part 1 of the lemma. Let b = 2¥3. Let A be the set of
accepting conversation for which the ratio is small. Namely, for all ¢ € A, we have

Probyi[c] < Probp,, vyc] - b.

We have to show that Proby[A] is small.
First, by the definition of A, we know that

PI"ObM[A] S PI"Ob(pM’V) [A] b (4)

(simply sum over all conversations in A). We know that since the conversations in A are
accepting and since, by the soundness property of the interactive proof, no prover is able to
convince the verifier to accept with probability greater than §, we have

PI'Ob(pMyv) (A) S J. (5)

Combining Equations 4 and 5 we get that Proby[A] < §-b as needed for part 1 of the lemma.

For part 2 of the lemma we need a general tool connecting the distribution generated by
the original prover P and the verifier V' to the distribution generated by P, and V. Lemma
5.2 establishes this connection. This lemma is implicit in [GOP-94].

Lemma 5.2 [GOP-94|: Let k be the perfect knowledge complexity of the interaction be-
tween the probabilistic parties P and V', and let M be the corresponding simulator, Pys the
simulation-based prover. Then, for any set A of conversations it holds that:

PI‘Ob(pMyv) [A] Z (PI‘Ob(p’V) [A])2 . 27]‘:.
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For self containment, we provide the proof in the Appendix. Let us now use it to finish
the proof of part 2 of Lemma 5.1. Consider the set A’ for which the ratio in the lemma is
big. Namely, let A" consist of the transcripts ¢ for which

Proby[¢]
PI‘Ob(PM V) [C]

Z 2k+2
By the definition of the set A’ (i.e., we sum over all conversations in A’), we get
Proby[A’] > Probp,, vy[A'] - 2812 (6)

Using Lemma 5.2 we get that

Probp,, w[A'] > (Probey)[47])? - 27F (7)
Combining Equations 6 and 7 we get

Probgp.vy[A'] < /Proby[A7/2 < 1/2.
Let A be the set of accepting transcripts for which

Proby[] < 9h+2,
PI‘Ob(pM,V) [C]

Note that A contains all accepting conversations not in A’. In the original interaction (P, V),
all conversations are valid and only an d.(n) < 1/4 fraction is not accepting. Therefore,

PI"Ob(p’V) [A] 2 1— PrOb(pyv) [A,] — 60(71) Z

e~ =

We conclude by recalling that there is a subspace of density at least 27* in the simulation
that is identical to the interaction between P and V' and thus

Proby[A] > 27" - Probp vy[A] > 9~ (k+2)

and we are done with the proof of part 2 of Lemma 5.1. i

6 The main theorem

We now use the above machinery to introduce a constant round interactive proof for the
language L and its complement. Using [GS-89, BM-88], we get that L is in AMNco—AM.
Formally, we prove the following theorem.

Theorem 3
SKC(O(logn)) € AM N co—AM
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We will only show that
PKC(O(logn)) € AM N co—AM

since it was shown in [GOP-94] (see Theorem 1) that
SKC(O(logn)) = PKC(O(logn)).

We remark that the theorem in [GOP-94] only applies for the honest verifier simulation,
but it suffices for us since we are only using the simulation of the honest verifier. Recall
that a language is in SKC(O(logn)) if it has an interactive proof with statistical knowledge
complexity O(logn) and negligible error.

So let us begin by recalling the setting. We have a language L which is in PKXC(k(n))
for some k(n) = O(logn). Namely, there is an interactive proof (P, V') for L, and there is
a simulator M which runs efficiently and outputs a distribution on conversations between
P and V. We also consider the distribution of conversations generated by an interaction
between the simulation based prover Py, and the original verifier V' (see Section 2).

Notice that in the separation result Lemma 5.1 the probability is a polynomial fraction
in one case and it is negligible in the other.

In our protocol on input z of length n the new verifier V', with the help of the new prover
P', approximates the probability that a conversation ¢, output by the simulator M(z), is
accepting and satisfies log PrPrOﬂ < k + 2.5, where k = k(n). The verifier V' does that

obep,; v)[e]
by running the simulator M a large (yet polynomial) number of times, and checking what

is the fraction of the conversations that satisfy these conditions. The probability that the
simulator outputs such a conversation is then very well approximated by the fraction of the
actual output conversations that satisfy these properties.

