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Abstra
t

We show that if a language has an intera
tive proof of logarithmi
 statisti
al

knowledge-
omplexity, then it belongs to the 
lass AM\ 
o�AM. Thus, if the poly-

nomial time hierar
hy does not 
ollapse, then NP-
omplete languages do not have

logarithmi
 knowledge 
omplexity. Prior to this work, there was no indi
ation that

would 
ontradi
t NP languages being proven with even one bit of knowledge. Our

result is a 
ommon generalization of two previous results: The �rst asserts that statis-

ti
al zero knowledge is 
ontained in AM \ 
o�AM [F-89, AH-91℄, while the se
ond

asserts that the languages re
ognizable in logarithmi
 statisti
al knowledge 
omplexity

are in BPP

NP

[GOP-94℄.

Next, we 
onsider the relation between the error probability and the knowledge


omplexity of an intera
tive proof. Note that redu
ing the error probability via rep-

etition is not free: it may in
rease the knowledge 
omplexity. We show that if the

negligible error probability Æ(n) is less than 2

�3k(n)

(where k(n) is the knowledge 
om-

plexity) then the language proven is in the third level of the polynomial time hierar
hy

(spe
i�
ally, it is in AM

NP

. In the standard setting of negligible error probability,

there exist PSPACE-
omplete languages whi
h have sub-linear knowledge 
omplexity.

However, if we insist, for example, that the error probability is less than 2

�n

2

, then

PSPACE-
omplete languages do not have sub-quadrati
 knowledge 
omplexity, unless

PSPACE= �

P

3

.

In order to prove our main result, we develop an AM proto
ol for 
he
king that a

samplable distributionD has a given entropy h. For any fra
tions Æ; �, the veri�er runs

in time polynomial in 1=� and log(1=Æ) and fails with probability at most Æ to dete
t an

additive error � in the entropy. We believe that this proto
ol is of independent interest.

Subsequent to our work Goldrei
h and Vadhan [GV-98℄ established that the problem of


omparing the entropies of two samplable distributions if they are noti
eably di�erent

is a natural 
omplete promise problem for the 
lass of statisti
al zero knowledge (SZK).

�

This resear
h was performed while the authors were visiting the Computer S
ien
e Department at the

University of Toronto, preliminary version of this paper appeared in [PT-96℄

y

Dept. of Computer S
ien
e, Te
hnion - Israel Institute of Te
hnology, Haifa 32000, Israel. Email:

erez�
s.te
hnion.a
.il.

z

R�enyi Institute, Hungarian A
ademy, POB. 127, Budapest, H-1364 Hungary. Partially supported by

the grants OTKA T-020914, T-030059, and FKFP 0607/1999. E-mail: tardos�renyi.hu

0



1 Introdu
tion

The ability of a party M to 
ompute a fun
tion depends on the information it a

esses and

its 
omputational power. This ability may in
rease when M intera
ts with another (possibly

more powerful or more informed) party. The knowledge 
omplexity measure, introdu
ed

by Goldwasser Mi
ali and Ra
ko� [GMR-85, GMR-89℄, is meant to measure how mu
h

party M has gained through the intera
tion in this respe
t, alternatively phrased as the

amount of knowledge gained by party M . The spe
ial 
ase in whi
h the intera
tion does not

in
rease the 
omputational ability of M at all is well known as zero knowledge intera
tion.

A formulation of knowledge-
omplexity, for the 
ase that it is not zero, has appeared in

[GP-91℄. A very appealing suggestion, a
tually made by Goldwasser Mi
ali and Ra
ko�, is

to 
hara
terize languages a

ording to the knowledge-
omplexity of their intera
tive proof

systems [GMR-89℄.

The 
lass of knowledge 
omplexity 0 (better known as zero knowledge) stands at the

lowest level of the knowledge 
omplexity hierar
hy, and at the top we have the 
lass of

languages with polynomial knowledge 
omplexity whi
h in
ludes all IP=PSPACE. Both for

zero-knowledge as for the knowledge 
omplexity in general, there are three standard variants

of the de�nitions whi
h result in three hierar
hies of languages; that is, perfe
t, statisti
al

and 
omputational. In this paper we will only be interested in the statisti
al and perfe
t

hierar
hies.

Our main result is a relation between the knowledge 
omplexity and the 
omputational


omplexity of languages. We show that languages with logarithmi
 knowledge 
omplexity are

inAM\
o�AM. This result has a very interesting impli
ation on languages in NP. Re
all

that if NP � 
o�AM then the polynomial time hierar
hy 
ollapses [BHZ-87℄. Assuming

that the polynomial time hierar
hy does not 
ollapse, we get thatNP-
omplete languages do

not have logarithmi
 knowledge 
omplexity. Prior to our result, there was no indi
ation that

would 
ontradi
t all NP languages having knowledge 
omplexity 1. Note that, if a one-way

fun
tion exists, then this di�ers signi�
antly from the 
omputational knowledge 
omplexity

hierar
hy for whi
h NP-
omplete languages have zero knowledge intera
tive proofs (and so

do PSPACE-
omplete languages) [GMW-86, IY-87, B+ 88℄.

1.1 Ba
kground on knowledge-
omplexity

Loosely speaking, an intera
tive-proof system for a language L is a two-party proto
ol, by

whi
h a powerful prover 
an \
onvin
e" a probabilisti
 polynomial-time veri�er of member-

ship in L, but will fail (with high probability) when trying to fool the veri�er into \a

epting"

non-members [GMR-89℄. An intera
tive-proof is 
alled zero-knowledge if the intera
tion of

any probabilisti
 polynomial-time ma
hine with the predetermined prover, on 
ommon input

x 2 L, 
an be \simulated" by a probabilisti
 polynomial-time ma
hine (
alled the simulator),

given only x [GMR-89℄. We say that a probabilisti
 ma
hineM simulates an intera
tive proof

if the output distribution of M is statisti
ally 
lose to the distribution of the real intera
tion

between the prover and the veri�er.

The formulation of zero-knowledge presented above is known as statisti
al (almost-perfe
t)

zero-knowledge. If we require the distributions of the simulator to be equal to the distribu-

tion of the real intera
tion we get the perfe
t zero-knowledge. (Yet another alternative is
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omputational zero-knowledge but we do not 
onsider it here.)

Loosely speaking, the knowledge-
omplexity of a proto
ol � is the best possible \quality"

of an eÆ
ient simulation of �. Namely, we say that a prover leaks k(n) bits of knowledge

to the veri�er if there is a probabilisti
 polynomial-time ma
hine (\simulator")M su
h that

on any input x 2 L, the ma
hine M on input x, outputs a distribution, of whi
h a subspa
e

of density at least 2

�k(jxj)

is statisti
ally 
lose to the distribution of the 
onversations in

the intera
tion between the prover and the veri�er. For a formal de�nition and further

dis
ussion, see Se
tion 2.2.

We say that a language L has knowledge 
omplexity k(n) if there is an intera
tive proof

for L with knowledge 
omplexity k(n). We 
onsider the knowledge-
omplexity of a language

to be a very natural parameter, and we 
onsider the question of how this parameter relates

to the 
omplexity of de
iding the language to be fundamental.

1.2 Previous work

The 
omplexity of re
ognizing zero-knowledge languages was �rst 
onsidered by Fortnow

[F-89℄. Building on his work, Aiello and Hastad [AH-91℄ (see also [H-94℄ for an intuition)

showed that zero knowledge languages are in AM\ 
o�AM.

Bellare and Petrank [BP-92℄ bounded the 
omputational 
omplexity of languages whi
h

have short intera
tive-proofs with low knowledge-
omplexity. Goldrei
h, Ostrovsky, and Pe-

trank [GOP-94℄ have extended this result showing that any language of logarithmi
 knowledge-


omplexity 
an be re
ognized in BPP

NP

. This was the �rst relation found between a knowl-

edge 
omplexity of a language (above zero) and its 
omputational 
omplexity. Their result

gave the �rst indi
ation that PSPACE-
omplete languages do not have low (i.e., logarithmi
)

knowledge 
omplexity.

Goldrei
h, Ostrovsky, and Petrank have also showed that the di�eren
e between the

hierar
hy of languages 
lassi�ed a

ording to their perfe
t knowledge 
omplexity and the

hierar
hy of languages 
lassi�ed a

ording to their statisti
al knowledge 
omplexity is not big.

They showed how to transform intera
tive proofs of statisti
al knowledge-
omplexity k(n)

into intera
tive proofs of perfe
t knowledge-
omplexity k(n)+O(logn). This transformation

refers only to knowledge-
omplexity with respe
t to the honest veri�er. Namely, it is only

guaranteed that the intera
tion between the prover and the honest veri�er, i.e., the veri�er

that follows the proto
ol, 
an be simulated eÆ
iently.

Aiello, Bellare, and Venkatesan [ABV-95℄ studied the 
lass of languages whi
h have k(n)

knowledge 
omplexity on the average (see [GP-91, ABV-95℄ for a de�nition of knowledge


omplexity on the average). They showed that languages with logarithmi
 average knowl-

edge 
omplexity are in BPP

NP

. They also showed a 
loser relation between the perfe
t

and the statisti
al hierar
hies of languages (for the 
ase of average knowledge 
omplexity).

They showed that the di�eren
e between these knowledge 
omplexities is negligible for any

language. This result is also stronger in the sense that it is not restri
ted to the honest

veri�er simulation. We remark that it is not known how to get su
h a 
lose relation for the

worst-
ase knowledge 
omplexity.
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1.3 This work

Our main result is that languages having intera
tive proofs with logarithmi
 knowledge-


omplexity are in AM\ 
o�AM. The 
lass AM is the 
lass of languages that have two

round Arthur Merlin proofs, or equivalently, have a 
onstant round intera
tive proof. (There

is no restri
tion on the knowledge 
omplexity of this 
onstant round intera
tive proof.) See

[BM-88, GS-89℄ for de�nitions of Arthur Merlin proofs, for some basi
 properties, and for

the equivalen
e of the de�nitions.

It was shown in [BHZ-87℄ that if NP � 
o�AM then the polynomial time hierar
hy


ollapses. It is believed that the polynomial time hierar
hy does not 
ollapse, and under

this assumption, our result implies that NP-
omplete languages do not have logarithmi


knowledge 
omplexity. Prior to this result, there was no indi
ation that would 
ontradi
t all

of the languages in NP having knowledge 
omplexity 1.

Our se
ond result involves the 
onne
tion of the soundness error probability and the

knowledge 
omplexity of an intera
tive proof. We show that if a language has an intera
tive

proof with negligible error probability Æ(n) and statisti
al knowledge 
omplexity k(n) and

if Æ(n) � 2

�3k(n)

then the language is in AM

NP

and so it is 
ontained in the third level of

the polynomial time hierar
hy. We note that one may use the te
hniques in [GOP-94℄ to

get a result for the 
ase of logarithmi
 knowledge 
omplexity. Spe
i�
ally, if there exists an

intera
tive proof for L with error Æ(n) and logarithmi
 knowledge 
omplexity k(n) and if

there exists a polynomial p(n) su
h that (1�Æ(n))

2

�2

�k(n)

> Æ(n)+

1

p(n)

, then the language in

in BPP

NP

. Our result applies only to negligible Æ(n) but allows any knowledge 
omplexity

fun
tion that satis�es k(n) �

1

3

log

2

(1=Æ(n)). Let us say a few words on the impli
ations of

this result.

In the regular setting of zero-knowledge (or intera
tive proofs) it does not matter in the

de�nition if we allow the error probability to be as high as 1=3 or if we insist that it is as

small as 2

�n

3

. However, the standard approa
h to redu
ing the error probability involves

repeated appli
ations of the intera
tive proof and thus may in
rease its knowledge 
omplex-

ity. Therefore, when dis
ussing the knowledge 
omplexity, it seems important to �x the

error probability to some predetermined fun
tion. Following previous works we 
hoose the

reasonable requirement that the error probability be negligible (i.e., asymptoti
ally smaller

than any polynomial fra
tion).

Another aspe
t of this result 
on
erns the trade-o� between redu
ing the error and in-


reasing the knowledge 
omplexity. Many past works 
onsidered the possibility of redu
ing

the error of a probabilisti
 algorithm while not in
reasing the number of 
oin-tosses as mu
h

as the naive solution would. It would seem natural to ask the same question about the

knowledge 
omplexity. In the naive method, we repeat the proto
ol t times, so the knowl-

edge 
omplexity in
reases by a fa
tor of t and the error probability (for simpli
ity assume

one-sided error) de
reases from Æ into Æ

t

. Namely, the logarithm of 1=Æ and the knowledge


omplexity in
rease by the same fa
tor. Assuming PSPACE6= �

P

3

, and in light of our result,

one shouldn't expe
t to have a general method for doing mu
h better than that. Namely, the

logarithm of 1=Æ 
annot in
rease substantially more rapidly than the knowledge 
omplexity

for languages outside AM

NP

.
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1.4 Impli
ations on the hint knowledge 
omplexity:

Another impli
ation of our se
ond result 
on
erns a rather esoteri
 de�nition of knowledge


omplexity 
alled the hint version of knowledge 
omplexity. This de�nition was presented

in [GP-91℄ and was adequate in di�erent s
enarios (see [BCK-90℄). Loosely speaking, an

intera
tive proof has knowledge 
omplexity k(n) in the hint sense, if there is a fun
tion h(x)

of the input (the hint fun
tion) su
h that the intera
tive proof on input x 
an be simulated

eÆ
iently given only x and the hint h(x), and jh(x)j � k(jxj). (The di�eren
e is that the

\help" whi
h the simulator gets does not depend on the random 
oin-tosses of the veri�er

or of the simulation. For an exa
t de�nition and detailed explanations see [GP-91℄.)

It was shown in [GP-91℄ that this de�nition does not seem to be adequate, be
ause some

proto
ols in whi
h only a polynomial number of bits are transferred, have exponential knowl-

edge 
omplexity. Here, we 
laim that we 
an make a similar assertion for languages. Namely,

our result implies that a PSPACE-
omplete language has super-polynomial knowledge 
om-

plexity in the hint sense unless PSPACE= �

P

3

. This 
ounter-intuitive assertion gives yet

another indi
ation that the hint measure is not an adequate one.

To see that the above assertion is 
orre
t, note that the hint measure does not in
rease

when one uses sequential repetitions of the proto
ol. Also, note that if a proto
ol has knowl-

edge 
omplexity k(n) in the hint measure, then it also has at most k(n) knowledge 
omplexity

in the standard (fra
tion) measure 
onsidered here. Combining these two properties, we get

that if a language has an intera
tive proof with polynomial hint knowledge 
omplexity k(n)

and some 
onstant error probability, then this language also has an intera
tive proof with

k(n) knowledge 
omplexity in the standard measure with negligible error probability 2

�3k(n)

and thus this language is in the third level of the polynomial hierar
hy.

1.5 Te
hniques used

We begin by establishing a separation property whi
h separates x in the language from x not

in the language. This property is a modi�
ation of the separation property used in [AH-91℄.

Next, we have to show that this separation 
an be dete
ted by an AM proto
ol. For this,

we employ the lower and upper bounds on set sizes as presented by [GS-89, F-89℄, and build

on them an AM approximation for the entropy of the output distribution of the simulator.

We believe that the proto
ol for approximating the entropy of a samplable distribution is of

independent interest. We note that it is sublimed from a proto
ol in [AH-91℄ whi
h is used

there for a spe
i�
 distribution.

In order to prove the validity of the separation property, we use te
hniques developed

in [GOP-94℄ whi
h relate the distribution of 
onversations in the original intera
tive proof

with the distribution of 
onversations in a mental experiment in whi
h the original veri�er

intera
ts with the simulation-based prover, i.e., a prover that a
ts like the prover in the

simulation (see Se
tion 2.3 for a formal de�nition of this prover).

Our main result is proven for perfe
t knowledge 
omplexity and we employ a result from

[GOP-94℄ asserting that the distan
e between perfe
t and statisti
al knowledge 
omplexity

is 
lose enough for our result to hold for statisti
al knowledge 
omplexity as well.

In our se
ond result whi
h relates the knowledge 
omplexity and the error probability

we also employ te
hniques for deterministi
 bounds on set sizes developed in [Si-83, St-83,

4



JVV-86, BP-92℄.

1.6 Organization

In Se
tion 2 we give the de�nitions and notations we use in the paper. In Se
tion 3 we

present our AM proto
ol for proving the entropy of a samplable distribution. In Se
tion

4 we provide an overview of the 
onstru
tion in [AH-91℄ and explain why it doesn't work

in the 
ase that the knowledge 
omplexity is greater than 0. In Se
tion 5 we present the

property of the simulator that tells apart inputs in the language from inputs not in the

language. The tools presented in the above se
tions are used in Se
tion 6 to present our

main result: a 
onstant round intera
tive proof for re
ognizing the languages in logarithmi


statisti
al knowledge 
omplexity. In Se
tion 7 we present our result relating error probability

to knowledge 
omplexity of intera
tive proofs. In Se
tion 8 we raise a few open questions.

2 Preliminaries

Let us state some of the de�nitions and 
onventions we use in the paper. Throughout this

paper we use n to denote the length of the input x. A fun
tion f : N ! [0; 1℄ is 
alled

negligible if for every polynomial p and all suÆ
iently large n f(n) <

1

p(n)

. Let the distan
e

between distributions D

1

and D

2

be

d(D

1

; D

2

) =

1

2

X

r

jProb

D

1

[r℄� Prob

D

2

[r℄j:

We say that an ensemble of distributions D

1

x

is statisti
ally 
lose to another ensemble D

2

x

over a language L, if the fun
tion

f(n) = max

jxj=n; x2L

fd(D

1

x

; D

2

x

)g

is negligible.

2.1 Intera
tive proofs

We begin by re
alling the de�nitions of intera
tive proofs presented by [GMR-89, B-85℄.

For formal de�nitions and motivating dis
ussions the reader is referred to [GMR-89℄. An

intera
tive proof is a proto
ol in whi
h a (
omputationally unbounded, probabilisti
) prover

P is intera
ting with a (probabilisti
 polynomial-time) veri�er V . Intuitively, the goal of

the prover is to prove to the veri�er V that a given input is in a predetermined language.

Formally, we say that the pair (P; V ) 
onstitutes an intera
tive proof for a language L if

there exist negligible fun
tions Æ




: N ! [0; 1℄ the 
ompleteness error and Æ

s

: N ! [0; 1℄ the

soundness error su
h that

1. Completeness: If x 2 L then

Prob [(P; V )(x) a

epts ℄ � 1� Æ




(n)

2. Soundness: If x 62 L then for any prover P

�

Prob [(P

�

; V )(x) a

epts ℄ � Æ

s

(n)
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2.2 Knowledge Complexity

Let us de�ne the statisti
al (and perfe
t) knowledge 
omplexity measure of proto
ols (and

spe
i�
ally of intera
tive proofs). We use the fra
tion de�nition of knowledge 
omplexity as

presented by [GP-91℄. For further intuition and motivation see [GP-91℄.