It is easy to check if a conversation is accepting but in order to approximate Proby[c] and
Probp,,v)lc], the verifier needs the prover’s help. The approximations of these probabilities
will translate into approximations of set sizes. Actually, approximating Proby|[c] will require
one set approximation, and approximating Probp,, v)[c] will require approximations of d — 1
sets (where d = d(n) is the number of rounds in the interaction). Since we only know how to
approximate set sizes (and not how to compute them exactly) in a constant round interaction
of P and V', we really need the difference in the thresholds in the separation property of
Lemma 5.1.

We approximate the sizes of the sets involved in the following way. The prover states
the size of the set and then he proves corresponding lower and upper bounds. As explained
in Section 3, lower bounds (and even accurate ones) are easy to get. The verifier only has
to be able to recognize elements in the sets involved and this will turn out easy. However,
there is a problem with the upper bounds. In order to get upper bounds, we must let the
verifier have a “hidden” random element in each of the sets that have to be bounded. As it
turns out, the random seed of M producing the conversation c is such an element for any of
the d sets to be approximated. Unfortunately, this hidden random element can only be used
once. After that, the seed is not hidden any more, and cannot be used for all the other sets.

To solve this, we begin by “believing” the prover instead of checking the upper bounds.
Namely, we check all lower bounds on the stated sizes and we do not check any upper bound.
We use the given values in the protocol as if they were verified. After that, we check that
“most” of them were “almost” correct in the following manner. We use all the given set
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sizes to compute a related entropy. This is a second use of these values, but now we don’t
have to trust the outcome. We can actually check it since we know how to approximate the
entropy using Theorem 2. Since the cheating prover cannot cheat in the lower bounds, then
all his cheatings have to be biased into stating smaller set sizes than the sizes actually are.
This bias would lead to a wrong entropy calculation and later to rejection.

In order to present the protocol, let us first explain how the probabilities Probyc] and
Probp,, v)[c] are stated in terms of set sizes. As in the proof of Lemma 5.2 we define € to be
the set of the possible random tapes of the simulator M and for a prefix of a conversation A
let €, be all the random tapes with which M outputs a conversation starting with h. Clearly,
Proby[c] = |©2.]/]©2]. Using Equation 1 from Section 2.4 one gets that for valid transcripts ¢
with Probylc] > 0

Y
[un

e |
|2

=

PI'Ob(PM’V) [C] = 2_t . |
=1 C25—1

Here t = t(n) is the length of the random tape of V', d = d(n) is the (odd) number of messages

exchanged by P and V and ¢; denotes the i-message prefix of ¢. Recall our convention that

V' speaks in odd rounds and P speaks in even rounds. Denoting the length of the random

tape of M by t' = ¢(n) we have |Q| = 2! and for valid transcripts ¢ with Proby[c] > 0

Proby[c] , 4 .
log—————=t—t — —1)"log |92, |- 8
8 Probyv) ;( )" log | (8)
It remains to approximate the sizes of the sets €, for all i =1,2,...,d(n).

Let us set the following parameters. The probability of error is set to do = 2", the quality
of approximations is set to € = 27¥("=9/(d(n))?, and the number of simulator conversations
that we check is £ = [n(t'(n))?/€®]. Notice that as a function of n §, is negligible, € is a
polynomial fraction and 7 is a polynomial.

The protocol for recognizing L on input x

The verifier V' picks ¢ random conversations c', ..., c’ from the distribution generated by
M and sends them to P'.

The prover P’ states the numbers w! (claimed to be the sizes of Q) for alli = 1,2, ..., d(n)
and j = 1,...,/. Then, he proves the verifier V' that wzj is a lower bound on the size of the
set 1 forall i =1,2,...,d(n) and j = 1,...,£. All the lower bounds are done in parallel
using the protocol of Lemma 3.3 and with relative accuracy 1 + € and error probability d;.
If the prover fails to prove any of the bounds, then the verifier rejects and halts.