Throughout the rest of the paper, we only refer to knowledge-
omplexity with respe
t to

the honest veri�er; namely, the ability to simulate the honest veri�er's view of its intera
tion

with the prover. (In the stronger de�nition, one 
onsiders the ability to simulate the point

of view of any eÆ
ient veri�er while intera
ting with the prover.) This restri
tion only

strengthen the results presented in the paper.

Let (P; V )(x) be the random variable that is distributed a

ording to the veri�er's view

of the (probabilisti
) intera
tion between P and V on the input x. The view 
ontains the

veri�er's random tape as well as the sequen
e of messages ex
hanged between P and V .

In order not to have to distinguish the view of the intera
tion from the 
onversation

itself we insist throughout the paper that the veri�er ends the 
onversation with sending

his random 
oins as the last message. Note that it is important to in
lude the 
oins of the

veri�er in the output of the simulation, and 
alling this the last round of the intera
tion is

just notation. For simpli
ity we also require that the veri�er starts the 
onversation, and

that the number of messages making up the 
onversation depends on the input length only.

The prover and the veri�er speak in alternate rounds, the veri�er taking the odd numbered

rounds and the prover speaking in the even numbered rounds. We 
all a 
onversation valid

if all the moves by the veri�er are 
onsistent with its 
oin-
ips (as given in the last message).

We denote by 


i

the i round pre�x of a 
onversation 
.

By the fra
tion formulation of knowledge 
omplexity, we say that a proto
ol has knowl-

edge 
omplexity k(n) if there exists an eÆ
ient simulation of the proto
ol that \partially"

su

eeds in simulating the proto
ol. (A \fully su

essful" simulation implies that the proto
ol

is zero knowledge.) The exa
t interpretation of \partially su

essful" is that in order to show

that the knowledge 
omplexity is k(n), the simulator must have a subspa
e of its output dis-

tribution whi
h is of density at least 2

�k(n)

, and whi
h simulates the proto
ol \su

essfully".

The interpretation of a su

essful simulation would be \exa
tly equal distributions" for per-

fe
t knowledge 
omplexity, and \statisti
ally 
lose distributions" for statisti
al knowledge


omplexity.

We follow with the formal de�nition. In the de�nition we prefer to talk about a subspa
e

of the random tapes of the simulator rather than to talk about a subspa
e of the output

distribution of the simulator. Although the meaning is the same, it will be easier to work

with this de�nition when proving properties of knowledge 
omplexity.

De�nition 2.1 (knowledge-
omplexity | fra
tion version): Let �: N ! (0; 1℄. We say

that an intera
tive proof (P; V ) for a language L has perfe
t (resp., statisti
al) knowledge-


omplexity log

2

(1=�(n)) in the fra
tion sense if there exists a probabilisti
 polynomial-time

ma
hine M with the following good subspa
e property. For any x 2 L there is a subset of

M 's possible random tapes, denoted S

x

, su
h that:

1. The set S

x


ontains at least a �(n) fra
tion of the set of all possible 
oin tosses of M(x).

2. Conditioned on the event that M(x)'s 
oins fall in S

x

, the random variable M(x) is

identi
ally distributed (resp., statisti
ally 
lose) to (P; V )(x). Namely, for the perfe
t

6




ase this means that for every �


Prob(M(x; !)=�
 j!2S

x

) = Prob((P; V )(x)=�
)

whereM(x; !) denotes the output of the simulatorM on input x and 
oin tosses sequen
e

!.

Note that the de�nition of perfe
t (statisti
al, 
orr.) knowledge 
omplexity zero (i.e.,

when k = 0) exa
tly mat
hes the de�nition of perfe
t (and statisti
al, 
orr.) zero knowledge

as given in [GMR-89℄. For further motivation and dis
ussion of zero knowledge, the reader

is referred to [GMR-89℄. From the above de�nitions of knowledge 
omplexity 
ombined with

the de�nitions of intera
tive proofs, the knowledge 
omplexity 
lasses of languages 
an be

formulated:

De�nition 2.2 (knowledge-
omplexity 
lasses):

� PKC(k(n)) = languages having intera
tive proofs of perfe
t knowledge-
omplexity k(n).

� SKC(k(n)) = languages having intera
tive proofs of statisti
al knowledge-
omplexity k(n).

A 
onne
tion between the perfe
t and the statisti
al hierar
hies was given in [GOP-94℄:

Theorem 1 [GOP-94℄

SKC(k(n)) � PKC(k(n) +O(logn))

Note that this result is only proved for the honest veri�er simulation|the de�nition of

knowledge 
omplexity presented here.

2.3 The simulation-based prover

An important ingredient in our proof is the notion of a simulation based prover, introdu
ed

by Fortnow [F-89℄. Consider a simulator M that outputs 
onversations of an intera
tion

between a prover P and a veri�er V . We de�ne a new prover P

M

, 
alled the simulation-

based prover, whi
h sele
ts its messages a

ording to the 
onditional probabilities indu
ed

by the simulation. Namely, on a partial history h of a 
onversation, P

M

outputs a message

� with probability

Prob(P

M

(h)=�)

def

= Prob(M

jhj+1

=hÆ�

�

�

�M

jhj

=h)

where M

t

denotes the t message long pre�x of the random 
onversation output by the

simulatorM . Noti
e that P

M

is not de�ned for pre�xes h output byM with zero probability.

In perfe
t zero knowledge if x 2 L then P

M

equals the original prover P . It is important

to note however that the behavior of P

M

is not ne
essarily 
lose to the behavior of P if

the knowledge-
omplexity is greater than 0. This is the main reason why the AM proto
ol

presented by [AH-91℄ for the 
ase of zero knowledge is inappropriate for the 
ase of higher

(even 1) knowledge 
omplexity.
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2.4 Three distributions used throughout the paper

Let us de�ne three distributions whi
h are going to be used in all that follows. These are

distributions on 
onversations as output by running a proto
ol or invoking the simulator.

Here P and V 
onstitute an intera
tive proof for some language L, M is a simulator for

this intera
tion, and P

M

is the simulation-based prover (see Se
tion 2.3). We 
onsider the

following three distributions:

1. The distribution of 
onversations output by the simulator. We denote the probability

that a 
onversation 
 is output by the simulator by Prob

M

[
℄.

2. The distribution of 
onversations in the original intera
tive proof (P; V ). We denote

the probability that a 
onversation 
 is output by this intera
tive proof by Prob

(P;V)

[
℄.

3. Last, we 
onsider the intera
tion between the simulation-based prover P

M

and the

original veri�er V . We denote the probability that a 
onversation 
 is output by this

intera
tion by Prob

(P

M

;V)

[
℄.

All these distribution depend on the input x. In our notation we suppress x, the input

should be 
lear from the 
ontext. For the 
ase of perfe
t knowledge 
omplexity, an immediate


onne
tion between the �rst and the se
ond distributions follows from the de�nitions. For

any trans
ript 
 we have Prob

M

[
℄ � 2

�k(n)

�Prob

(P;V)

[
℄, where k(n) is the perfe
t knowledge


omplexity.

Consider now the probability of a 
onversation 
 in the third distribution. We would

like to express Prob

(P

M

;V)

[
℄ using only probabilities of the form Prob

M

[


i

℄, where 


i

is the

i-round pre�x of the 
onversation 
. Let us partition the 
omputation of Prob

(P

M

;V)

[
℄ to a

round-by-round 
omputation:

Prob

(P

M

;V)

[
℄ =

d(n)

Y

i=1

Prob

(P

M

;V)

[


i

j


i�1

℄;

where d(n) is the number of messages sent by P and V . Re
all that d(n) is odd and the

terms with i being odd are determined by the veri�er V . Thus, if 
 is valid, i.e., the veri�er

moves are 
onsistent with his 
oin-tosses and the history so far, then the produ
t of all the

odd terms equals the probability of V indeed pi
king the random tape spe
i�ed in the end

of the 
onversation 
. Thus,

d(n)�1

2

Y

i=0

Prob

(P

M

;V)

[


2i+1

j


2i

℄ = 2

�t(n)

where t(n) is the length of the random tape used by V .

The terms that have an even i are determined by P

M

thus Prob

(P

M

;V)

[


2i

j


2i�1

℄ =

Prob

M

[


2i

j


2i�1

℄. Here P

M

is well de�ned if 
 is output by M with positive probability.

For a valid trans
ript 
 with Prob

M

[
℄ > 0 we thus have:

Prob

(P

M

;V)

[
℄ = 2

�t(n)

�

d(n)�1

2

Y

i=1

Prob

M

[


2i

℄

Prob

M

[


2i�1

℄

(1)

For an invalid 
onversation 
 we trivially have Prob

(P

M

;V)

[
℄ = 0. This simple rewriting of

Prob

(P

M

;V)

[
℄ was �rst noted in [AH-91℄.
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3 Approximating the entropy in a 
onstant number of

rounds

Our �rst tool is an AM proto
ol for verifying the entropy of a polynomially samplable

distribution to within an a

ura
y of

1

poly

. We 
onsider this proto
ol to be of independent

interest but emphasize that it is based on set size lower and upper bound proto
ols of

[GS-89, F-89℄ and it is sublimed from a proto
ol in [AH-91℄, whi
h is used there for a spe
i�


distribution. It is worth 
omparing this proto
ol to the one given in [GV-98℄ for the same

purpose (or more exa
tly to approximate the di�eren
e of two entropies). Their publi
 
oin

intera
tive proof has the advantage of having strong zero-knowledge properties, ours has

the advantage of having a 
onstant number of rounds. The [GV-98℄ proto
ol uses the set

size lower bound proto
ol but instead of the upper bound proto
ol they use an elaborate

\pushing game" from the paper [Oka-96℄, requiring more than 
onstant number of rounds.