The verifier V' computes, for each of the conversations ¢/ (j = 1,2,...,/) an approximation
of log(Proby[c?]/Probepy, v[c?]) by computing v; = t(n) — #(n) — S0 (=1)logw!. Then
the verifier counts the number of conversations which are accepting and for which v; <
k(n) + 2.5. Tt rejects if this number is below £ - 27k(m)=3_ Next, the verifier uses the values
w! stated by the prover to compute for each round i (1 < i < d(n)) the empirical entropy

J
hi =1/055_, (' (n) — logw)).
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Finally, the prover P’ proves that h; — € is a lower bound on the entropy H(c;) for each
round ¢ = 1,2,...,d(n). The random variable ¢; represents the output of the simulator M
truncated to the first ¢ rounds. He proves these d lower bounds with accuracy € and error g
in parallel using the protocol of Theorem 2. If any of these protocols ends in rejection then
the verifier rejects. Otherwise, it accepts.

The protocol for L:

The protocol for L is actually the same protocol except that we reverse the rule for rejection
in the third part of the protocol for L. The modified verifier rejects if the number of indices
j for which ¢; is accepting and v; < k(n) + 2.5 is greater than ¢ - 27¥()=3,

In order to prove Theorem 3 it is enough to prove the following lemma.

Lemma 6.1 The above protocol is a constant round interactive proof for L while the modified
protocol is a constant round interactive proof for the complement of L.

Proof: Clearly the protocol has a constant number of rounds since the protocols for bounds
on set sizes and the entropy value can be performed in a constant number of rounds. Let us
go on and prove the soundness and completeness properties of this interactive proof. Since
k(n) = O(logn) and the soundness and completeness error probabilities d;(n) and d.(n) are
negligible, we may assume in what follows that &,(n) < 272*(®~7 and d,(n) < 1/4. This is
true for large enough n.

A common source of error for both protocols and for both soundness and completeness,
comes from the possibility that the number of “good” conversations output by the simulator
is far from its expected value. Namely, for x € L, the frequency of the conversations ¢
that are accepting, and have log(Proby[c]/Probp,, v)lc]) < k + 3 amongst the ¢ random
conversations output by M, is substantially different from the actual probability of such a
conversation being output by M. The Chernoff bound limits the probability of the difference
being at least € to 2¢2¢. Notice that this error probability is negligible. The same argument
applies for x € L and the difference between the actual and empirical probability of accepting
conversations with log(Proby[c]/Probp,, vy[c]) < &k + 2.

A similar source of error is the possibility that for some i =1, ..., d the empirical entropy
H, =1/t Z§:1(t' —log |Qc7 |), determined by the ¢ chosen points, is far from the real entropy

H(c;) of the distribution space. As in Section 3 we use Hoeffding inequality to bound the
probability of this difference exceeding € by 2¢2¢"4/t”” . This error probability is also negligible.

We call a choice of the random conversations ¢/ (j = 1,2,...,/) bad if any of the above
discrepancies occur. The probability of the verifier getting a bad set of conversations when
invoking the simulator in the first step is negligible.

We begin with the completeness property of the protocol for L. So suppose we apply this
protocol on an input & € L. If the choice of the conversations is not bad and the prover gives
the correct values w! = |Q ;| then by Lemma 5.1 (2) rejection can come only from errors in
the set size lower bound prlotocols or the entropy lower bound protocols. Since we run only
(¢ + 1)d such protocols and since the probability to make an error in any one of them is at
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most dp = 27", then the probability of such error is at most (¢ + 1)dd, which is negligible.
The proof of completeness of the protocol for L is similar using Lemma 5.1 (1).

We now turn to proving the soundness. Consider again the protocol for L but this time
on an input x € L. Suppose that the set of / conversations output by the simulator is not
bad. The prover has three possible strategies when stating the values wf
Possibility 1: The values w{ stated by the prover contain one value which is a
little higher than it should be: The first cheating strategy is when the prover states the
values w! (1 < i < d, 1 < j < f) such that one of them satisfies w? > (1 + 6)|ch| In this
case he passes the lower bound protocol with probability at most dy. So assume that for all
the values w! stated by the prover it holds that w/ < (1 + e)|Qc]| i.e., the stated values are
never too high.

Possibility 2: The values w' stated by the prover contain a fraction 15¢d being
somewhat lower than they should be. A second possibility is that the prover states the
numbers wJ such that out of the £ - d numbers w!, there are 15ed*¢ which are smaller by a
factor of 271/39) than the size of Q. In this case, there must be a round i (1 < <d) for
which w! < 271/G4) ©2,;| for at least 15ed¢ numbers out of the ¢ possible indices j. Since the
first possibility does not hold, we also know that w! < (1 + ¢)|Q;| for all the values w. In
this case, the verifier’s approximation h; is far from the real empilrical entropy H;:

2

¢
hi =
e

— logw

15ed

(¢
(¢
3d

D

= H; —log(l+¢)+ 15¢/3.