We begin by explaining the setting.

Let D be a dis
rete distribution and we let Prob

D

[y℄ denote the weight of the element y

in this distribution. The entropy H(D) of D is de�ned as:

H(D) = �

X

y

Prob

D

[y℄ logProb

D

[y℄; (2)

where the sum extends for all values y in the range of D.

We 
all an ensemble D

x

of distributions polynomially samplable if there exist a polynomial

time randomized ma
hine whose output on input x is distributed a

ording to D

x

.

We state our result on approximating the entropy here but before the proof we re
all the

set-size approximation proto
ols needed for it.

Theorem 2 Let D

x

be a polynomially samplable ensemble of distributions. There exists a


onstant round upper bound intera
tive proof and a 
onstant round lower bound intera
tive

proof for the entropy H(D

x

) that on input x and Æ; �; � > 0 satis�es:

1. The veri�er runs in polynomial time in jxj, 1=�, and log(1=Æ).

2. If the prover plays optimally then the veri�er in the upper bound proto
ol a

epts with

probability at most Æ if H(f) � �+� and reje
ts with probability at most Æ if H(f) � �.

3. Similarly, if the prover plays optimally then the veri�er in the lower bound proto
ol

a

epts with probability at most Æ if H(f) � �� � and reje
ts with probability at most

Æ if H(f) � �.

We later refer to the lower bound proto
ol mentioned in this theorem as an intera
tive

proof for H(f) � � with a

ura
y � and error Æ.

As we shall see in Se
tion 3.2 
omputing the entropy of a samplable distribution is

equivalent to 
omputing the average size of the set f

�1

(f(x)) in logarithmi
 s
ale. Here x is

taken uniformly from the domain f0; 1g

t

of the eÆ
iently 
omputable fun
tion f .

9



3.1 Proto
ols for set sizes

For the sake of self 
ontainment, we in
lude the set-size approximation proto
ols. For a more

detailed des
ription the reader may refer to [F-89, AH-91℄.

The main tool in these proto
ols is universal family of hash fun
tions (sometimes denoted

by universal

2

family of hash fun
tions) [CW-79℄. This is a 
olle
tion H of fun
tions mapping

a domain D to the a range R su
h that for every point X 2 D and a random element h 2 H,

the value h(X) is uniformly distributed in R, and for two elements X 6= Y 2 D the values

h(X) and h(Y ) are independent. The existen
e of polynomial time universal families H

n;m

for D = f0; 1g

n

and R = f0; 1g

m

is well known (take for example the 
olle
tion of aÆne

linear maps over the two element �eld).

Let us begin with the lower-bound. Suppose we have a subset S of a larger domainD, and

we assume that the veri�er 
an 
he
k if a given element X is in S. We 
onsider a universal

family of hash-fun
tions from D to a range R. Basi
ally, in the following proto
ol the prover


onvin
es the veri�er that the 
ardinality of the set S is bigger than the 
ardinality of the

range R. The proto
ol is as follows:

The veri�er pi
ks uniformly a random hash-fun
tion h from the family and a random

element Y 2 R and sends them to the prover. The prover responds with an element X 2 D.

The veri�er a

epts if X 2 S and h(X) = Y .

The following lemma implies the soundness and 
ompleteness of the above proto
ol. For

the simple proof see [AH-91℄.

Lemma 3.1 [GS-89℄ If the prover plays optimally then the a

eptan
e probability p in the

above proto
ol satis�es

1�

jRj

jSj

� p �

jSj

jRj

:

Another way to state the lemma is that if jSj < �jRj then the the veri�er a

epts with

probability at most �, but if jRj < �jSj then the prover 
an make the veri�er reje
t with

probability less than �.

Let us now des
ribe the set-size upper bound proto
ol. Again, we assume that there is

a non-empty subset S of a domain D. This time, we do not require that the set will be

re
ognizable in polynomial time, but we have to assume that the veri�er has one element

X in S whi
h was sele
ted uniformly in S, and is unknown to the prover. Again, we use

a universal family of hash fun
tions from the domain D to a range R. The proto
ol is as

follows:

The veri�er 
hooses a random hash-fun
tion h from the family and sends h and h(X) to

the prover. The prover responds with a value Z 2 D. The veri�er a

epts if X = Z.

The following lemma implies the 
ompleteness and soundness of the proto
ol.

Lemma 3.2 [F-89℄ If the prover plays optimally, then the a

eptan
e probability p of the

above intera
tive proof proto
ol satis�es

1�

jSj � 1

jRj

� p �

jRj

jSj

:
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Another way to state the lemma is that if jRj < �jSj then the the veri�er a

epts with

probability at most �, but if jSj � 1 < �jRj then the prover 
an make the veri�er reje
t with

probability less than �.

The proto
ol is from [F-89℄ and its 
orre
tness is proved there. Nevertheless, we in
lude

the short proof here be
ause the upper bound proved there on the a

eptan
e probability is

somewhat weaker and the proof (and the bound) is slightly more 
ompli
ated.

Proof: The prover 
an 
ertainly win if h(X) has a unique inverse image in S (whi
h is X).

Fix X 2 S, by the pairwise independen
e of the hash fun
tions family, the probability that

another �xed element of S is hashed to the same value as X is 1=jRj. Thus, the probability of

su
h an element existing between the remaining jSj�1 elements in S is at most (jSj�1)=jRj

hen
e the lower bound on the probability p.

For the upper bound on the probability p, we assume, without loss of generality, that the

prover 
hooses its optimal response for every message he re
eives deterministi
ally. Let us �x

the hash fun
tion h. For any possible value � 2 R that the veri�er may send, the prover has

one (optimal) response Z = Z(�). So the prover has at most jRj di�erent possible answers

and it 
an only win if the random element X that the veri�er 
hooses in S is one of these

values (re
all that the veri�er only a

epts if X = Z). The probability that an X randomly


hosen in S will fall into this set of at most jRj element is at most jRj=jSj, and we are done

with the proof of the Lemma.

Although the set-size approximation proto
ols just des
ribed are suÆ
ient for the ap-

proximation of the entropy we need an improved lower bound proto
ol later for our main

proto
ol (spe
i�
ally, for the se
ond step in the proto
ol for re
ognizing L or L in Se
tion 6).

Therefore let us state this simple extension here. The ampli�
ation we use is similar to the

one used by [JVV-86, BP-92℄. In order to approximate better the 
ardinality of the set S,

we simply use the above lower bound proto
ol for the set S

m

, where m is an integer whi
h

depends on the desired a

ura
y.

Lemma 3.3 For every � > 0 and Æ > 0 there is two-round proto
ol for lower bounding the

size of a set S � f0; 1g

n

in whi
h the veri�er is given a 
laimed lower bound s on jSj, and

a bla
k box for testing membership in S. The veri�er runs in polynomial time in n, 1=� and

log(1=Æ) and furthermore:

� If s � jSj then the prover 
an make the veri�er a

ept with probability at least 1� Æ.

� If s � jSj(1 + �) no prover 
an make the veri�er a

ept with probability above Æ.

We 
all su
h a proto
ol a proof for jSj � s with relative a

ura
y (1+ �) and error Æ. For

self 
ontainment, we in
lude the standard proof.

Proof: Setting m appropriately (see below), we apply the proto
ol of Lemma 3.1 for S

m

with a polynomial time universal family of hash fun
tions from f0; 1g

nm

to f0; 1g

bm log((1��=2)s)


.

By Lemma 3.1 we get that the prover 
an make the a

eptan
e probability at least 1� (1�

�=2)

m

if jSj � s but it 
annot make the veri�er a

ept with probability more than (1� �=2)

m

if s � jSj(1 + �). Thus 
hoosing m = d

2

�

� log

1

Æ

e proves Lemma 3.3.

Note that a similar improvement over the upper bound proto
ol would require the veri�er

being given m random elements in S whi
h are not known to the prover. This is not feasible

in our 
ase, and seems a hard demand in general.
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3.2 Approximating the entropy

As a �rst step toward the proof of Theorem 2 we get an expression for the entropy that is

more suitable for our purposes. As the distribution D

x

is the distribution of a polynomial

time randomized ma
hine on input x we may 
onsider this output as a fun
tion f(r) on the

random tape r. We �x the length of the random tape r to a suitable value t thus we have

r 2 f0; 1g

t

. Here f is 
omputable in polynomial time (given x). We rewrite the de�nition of

the entropy given by Equation 2 to get:

H(D

x

) = H(f) = �

X

y

X

r:f(r)=y

Prob(r) logProb

s

[f(s) = y℄

= �

X

r

Prob(r) logProb

s

(f(s) = f(r))

= �Exp

r

[log Prob

s

[f(s) = f(r)℄℄

= t� Exp

r

[log jf

�1

(f(r))j℄:

Here Prob(r) = 2

�t

is the probability of 
hoosing r when uniformly sampling f0; 1g

t

, Exp

r

denotes the expe
tation over a random r su
h sele
ted, and Prob

s

denotes probability with

respe
t to a uniformly sele
ted s 2 f0; 1g

t

.

The idea of the proto
ol is to measure an empiri
al average value as an approximation

to the expe
ted value of log jf

�1

(f(r))j. We generate a large polynomial number m of inde-

pendent random samples r

i

and approximate the expe
tation by �

1

m

P

m

i=1

log jf

�1

(f(r

i

))j.

We bound the probability of this approximation being far from the expe
tation by a variant

of the Cherno� bound.