—log[Q) —log(1+€) +

|- eml»—\

<.
—_

However, since we have ruled out bad sampling of the simulator, the empirical entropy H;
is close to the real entropy H(c;), i.e., H; > H(¢;) — €. Thus:

So when the prover tries to show that h;—e < H(¢;) (using the entropy lower bound protocol)
he will succeed with probability at most d;.

Possibility 3: Neither of the above happen. In this case we are going to show that the
number of conversations for which the verifier computes v; < k42.5 is less then ¢-27%=3 and
thus the verifier rejects. If neither of the above two possibilities happen then for all indices
except for at most 15ed?( pairs (4, j) we have

271G Q) ; | < wl < (1+e)|ch|. (9)

Furthermore, the number of conversations ¢/ for which Equation 9 holds for all rounds i is at
least {—15ed?(. For such a conversation ¢/, the verifier’s approximation of log(Proby[c’]/Probp,, v)[c’])
is correct to within 1/3. Namely,

d -
v; = t—t' =Y (1) logw;

=1
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d
> t—t' =Y (-1)'log|Q| — 1/3
=1

Proby[c’]

= log(=————
g(PI'Ob(pM,V) [C]]

) — 1/3

We call these conversations “well approximated”. Therefore, if a conversation is well approxi-
mated, and v; < k+2.5, then we also get that for this conversation log(Proby[c?]/Probp,, v)[¢/]) <
k + 3. By Lemma 5.1 (1), we know that the probability that a conversation output by the
simulator is accepting and having log(Proby[c/]/Probp,, v)[¢?]) < k+3 is at most d,(n)-253.
Also, since the set of conversations is not bad, then the actual fraction of conversations for
which log(Proby[c;]/Probep,, vc;]) < k + 3 is at most d5(n) - 2773 +e.

Thus the number of “good conversations” counted by the verifier is limited to (28438, (n)+
€)¢ + 15¢d?(. By the setting of € and the assumption §s(n) < 27%*=7 we get that this is at
most 27%73¢ and the verifier rejects.

Thus the overall acceptance probability is negligible, and we proved the soundness of the
protocol.

For the soundness of the protocol for the complement of I we take x € L and suppose the
verifier does not choose a bed set of conversations. We consider the same three possibilities
for the values w{ as above. In the first two cases the acceptance probability is at most dq for
the same reasons. In the third case recall that d.(n) < 1/4 and use Lemma 5.1 (2) to show
that the verifier sees more than 27"~/ accepting conversations with v; < k + 2.5 and thus
the verifier rejects.

A remark about the precision of calculations: During the protocol, the verifier is
required to compute v; = t — ' — X (1) logw! and h; = 1/03}_,(t' — logw!), which
involves calculations with real numbers. One solution is to let him compute 2% and 2%
which only involves multiplications of integer fractions. Another solution is to use rounding
such that the result is accurate to within ¢/2 and make the protocol itself be accurate to
within a €/2 approximation error. Thus the overall approximation error is below e.

7 The connection between knowledge and error

In this section we state that if a language L has an interactive proof whose soundness error
probability is small compared to its knowledge complexity then L has limited computational
complexity. Our result is as follows:

Theorem 4 If there is a interactive proof for a language L with perfect knowledge complexity
k(n), soundness error probability §(n) < 2-CkM+6) - completeness error probability below 1/4
and if k(n) is computable in polynomial time, then L € AMNP.

Remarks: The term AMN? refers to an AM protocol in which the verifier has access to
an N'P-complete oracle (the computationally unbounded prover doesn’t need one). Using
standard techniques, it can be shown that AMN? C 12, and therefore all languages having
this type of interactive proof must be in the third level of the polynomial time hierarchy.
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(The AM C TIL result is stated in [B-85] and the proof relativizes.) Note also that k(n) has
to be computable in polynomial time in n and not in logn, so the restriction is quite liberal.

We also remark that in this theorem our explicit bounds on the error probability replaces
the requirement for them in the definition of the interactive proof: they need not be negligible.