However, we 
annot 
al
ulate the value inside the summation, i.e., given r

i

it is hard to


al
ulate log jf

�1

(f(r

i

))j. Therefore, we use the set size lower and upper bound proto
ols

of [GS-89, F-89℄ for this. Note that for lower bounding the entropy we need to upper

bound jf

�1

(f(r

i

)j and vi
e versa. For the entropy lower bound proto
ol one needs a uniform

random element in the set. Fortunately as r

i

is 
hosen uniformly in f0; 1g

t

it is also uniform

in f

�1

(f(r

i

)). The simplest approximation proto
ols (i.e., the ones that only guarantee a


onstant fa
tor approximations) are enough for our purposes be
ause we approximate the

produ
t

Q

m

i=1

jf

�1

(f(z

i

))j as a whole rather then ea
h of the sets separately.

We present both lower and upper bound proto
ols, although for proving our main result

we use the lower bound proto
ol only.

We are given a fun
tion f de�ned on f0; 1g

t

, an approximation parameter � > 0 and an

error parameter Æ > 0 and let the value � be the (lower or upper) bound on H(f) that the

prover would like to prove. Letm be a polynomial in t, 1=�, and log(1=Æ) to be spe
i�ed later.

First, we redu
e the error by using many 
opies of the fun
tion f . So 
onsider the fun
tion F

de�ned on the m-tuples of t-bit strings D = f0; 1g

mt

by F (r

1

; : : : ; r

m

) = (f(r

1

); : : : ; f(r

m

)).

For the upper bound we use a universal family of hash fun
tions H

mt;u

from D to f0; 1g

u

,

where u = bm(t � � � �=2)
 and for the lower bound proto
ol we use a universal family of

hash-fun
tions H

mt;l

from D to f0; 1g

l

, where l = bm(t� �+ �=2)
.

We assume in both proto
ols that the veri�er 
an 
ompute f(r) and thus also F (X).

Let us start with the upper bound proto
ol.

� The veri�er uniformly pi
ks a random X 2 D, a hash-fun
tion h 2 H

mt;u

and an

element Y 2 f0; 1g

u

. The veri�er sends F (X), h, and Y to the prover.
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� The prover responds with Z 2 D.

� The veri�er a

epts i� F (Z) = F (X) and h(Z) = Y .

Let us also present the lower bound proto
ol.

� The veri�er uniformly pi
ks a random X 2 D and a hash-fun
tion h 2 H

mt;l

. The

veri�er sends F (X), h, and h(X) to the prover.

� The prover responds with Z 2 D.

� The veri�er a

epts i� X = Z.

The following lemma states that the above proto
ols satisfy the 
onditions of Theorem

2.

Lemma 3.4 The following holds for the above proto
ols:

1. The veri�er in both proto
ols runs in polynomial time in t, 1=�, and log(1=Æ) if it has

bla
k-box a

ess to f .

2. If the prover plays optimally then the veri�er in the upper bound proto
ol a

epts with

probability at most Æ if H(f) � �+� and reje
ts with probability at most Æ if H(f) � �.

3. Similarly, if the prover plays optimally then the veri�er in the lower bound proto
ol

a

epts with probability at most Æ if H(f) � �� � and reje
ts with probability at most

Æ if H(f) � �.

Proof: Clearly, the statement on the eÆ
ien
y of the veri�
ation pro
ess holds, sin
e the

veri�er only has to sample the domain f0; 1g

mt

, to sample h 2 H

mt;l

or h 2 H

mt;u

, and to


ompute h and F on given points. So let us 
on
entrate on the error probabilities of the

proto
ols.

The �rst sour
e of error in both proto
ols is that for the uniformly 
hosenX = (x

1

; : : : ; x

m

)

the average a = 1=m

P

m

i=1

logProb

y

(f(y) = f(x

i

)) might deviate from its expe
ted value,

i.e., from �H(f), by more than �=4. Call su
h a 
hoi
e of X bad, and let us bound the

probability of 
hoosing a bad X using the Hoe�ding Equation [Hoe-63℄ (a variant of the

Cherno� bound). This inequality asserts that the probability of the average of m identi
ally

distributed independent variables deviating from the expe
ted value by at least E is at most

2e

�2E

2

m=R

2

where R is the size of the range of the random variables. We 
an 
learly make

this less than Æ=2 by 
hoosing m > 8t

2

log(1=Æ)=�

2

. So this sour
e of error 
ontributes only

Æ=2 to the error probability. Let us 
ontinue and 
he
k the error probability that we get

from the set-size lower and upper bound proto
ols.

In both proto
ols, we use the set size approximation proto
ols on the set F

�1

(F (X)) for

the spe
i�
 X 
hosen by the veri�er. The 
ardinality of this set is

jF

�1

(F (X))j =

m

Y

i=1

jf

�1

(f(x

i

))j

=

m

Y

i=1

2

t

� Prob

y

(f(y) = f(x

i

))

= 2

m(t+a)
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where a is the empiri
al average de�ned above. Thus, if the 
hoi
e of X is not bad then we

get

2

m(t�H(f)��=4)

< jF

�1

(F (X))j < 2

m(n�H(f)+�=4)

: (3)

Suppose X is not bad, and thus 
ardinality of F

�1

(F (X)) is within the bounds spe
i�ed

in Equation 3. If the upper bound �, 
laimed by the prover is valid, i.e., H(f) � �, then by

Lemma 3.1 the veri�er reje
ts with probability at most

2

u

=2

m(t�H(f)��=4)

< 2

�m�=4+1

:

If however H(f) � � + � then the probability of a

eptan
e is at most 2

m(t�H(f)+�=4)

=2

u

<

2

�3m�=4

. Both these error probabilities 
an be made less than Æ=2 by makingm > 4(log(1=Æ)+

2)=�. This proves the 
laims on the entropy upper bound proto
ol.

The proof for the lower bound proto
ol is similar. Noti
e that 
onditioned on any value

Y = F (X) sent by the veri�er to the prover, the a
tual value of X is a uniformly distributed

random element of the set F

�1

(Y ). Thus the set-size upper bound proto
ol and Lemma 3.2

is appli
able, and we are done with the proof of Theorem 2.

3.3 Remarks

A remark on publi
 
oins: The statement of this theorem 
an be strengthened into

an approximation pro
edure in AM (i.e., the veri�er only having publi
 
oin tosses) by

applying the standard te
hniques of transforming an intera
tive proof to an Arthur-Merlin

game [GS-89℄. The upper bound proto
ol is already an Arthur-Merlin game as it does not

hurt if the prover learns X. Obviously, this 
an not be said about the lower bound proto
ol.

A remark on the 
omplexity of the fun
tion f : In the proto
ol derived from the

previous remark Arthur evaluates f at the end of the game. This allows us to use the

proto
ol to approximate the entropy not only of polynomial time 
omputable fun
tions but

also for fun
tions for whi
h f(x; y)jf(x) = yg 2 AM and jf(x)j is polynomially bounded in

jxj. To this end, we only have to modify the proto
ol so that Merlin helps Arthur evaluate

the fun
tion.

A remark about perfe
t 
ompleteness: Finally, one 
an redu
e the reje
tion probability

when the bound is 
orre
t to zero by standard te
hniques [GMS-87℄ making a one-sided error

Arthur-Merlin game.

4 An overview of the te
hniques in [AH-91℄

The main result of this paper is that SKC(O(logn)) � AM\ 
o� AM. This generalizes

the result of Fortnow [F-89℄ and Aiello and Hastad [AH-91℄ stating SZK � AM\
o�AM.

Let us start by re
alling the underlying te
hniques of the [AH-91℄ paper. This is done both

be
ause we are going to use some of the same te
hniques and to see why they don't suÆ
e

by themselves for our purposes.

14



4.1 The ideas in [AH-91℄

The proof in [AH-91℄ is as follows. First, they present a property of the simulation that

holds if and only if x 2 L. Their proof then 
ontains two parts: First they prove that indeed

this property 
hara
terizes the 
ase x 2 L versus the 
ase x 62 L, and se
ond they show how

this property and its negation 
an be proven in AM.

We alter their argument a little bit. A similar simpli�ed argument 
an also be found

in [GV-98℄. For simpli
ity we only 
onsider perfe
t zero-knowledge here. We may assume

without loss of generality that the simulator outputs mostly valid, a

epting trans
ripts. If

this is not the 
ase, then the veri�er 
an verify that x 62 L without intera
tion with the

prover simply by invoking the eÆ
ient simulator.

The distinguishing property is a
tually the magnitude of a relative entropy. They 
on-

sider two distributions: The distribution of 
onversations output by the simulator, and

the distribution of 
onversations output by the intera
tion of the original veri�er V with

the simulation-based prover P

M

as in Se
tion 2.4. If x 2 L then the relative entropy

H(M(x)jj(P

M

; V )(x)) is zero as the two distributions a
tually 
oin
ide, as we 
onsider per-

fe
t zero knowledge. However if x 62 L then mu
h of the weight in M(x) is 
on
entrated on

the set of a

epting trans
ripts and that set has negligible weight in (P

M

; V )(x). It is well

known (and easy to see) that the relative entropy H(M(x)jj(P

M

; V )(x)) is large in su
h a


ase. Re
all that by the de�nition of relative entropy:

H(M(x)jj(P

M

; V )(x)) =

X




Prob

M

[
℄ � log

Prob

M

[
℄

Prob

(P

M

;V)

[
℄

:

(We use the notations of Se
tion 2.4.)

It is shown in [AH-91℄ how to prove that this relative entropy is big or small in AM.

Using the approximation of the entropy des
ribed in Se
tion 3, we 
an o�er a more 
ompa
t

presentation of that proto
ol.

Re
all Equation 1 from Se
tion 2.4. For any valid trans
ript 
 with Prob

M

[
℄ > 0 it holds

that

Prob

(P

M

;V)

[
℄ = 2

�t(n)

�

d(n)�1

2

Y

i=1

Prob

M

[


2i

℄

Prob

M

[


2i�1

℄

;

where t(n) is the number of random bits used by the veri�er V and d(n) is the (odd) number

of rounds in the proto
ol.

Using Equation 1 we may rewrite the relative entropy

H(M jj(P

M

; V )) =

X




Prob

M

[
℄ log

Prob

M

[
℄

Prob

(P

M

;V)

[
℄

=

X




Prob

M

[
℄ �

2

4

log Prob

M

[
℄ + t(n)�

d(n)�1

X

i=1

(�1)

i

log Prob

M

[


i

℄

3

5

= t(n)�

d(n)

X

i=1

(�1)

i

X




Prob

M

[
℄ � logProb

M

[


i

℄

= t(n) +

d(n)

X

i=1

(�1)

i

H

M

(


i

):
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Here H

M

(


i

) is the entropy of the �rst i messages generated by M . So it remains to noti
e

that these d(n) entropies 
an be approximated in parallel in AM, whi
h follows from Theorem

2.

4.2 Generalizing these te
hniques

Let us 
onsider what happens with the relative entropy H(M(x)jj(P

M

; V )(x)) if the knowl-

edge 
omplexity is not zero. It is still big in the 
ase x 62 L for similar reasons. However

if x 2 L, even for the 
ase that k(n) = 1, only half of the distribution generated by the

simulator has to be identi
al to the one generated by P and V and the rest is arbitrary.

This \bad half" of the distributionM 
an be 
on
entrated on a single trans
ript 
 for whi
h

Prob

M

[
℄ > 1=2 but Prob

(P

M

;V)

[
℄ = 2

�n

thus making H(M(x)jj(P

M

; V )(x)) big although

x 2 L. Therefore, this relative entropy is not able to distinguish between x 2 L and x 62 L.

Note that in our example there is one (or a few) bad 
onversations that make the relative

entropy be
ome large. We 
an express the relative entropy as an expe
tation:

H(M(x)jj(P

M

; V )(x)) = Exp


2M

[log

Prob

M

[
℄

Prob

(P

M

;V)

[
℄

℄:

We are going to 
laim that even though approximating the expe
ted value is not helpful,

approximating the tail of the involved distribution will do the work.

In 
ase x 2 L the good part of the distribution M (the part that really simulates (P; V ))


onsists of mostly a

epting trans
ripts 
, and for most of them Prob

M

[
℄=Prob

(P

M

;V)

[
℄ is lim-

ited. This is easy to see for the real intera
tion (P; V ), i.e., for the fra
tion Prob

M

[
℄=Prob

(P;V)

[
℄,

but it requires an involved 
al
ulation for the intera
tion (P

M

; V ) (see next se
tion).

If x 62 L however, (P

M

; V ) is mostly reje
ting and thus if M outputs many a

epting

trans
ripts then Prob

M

[
℄=Prob

(P

M

;V)

[
℄ is very big for most of them. See the easy argument

in the next se
tion.

These observations lead us, in order to separate between the 
ase of x 2 L and the 
ase

of x 62 L, to 
onsider the probability that a 
onversation 
 output by M is a

epting and

has a small ratio Prob

M

[
℄=Prob

(P

M

;V)

[
℄. This probability will be substantially bigger in the


ase x 2 L than in the 
ase x 62 L.

5 The di�eren
e between x 2 L and x 62 L

In this se
tion we formalize and prove the separation property motivated at the end of the

pre
eding se
tion. In the next se
tion we use this property in the 
ase of logarithmi
 perfe
t

knowledge 
omplexity to show that x 2 L (or x 62 L) in a 
onstant round intera
tive proof.

Thus, we get that L 2 AM \ 
o�AM. In Se
tion 7 we use the same property to lower

bound the error probability of an intera
tive proof of a language outside AM

NP

in terms of

its knowledge 
omplexity.

We 
all a valid trans
ript 
 that leads to a

eptan
e an a

epting trans
ript. We denote

this 
ondition by A
(
).
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Lemma 5.1 Let (P; V ) be an intera
tive proof for a language L. Let Æ

s

(n) be the soundness

error probability and k(n) be the perfe
t knowledge 
omplexity of this proof and suppose

that the 
ompleteness error probability Æ




(n) is at most 1=4. Let M be the 
orresponding

simulator and P

M

the simulation-based prover. Let x be a string of length n and let k = k(n)

and Æ = Æ

s

(n).

1. If x 62 L then the simulator outputs a

epting 
onversations that have a small ratio

with very small probability. Formally:

Prob

M

"

A
(
) ^

Prob

M

[
℄

Prob

(P

M

;V)

[
℄

� 2

k+3

#

� 2

k+3

Æ:

2. Whereas if x 2 L then the simulator has a substantial probability of outputting a

epting

trans
ripts with a small ratio. Formally,

Prob

M

"

A
(
) ^

Prob

M

[
℄

Prob

(P

M

;V)

[
℄

� 2

k+2

#

� 2

�(k+2)

Dis
ussion: In our appli
ations Æ � 2

k+3

is mu
h smaller than 2

�(k+2)

thus the lemma

separates the x 2 L and x 62 L 
ases. Note that the bound on the ratio slightly di�er in

the two 
ases. This di�eren
e is important sin
e we will not be able to 
ompute this ratio

pre
isely for a given trans
ript when applying the lemma. However, we will have means to

approximate this ratio, and thus, we need the gap.

Proof: We begin by proving part 1 of the lemma. Let b = 2

k+3

. Let A be the set of

a

epting 
onversation for whi
h the ratio is small. Namely, for all 
 2 A, we have

Prob

M

[
℄ � Prob

(P

M

;V)

[
℄ � b:

We have to show that Prob

M

[A℄ is small.

First, by the de�nition of A, we know that

Prob

M

[A℄ � Prob

(P

M

;V)

[A℄ � b (4)

(simply sum over all 
onversations in A). We know that sin
e the 
onversations in A are

a

epting and sin
e, by the soundness property of the intera
tive proof, no prover is able to


onvin
e the veri�er to a

ept with probability greater than Æ, we have

Prob

(P

M

;V)

(A) � Æ: (5)

Combining Equations 4 and 5 we get that Prob

M

[A℄ � Æ �b as needed for part 1 of the lemma.

For part 2 of the lemma we need a general tool 
onne
ting the distribution generated by

the original prover P and the veri�er V to the distribution generated by P

M

and V . Lemma

5.2 establishes this 
onne
tion. This lemma is impli
it in [GOP-94℄.

Lemma 5.2 [GOP-94℄: Let k be the perfe
t knowledge 
omplexity of the intera
tion be-

tween the probabilisti
 parties P and V , and let M be the 
orresponding simulator, P

M

the

simulation-based prover. Then, for any set A of 
onversations it holds that:

Prob

(P

M

;V)

[A℄ � (Prob

(P;V)

[A℄)

2

� 2

�k

:
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For self 
ontainment, we provide the proof in the Appendix. Let us now use it to �nish

the proof of part 2 of Lemma 5.1. Consider the set A

0

for whi
h the ratio in the lemma is

big. Namely, let A

0


onsist of the trans
ripts 
 for whi
h

Prob

M

[
℄

Prob

(P

M

;V)

[
℄

� 2

k+2

By the de�nition of the set A

0

(i.e., we sum over all 
onversations in A

0

), we get

Prob

M

[A

0

℄ � Prob

(P

M

;V)

[A

0

℄ � 2

k+2

(6)

Using Lemma 5.2 we get that

Prob

(P

M

;V)

[A

0

℄ � (Prob

(P;V)

[A

0

℄)

2

� 2

�k

(7)

Combining Equations 6 and 7 we get

Prob

(P;V)

[A

0

℄ �

q

Prob

M

[A

0

℄=2 � 1=2:

Let A be the set of a

epting trans
ripts for whi
h

Prob

M

[
℄

Prob

(P

M

;V)

[
℄

� 2

k+2

:

Note that A 
ontains all a

epting 
onversations not in A

0

. In the original intera
tion (P; V ),

all 
onversations are valid and only an Æ




(n) � 1=4 fra
tion is not a

epting. Therefore,

Prob

(P;V)

[A℄ � 1� Prob

(P;V)

[A

0

℄� Æ




(n) �

1

4

:

We 
on
lude by re
alling that there is a subspa
e of density at least 2

�k

in the simulation

that is identi
al to the intera
tion between P and V and thus

Prob

M

[A℄ � 2

�k

� Prob

(P;V)

[A℄ � 2

�(k+2)

and we are done with the proof of part 2 of Lemma 5.1.

6 The main theorem

We now use the above ma
hinery to introdu
e a 
onstant round intera
tive proof for the

language L and its 
omplement. Using [GS-89, BM-88℄, we get that L is in AM\ 
o�AM.

Formally, we prove the following theorem.

Theorem 3

SKC(O(logn)) � AM\ 
o�AM
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We will only show that

PKC(O(logn)) � AM\ 
o�AM

sin
e it was shown in [GOP-94℄ (see Theorem 1) that

SKC(O(logn)) = PKC(O(logn)):

We remark that the theorem in [GOP-94℄ only applies for the honest veri�er simulation,

but it suÆ
es for us sin
e we are only using the simulation of the honest veri�er. Re
all

that a language is in SKC(O(logn)) if it has an intera
tive proof with statisti
al knowledge


omplexity O(logn) and negligible error.