As mentioned in the abstract, standard definitions of interactive proofs allow any negligi-
ble error probability. In this case, one has PSPACE-complete languages which have sub-linear
knowledge complexity. This can be deduced from the result [LFKN-90, Sh-90] that PSPACE-
complete languages have interactive proofs using standard padding techniques. Applying
enough polynomial padding to a PSPACE-complete language it remains PSPACE-complete
but the interactive proof for it becomes sub-linear in length and thus in the knowledge it
reveals. However, if we insist, for example, that the error probability is less than 9"
then PSPACE-complete languages do not have sub-quadratic knowledge complexity, unless
PSPACE= %7.

Proof: The proof is based on the observation that Lemma 5.1 still separates the ele-
ments of L from the non-elements. Let us call a conversation ¢ good if it is accepting and
log(Proby[c]/Probep,, wvylc]) < k(n) 4+ 2.5. When 2 € L the probability of M outputting a
good conversation is much bigger than when x ¢ L. But if k(n) is super-logarithmic then
both of these probabilities may be negligible. Thus, the procedure of sampling the simulator
for a polynomial number of times and counting good conversations is not useful any more.
Instead, we let the prover prove that there are “many” random seeds making the simulator
M output good conversations. This is a set-size lower bound protocol.

In the set size lower bound described in Section 3.1 it is required that the verifier is able to
recognize elements in the set. In our case, checking if ¢ is accepting is simple, but we do not
know how to approximate log(Proby|c]/Probp,, vy[c]) in polynomial time. By Equation 8
in Section 6, this approximation comes down to approximating set-sizes. Note that all these
sets which need to be approximated are recognizable in polynomial time. It is shown in
[Si-83, St-83, BP-92] how to approximate the cardinality of a set S, which is recognizable in
polynomial time, using efficient probabilistic computation with access to an NP oracle. The
approximation there fails with negligible probability to give an approximation with relative
accuracy 1+ p;ly.

We apply the protocol of Lemma 3.3 to prove |S| > 2~*®™+2)Q) with relative accuracy
1/2 and negligible error, where S is the set of random tapes that cause M to produce good
conversations and €2 is the set of all random tapes of M. Instead of the black-box access to
membership in S we have a randomized process of approximating log(Proby/[c]/Probep,, vy[c])
with Equation 8. We can set the relative accuracy of each set-size approximation to within
1/(3d(n)) and the error of these approximations negligible again. This does not give exact
membership test in S but except for negligible error it accepts if the random tape produces an
accepting conversation ¢ with log(Proby[c]/Probep,, v)c]) < k(n) + 2 while it rejects except
for a negligible probability if the output is not accepting or if log(Proby[c]/Probep,, vy[c]) >
k(n) + 3. Lemma 5.1 shows that this is enough for our purposes. W

We can use [GOP-94] again to extend the above result to statistical knowledge complexity.
Here however it is not enough to cite Theorem 1, we actually need some of the details of
the transformation of the interactive proof in that theorem. This more detailed statement
is implicit in [GOP-94].
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Lemma 7.1 [GOP-94] Let (P,V) be an interactive proof for a language L with statistical
knowledge complexity k(n) soundness error 6s(n) and completeness error §.(n). Then there
erists a prover P' such that (P',V') is an interactive proof for L with perfect knowledge
complezity k(n)+O(logn), with completeness error d.(n)+dg(n) for some negligible fraction
do(n), and with the same soundness error ds(n).

Note that we added specific statement on how the transformation [GOP-94] preserves the
errors in the transformation: the soundness error does not change at all (since the verifier is
not modified) and the completeness error only increases by a negligible fraction.

Corollary 7.2 If there is a interactive proof for a language L with statistical knowledge
complexity k(n), negligible soundness error probability 5,(n) < 273%™ and completeness
error probability below 1/5 and if k(n) is computable in polynomial time, then L € AMNP.

Proof: By Lemma 7.1 the same language L has an interactive proof with perfect knowledge
complexity k'(n) = k(n)+O(logn), the same soundness error probability and with complete-
ness error probability below 1/4 for large enough n. We have that d,(n) < 2~ Z¥(+6) a]s0
holds for large enough n since &,(n) is both negligible and bounded by 273" Thus Theorem
4 is applicable and proves Corollary 7.2.