So let us begin by re
alling the setting. We have a language L whi
h is in PKC(k(n))

for some k(n) = O(logn). Namely, there is an intera
tive proof (P; V ) for L, and there is

a simulator M whi
h runs eÆ
iently and outputs a distribution on 
onversations between

P and V . We also 
onsider the distribution of 
onversations generated by an intera
tion

between the simulation based prover P

M

and the original veri�er V (see Se
tion 2).

Noti
e that in the separation result Lemma 5.1 the probability is a polynomial fra
tion

in one 
ase and it is negligible in the other.

In our proto
ol on input x of length n the new veri�er V

0

, with the help of the new prover

P

0

, approximates the probability that a 
onversation 
, output by the simulator M(x), is

a

epting and satis�es log

Prob

M

[
℄

Prob

(P

M

;V)

[
℄

� k + 2:5, where k = k(n). The veri�er V

0

does that

by running the simulator M a large (yet polynomial) number of times, and 
he
king what

is the fra
tion of the 
onversations that satisfy these 
onditions. The probability that the

simulator outputs su
h a 
onversation is then very well approximated by the fra
tion of the

a
tual output 
onversations that satisfy these properties.

It is easy to 
he
k if a 
onversation is a

epting but in order to approximate Prob

M

[
℄ and

Prob

(P

M

;V)

[
℄, the veri�er needs the prover's help. The approximations of these probabilities

will translate into approximations of set sizes. A
tually, approximating Prob

M

[
℄ will require

one set approximation, and approximating Prob

(P

M

;V)

[
℄ will require approximations of d�1

sets (where d = d(n) is the number of rounds in the intera
tion). Sin
e we only know how to

approximate set sizes (and not how to 
ompute them exa
tly) in a 
onstant round intera
tion

of P

0

and V

0

, we really need the di�eren
e in the thresholds in the separation property of

Lemma 5.1.

We approximate the sizes of the sets involved in the following way. The prover states

the size of the set and then he proves 
orresponding lower and upper bounds. As explained

in Se
tion 3, lower bounds (and even a

urate ones) are easy to get. The veri�er only has

to be able to re
ognize elements in the sets involved and this will turn out easy. However,

there is a problem with the upper bounds. In order to get upper bounds, we must let the

veri�er have a \hidden" random element in ea
h of the sets that have to be bounded. As it

turns out, the random seed of M produ
ing the 
onversation 
 is su
h an element for any of

the d sets to be approximated. Unfortunately, this hidden random element 
an only be used

on
e. After that, the seed is not hidden any more, and 
annot be used for all the other sets.

To solve this, we begin by \believing" the prover instead of 
he
king the upper bounds.

Namely, we 
he
k all lower bounds on the stated sizes and we do not 
he
k any upper bound.

We use the given values in the proto
ol as if they were veri�ed. After that, we 
he
k that

\most" of them were \almost" 
orre
t in the following manner. We use all the given set
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sizes to 
ompute a related entropy. This is a se
ond use of these values, but now we don't

have to trust the out
ome. We 
an a
tually 
he
k it sin
e we know how to approximate the

entropy using Theorem 2. Sin
e the 
heating prover 
annot 
heat in the lower bounds, then

all his 
heatings have to be biased into stating smaller set sizes than the sizes a
tually are.

This bias would lead to a wrong entropy 
al
ulation and later to reje
tion.

In order to present the proto
ol, let us �rst explain how the probabilities Prob

M

[
℄ and

Prob

(P

M

;V)

[
℄ are stated in terms of set sizes. As in the proof of Lemma 5.2 we de�ne 
 to be

the set of the possible random tapes of the simulator M and for a pre�x of a 
onversation h

let 


h

be all the random tapes with whi
hM outputs a 
onversation starting with h. Clearly,

Prob

M

[
℄ = j





j=j
j. Using Equation 1 from Se
tion 2.4 one gets that for valid trans
ripts 


with Prob

M

[
℄ > 0

Prob

(P

M

;V)

[
℄ = 2

�t

�

d�1

2

Y

i=1

j





2i

j

j





2i�1

j

:

Here t = t(n) is the length of the random tape of V , d = d(n) is the (odd) number of messages

ex
hanged by P and V and 


i

denotes the i-message pre�x of 
. Re
all our 
onvention that

V speaks in odd rounds and P speaks in even rounds. Denoting the length of the random

tape of M by t

0

= t

0

(n) we have j
j = 2

t

0

and for valid trans
ripts 
 with Prob

M

[
℄ > 0

log

Prob

M

[
℄

Prob

(P

M

;V)

[
℄

= t� t

0

�

d(n)

X

i=1

(�1)

i

log j





i

j: (8)

It remains to approximate the sizes of the sets 





i

for all i = 1; 2; : : : ; d(n).

Let us set the following parameters. The probability of error is set to Æ

0

= 2

�n

, the quality

of approximations is set to � = 2

�k(n)�9

=(d(n))

2

, and the number of simulator 
onversations

that we 
he
k is ` = dn(t

0

(n))

2

=�

2

e. Noti
e that as a fun
tion of n Æ

0

is negligible, � is a

polynomial fra
tion and ` is a polynomial.

The proto
ol for re
ognizing L on input x

The veri�er V

0

pi
ks ` random 
onversations 


1

; : : : ; 


`

from the distribution generated by

M and sends them to P

0

.

The prover P

0

states the numbers !

j

i

(
laimed to be the sizes of 





j

i

) for all i = 1; 2; : : : ; d(n)

and j = 1; : : : ; `. Then, he proves the veri�er V

0

that !

j

i

is a lower bound on the size of the

set 





j

i

for all i = 1; 2; : : : ; d(n) and j = 1; : : : ; `. All the lower bounds are done in parallel

using the proto
ol of Lemma 3.3 and with relative a

ura
y 1 + � and error probability Æ

0

.

If the prover fails to prove any of the bounds, then the veri�er reje
ts and halts.

The veri�er V

0


omputes, for ea
h of the 
onversations 


j

(j = 1; 2; : : : ; `) an approximation

of log(Prob

M

[


j

℄=Prob

(P

M

;V)

[


j

℄) by 
omputing v

j

= t(n) � t

0

(n) �

P

d(n)

i=1

(�1)

i

log!

j

i

. Then

the veri�er 
ounts the number of 
onversations whi
h are a

epting and for whi
h v

j

�

k(n) + 2:5. It reje
ts if this number is below ` � 2

�k(n)�3

. Next, the veri�er uses the values

!

j

i

stated by the prover to 
ompute for ea
h round i (1 � i � d(n)) the empiri
al entropy

h

i

= 1=`

P

`

j=1

(t

0

(n)� log!

j

i

).
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Finally, the prover P

0

proves that h

i

� � is a lower bound on the entropy H(


i

) for ea
h

round i = 1; 2; : : : ; d(n). The random variable 


i

represents the output of the simulator M

trun
ated to the �rst i rounds. He proves these d lower bounds with a

ura
y � and error Æ

0

in parallel using the proto
ol of Theorem 2. If any of these proto
ols ends in reje
tion then

the veri�er reje
ts. Otherwise, it a

epts.

The proto
ol for L:

The proto
ol for L is a
tually the same proto
ol ex
ept that we reverse the rule for reje
tion

in the third part of the proto
ol for L. The modi�ed veri�er reje
ts if the number of indi
es

j for whi
h 


j

is a

epting and v

j

� k(n) + 2:5 is greater than ` � 2

�k(n)�3

.

In order to prove Theorem 3 it is enough to prove the following lemma.

Lemma 6.1 The above proto
ol is a 
onstant round intera
tive proof for L while the modi�ed

proto
ol is a 
onstant round intera
tive proof for the 
omplement of L.

Proof: Clearly the proto
ol has a 
onstant number of rounds sin
e the proto
ols for bounds

on set sizes and the entropy value 
an be performed in a 
onstant number of rounds. Let us

go on and prove the soundness and 
ompleteness properties of this intera
tive proof. Sin
e

k(n) = O(logn) and the soundness and 
ompleteness error probabilities Æ

s

(n) and Æ




(n) are

negligible, we may assume in what follows that Æ

s

(n) < 2

�2k(n)�7

and Æ




(n) < 1=4. This is

true for large enough n.

A 
ommon sour
e of error for both proto
ols and for both soundness and 
ompleteness,


omes from the possibility that the number of \good" 
onversations output by the simulator

is far from its expe
ted value. Namely, for x 2 L, the frequen
y of the 
onversations 


that are a

epting, and have log(Prob

M

[
℄=Prob

(P

M

;V)

[
℄) � k + 3 amongst the ` random


onversations output by M , is substantially di�erent from the a
tual probability of su
h a


onversation being output byM . The Cherno� bound limits the probability of the di�eren
e

being at least � to 2e

�2�

2

`

. Noti
e that this error probability is negligible. The same argument

applies for x 62 L and the di�eren
e between the a
tual and empiri
al probability of a

epting


onversations with log(Prob

M

[
℄=Prob

(P

M

;V)

[
℄) � k + 2.

A similar sour
e of error is the possibility that for some i = 1; : : : ; d the empiri
al entropy

H

i

= 1=`

P

`

j=1

(t

0

� log j





j

i

j), determined by the ` 
hosen points, is far from the real entropy

H(


i

) of the distribution spa
e. As in Se
tion 3 we use Hoe�ding inequality to bound the

probability of this di�eren
e ex
eeding � by 2e

�2�

2

`=t

02

. This error probability is also negligible.

We 
all a 
hoi
e of the random 
onversations 


j

(j = 1; 2; : : : ; `) bad if any of the above

dis
repan
ies o

ur. The probability of the veri�er getting a bad set of 
onversations when

invoking the simulator in the �rst step is negligible.