8 Open questions

Many questions regarding the relation between knowledge complexity and computational
complexity are still open. Can one show a higher (conditional) lower bound on the knowl-
edge complexity of N'P-complete languages or even of PSPACE-complete languages? Any
such bound implies PSPACE=# BPP so one would only expect such results with complex-
ity assumptions like the polynomial time hierarchy not collapsing. But no such (condi-
tional) lower bound, which is higher than the super-logarithmic lower bound we give here,
is known on the knowledge complexity of any language. Does the unlikely assumption
PSPACE = PKC(log® n) imply that the polynomial hierarchy collapses (or another simi-
lar consequence)?

Let us now consider the low end of the knowledge complexity hierarchy. In view of the
results presented in this paper, there is no difference between the limitations known today
for zero knowledge languages and languages with logarithmic knowledge complexity. Could
one show that these classes collide? Namely, does SKC(O(logn)) = SKC(0)? Is it even
true that SKC(1) = SKC(0)? Or can one give indications that this is not the case?

It is also open how rich the knowledge complexity hierarchy of languages is. For example,
Is there a constant factor collapse? Namely, is SKC(2k(n)) = SKC(k(n))?

The statement of Theorem 3 is symmetric, it claims the same about the languages having
low knowledge complexity and about their complements. The same cannot be said about
Theorem 4 and Corollary 7.2. This asymmetry comes from the more demanding require-
ments of set size upper bound protocols. Theorem 4 implies that languages having certain
interactive proofs are in I1¥. Can one prove that the same languages are in X1'? A bolder
goal would be to prove that certain knowledge complexity classes, say SKC(O(logn)) are
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closed under complementation. This would extend the work in [Oka-96, GV-98] establishing
this for SZK.

Our main result (Theorem 3) bounds the computational complexity of languages having
negligible error interactive proofs leaking only logarithmic knowledge. It is not clear what
can be said if the soundness error probability is allowed to be high. Our techniques break
down as soon as Lemma 5.1 does not provide a separation.
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Appendix: Proof of Lemma 5.2

The following Lemma is implicit in [GOP-94]. It was proven there as part of the proof of
Lemma 4.2 where it was shown for a specific set A of accepting conversations. One should
note that the proof holds for any set A. For the sake of self containment we provide their
proof here.

Lemma 5.2 (restated): Let k be the perfect knowledge complexity of the interaction be-
tween the probabilistic parties P and V', and let M be the corresponding simulator, Py the
simulation-based prover. Then, for any set A of conversations it holds that:

PI‘Ob(pMyv) [A] Z (PI‘Ob(p’V) [A])2 . 27]‘:.

The intuition of the proof is as follows. The set A has probability Probpv)[A] when P
interacts with V' and it has probability at least 27% - Probpvy[A] in the output of the
simulation, which can be thought of as P, interacting with Vj,. (The simulation-based
verifier V); is defined similarly to the simulation-based prover P,;.) When we look at a
kind of “intermediate” interaction between Py, and V', we intuitively expect the probability
Probp,, v)[A] to be in-between the two probabilities or above the minimum of the two. This
is not necessarily true, i.e., the probability of events in the intermediate interaction is not
always in between the two interactions, but this intuition does lead to the above Lemma,
which looses an additional factor as Probp v)[A] is squared. The formal details follow.

Proof: Recall that the perfect simulation means that there is a subset of the random tapes
of the simulator, denoted S, which has density at least 2% and such that if we pick a random
tape in S and run the simulation then we get exactly the distribution of conversations that
are output during the original interaction of P and V.

We begin by defining subsets of the possible random tapes of the simulator. Let 2 be
all the possible random tapes of the simulator, let S be the “good” subspace of this set
mentioned above. Let ¥ be the set of good random tapes of the simulator on which the
simulator outputs conversations in the set A.
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For any prefix h of a conversation, we define three corresponding subsets: (2, is the set
of random tapes that make the simulation output a conversation of which h is a prefix. S,
contains the random tapes in S with the same property, i.e., S, = €, N S. And last, we
define ¥, = S), N V. This is the set of random tapes in the “good” subset on which the
simulator outputs conversations in the set A having prefix h.

So let’s check a few properties of these sets. First, S = Sy and Q = Q, (where A is
the empty string). Second, |Sy|/|2| > 27, this is the density of S in the random tapes
of the simulator. Since the simulator on a uniformly chosen random tape in S outputs the
distribution of the original interaction between P and V, it also holds that Probp vy[A] =
|W|/|Sx]. Another useful expression is that given a partial history h, the probability that the
simulation-based prover outputs the message « on a given history h is exactly |Qpuoa|/|Qn]-
We may write the probability that the original verifier answers  on a given history h as
|Shosl/|Shl-

We would like to show that

PI'Ob(PM’V) [A] Z (PI‘Ob(P,V) [A])2 . 27]6. (10)
Using the fact that Probp v)[A] = ‘gﬁ', we have
|‘I’A|>2 BN 2 ok
—= 1 . —= > (Prob Al) -2 11
<|S)\| |Q/\| = ( (P,V)[ ]) ( )

and since |U,.| < |S.| < || for every ¢, and U, is empty for a complete transcript ¢ & A, we
have )

Probp,, v)[A] > Exp [%] : (12)

T LS - (€]

Here and in the rest of this appendix Exp, denotes the expectation over the random conver-
sation ¢ output by P,; and V. Note that a problem rises here for conversations ¢ that have
positive probability in the interaction (P, V') but cannot occur in the original interaction
(P, V). In this case, we have |S.| = |V.| = 0 and in the above expectation we get a division
of zero by zero. Thus, we modify the expectation to sum only over conversations that have
positive probability in the original interaction (P, V). In other words, in this expectation,
we define |U.|[2/(]S.| - |€|) to be zero for conversations ¢ with S. = ). Using Equation 11
and 12 we get that in order to prove that Equation 10 holds, it is enough to show that

\s ]
[Sal - [0

2

Exp, [ e (13)

|SC| : |QC|

> Exp, [

Equation 13 involves a relation between sets describing full conversations (on the left
side) and sets describing empty conversations (on the right side). We shall prove that the
same inequality holds for any increase of one round in the conversations involved in the set
description and thus by transitivity we shall get that Equation 13 holds. For any round ¢, let
¢; denote the first 7 rounds of a given conversation c. We will show that for all 0 < <d—1
(where d is the number of rounds) it holds that

Wei
‘ [|Sci+1| ' |Qci+1|

P, |?
> E _ 14
= e [|Scl : |ch| ( )
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Actually, we will show something stronger. We will show that for any prefix h of a conver-
sation that has positive probability in the original interaction (P,V') (i.e., with S, # 0), it
holds that

| Whos|* U ?

|Shosl * [2nosl — [Shl - [

Z PrOb(pM’V)(h o} 6|h) . (15)
g

Where the summation is over all possible messages 3 that might follow the history A in the
original interaction (P,V). Having proven Equation 15, we get that this also holds when
we take the expectation over all possible h of length ¢ and Equation 14 holds as well. So it
remains to prove Equation 15 and we shall do that separately for 3 being played in a prover
round (i.e., by the simulation-based prover) and for 3 being played in a verifier round (by
the original verifier).

Prover’s step: The left term of Equation 15 in this case is

[Wop? [Dnosl | |Wnos?
Prob(Py(h) =08) 7o = .
; ( M( ) ﬂ) |Shoﬁ| . |Qho,8| 3 |Qh| |Sho,3| . |Qhoﬁ|

The last equality is true since (by definition) Py, behave exactly like the simulator acts in
prover steps. By the Cauchy-Schwartz inequality we can write

1 [Whosl* 1 (X5 [Whosl)?

Q] G 1Shos|l — 1] g [Shosl

The sets U5 over all 3 satisfying Shop # () are a partition of the set Wy since W5 C Shop.
Thus, it holds that > 5 [¥y.s| = |¥]. The same is true also for Sy, and S,. Thus the
expression on the right equals

||
Skl |S2]
as needed.

Verifier’s step: The left term of Equation 15 in this case is

sl [Shesl [ Whosl?
[Shosl = [nosl G ISkl |Shos -+ |2nos]

>_Prob(V(h) = §)
B
The last equality is true since V' behave exactly like the simulator acts on the random tapes
in S. Using Cauchy-Schwartz again, the above is equal to

U Wl o[9[
1Sul G [Qnosl Skl [

Note again that the sets Wy.5 over all 3 satisfying Sy # () are a partition of the set Wy, since
U5 C Shop. The sets Qpo5 over all 3 such that Sj.5 # () are not necessarily a partition of
), as nonempty parts corresponding to  with Sh.s = ) may be missing. Thus, we can only
claim that 35 [Q408| < [Q4], but this is good enough for us, and we are done with the proof
of Lemma 5.2. B
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