We begin with the 
ompleteness property of the proto
ol for L. So suppose we apply this

proto
ol on an input x 2 L. If the 
hoi
e of the 
onversations is not bad and the prover gives

the 
orre
t values !

j

i

= j





j

i

j then by Lemma 5.1 (2) reje
tion 
an 
ome only from errors in

the set size lower bound proto
ols or the entropy lower bound proto
ols. Sin
e we run only

(` + 1)d su
h proto
ols and sin
e the probability to make an error in any one of them is at
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most Æ

0

= 2

�n

, then the probability of su
h error is at most (` + 1)dÆ

0

whi
h is negligible.

The proof of 
ompleteness of the proto
ol for L is similar using Lemma 5.1 (1).

We now turn to proving the soundness. Consider again the proto
ol for L but this time

on an input x 62 L. Suppose that the set of ` 
onversations output by the simulator is not

bad. The prover has three possible strategies when stating the values !

j

i

.

Possibility 1: The values !

j

i

stated by the prover 
ontain one value whi
h is a

little higher than it should be: The �rst 
heating strategy is when the prover states the

values !

j

i

(1 � i � d, 1 � j � `) su
h that one of them satis�es !

j

i

> (1 + �)j





j

i

j In this


ase he passes the lower bound proto
ol with probability at most Æ

0

. So assume that for all

the values !

j

i

stated by the prover it holds that !

j

i

� (1 + �)j





j

i

j, i.e., the stated values are

never too high.

Possibility 2: The values !

j

i

stated by the prover 
ontain a fra
tion 15�d being

somewhat lower than they should be. A se
ond possibility is that the prover states the

numbers !

j

i

su
h that out of the ` � d numbers !

j

i

, there are 15�d

2

` whi
h are smaller by a

fa
tor of 2

�1=(3d)

than the size of 


j

i

. In this 
ase, there must be a round i (1 � i � d) for

whi
h !

j

i

< 2

�1=(3d)

j





j

i

j for at least 15�d` numbers out of the ` possible indi
es j. Sin
e the

�rst possibility does not hold, we also know that !

j

i

< (1 + �)j





j

i

j for all the values !

j

i

. In

this 
ase, the veri�er's approximation h

i

is far from the real empiri
al entropy H

i

:

h

i

=

1

`

`

X

j=1

(t

0

� log!

j

i

)

>

1

`

`

X

j=1

(t

0

� log j





j

i

j)� log(1 + �) +

15�d

3d

= H

i

� log(1 + �) + 15�=3:

However, sin
e we have ruled out bad sampling of the simulator, the empiri
al entropy H

i

is 
lose to the real entropy H(


i

), i.e., H

i

� H(


i

)� �. Thus:

h

i

� H

i

+ 3� � H(


i

) + 2�:

So when the prover tries to show that h

i

�� � H(


i

) (using the entropy lower bound proto
ol)

he will su

eed with probability at most Æ

0

.

Possibility 3: Neither of the above happen. In this 
ase we are going to show that the

number of 
onversations for whi
h the veri�er 
omputes v

j

� k+2:5 is less then ` �2

�k�3

and

thus the veri�er reje
ts. If neither of the above two possibilities happen then for all indi
es

ex
ept for at most 15�d

2

` pairs (i; j) we have

2

�1=(3d)

� j





j

i

j � !

j

i

� (1 + �)j





j

i

j: (9)

Furthermore, the number of 
onversations 


j

for whi
h Equation 9 holds for all rounds i is at

least `�15�d

2

`. For su
h a 
onversation 


j

, the veri�er's approximation of log(Prob

M

[


j

℄=Prob

(P

M

;V)

[


j

℄)

is 
orre
t to within 1/3. Namely,

v

j

= t� t

0

�

d

X

i=1

(�1)

i

log!

j

i
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� t� t

0

�

d

X

i=1

(�1)

i

log j


j

i

j � 1=3

= log(

Prob

M

[


j

℄

Prob

(P

M

;V)

[


j

℄

) � 1=3

We 
all these 
onversations \well approximated". Therefore, if a 
onversation is well approxi-

mated, and v

j

� k+2:5, then we also get that for this 
onversation log(Prob

M

[


j

℄=Prob

(P

M

;V)

[


j

℄) �

k + 3. By Lemma 5.1 (1), we know that the probability that a 
onversation output by the

simulator is a

epting and having log(Prob

M

[


j

℄=Prob

(P

M

;V)

[


j

℄) < k+3 is at most Æ

s

(n)�2

k+3

.

Also, sin
e the set of 
onversations is not bad, then the a
tual fra
tion of 
onversations for

whi
h log(Prob

M

[


j

℄=Prob

(P

M

;V)

[


j

℄) < k + 3 is at most Æ

s

(n) � 2

k+3

+ �.

Thus the number of \good 
onversations" 
ounted by the veri�er is limited to (2

k+3

Æ

s

(n)+

�)` + 15�d

2

`. By the setting of � and the assumption Æ

s

(n) < 2

�2k�7

we get that this is at

most 2

�k�3

` and the veri�er reje
ts.

Thus the overall a

eptan
e probability is negligible, and we proved the soundness of the

proto
ol.

For the soundness of the proto
ol for the 
omplement of L we take x 2 L and suppose the

veri�er does not 
hoose a bed set of 
onversations. We 
onsider the same three possibilities

for the values !

j

i

as above. In the �rst two 
ases the a

eptan
e probability is at most Æ

0

for

the same reasons. In the third 
ase re
all that Æ




(n) < 1=4 and use Lemma 5.1 (2) to show

that the veri�er sees more than 2

�k�3

` a

epting 
onversations with v

j

� k + 2:5 and thus

the veri�er reje
ts.

A remark about the pre
ision of 
al
ulations: During the proto
ol, the veri�er is

required to 
ompute v

j

= t � t

0

�

P

d

i=1

(�1)

i

log!

j

i

and h

i

= 1=`

P

l

j=1

(t

0

� log!

j

i

), whi
h

involves 
al
ulations with real numbers. One solution is to let him 
ompute 2

v

j

and 2

`h

i

whi
h only involves multipli
ations of integer fra
tions. Another solution is to use rounding

su
h that the result is a

urate to within �=2 and make the proto
ol itself be a

urate to

within a �=2 approximation error. Thus the overall approximation error is below �.

7 The 
onne
tion between knowledge and error

In this se
tion we state that if a language L has an intera
tive proof whose soundness error

probability is small 
ompared to its knowledge 
omplexity then L has limited 
omputational


omplexity. Our result is as follows:

Theorem 4 If there is a intera
tive proof for a language L with perfe
t knowledge 
omplexity

k(n), soundness error probability Æ(n) � 2

�(2k(n)+6)

, 
ompleteness error probability below 1=4

and if k(n) is 
omputable in polynomial time, then L 2 AM

NP

.

Remarks: The term AM

NP

refers to an AM proto
ol in whi
h the veri�er has a

ess to

an NP-
omplete ora
le (the 
omputationally unbounded prover doesn't need one). Using

standard te
hniques, it 
an be shown that AM

NP

� �

P

3

, and therefore all languages having

this type of intera
tive proof must be in the third level of the polynomial time hierar
hy.
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(The AM � �

P

2

result is stated in [B-85℄ and the proof relativizes.) Note also that k(n) has

to be 
omputable in polynomial time in n and not in logn, so the restri
tion is quite liberal.

We also remark that in this theorem our expli
it bounds on the error probability repla
es

the requirement for them in the de�nition of the intera
tive proof: they need not be negligible.

As mentioned in the abstra
t, standard de�nitions of intera
tive proofs allow any negligi-

ble error probability. In this 
ase, one has PSPACE-
omplete languages whi
h have sub-linear

knowledge 
omplexity. This 
an be dedu
ed from the result [LFKN-90, Sh-90℄ that PSPACE-


omplete languages have intera
tive proofs using standard padding te
hniques. Applying

enough polynomial padding to a PSPACE-
omplete language it remains PSPACE-
omplete

but the intera
tive proof for it be
omes sub-linear in length and thus in the knowledge it

reveals. However, if we insist, for example, that the error probability is less than 2

�n

2

,

then PSPACE-
omplete languages do not have sub-quadrati
 knowledge 
omplexity, unless

PSPACE= �

P

3

.

Proof: The proof is based on the observation that Lemma 5.1 still separates the ele-

ments of L from the non-elements. Let us 
all a 
onversation 
 good if it is a

epting and

log(Prob

M

[
℄=Prob

(P

M

;V)

[
℄) < k(n) + 2:5. When x 2 L the probability of M outputting a

good 
onversation is mu
h bigger than when x 62 L. But if k(n) is super-logarithmi
 then

both of these probabilities may be negligible. Thus, the pro
edure of sampling the simulator

for a polynomial number of times and 
ounting good 
onversations is not useful any more.

Instead, we let the prover prove that there are \many" random seeds making the simulator

M output good 
onversations. This is a set-size lower bound proto
ol.

In the set size lower bound des
ribed in Se
tion 3.1 it is required that the veri�er is able to

re
ognize elements in the set. In our 
ase, 
he
king if 
 is a

epting is simple, but we do not

know how to approximate log(Prob

M

[
℄=Prob

(P

M

;V)

[
℄) in polynomial time. By Equation 8

in Se
tion 6, this approximation 
omes down to approximating set-sizes. Note that all these

sets whi
h need to be approximated are re
ognizable in polynomial time. It is shown in

[Si-83, St-83, BP-92℄ how to approximate the 
ardinality of a set S, whi
h is re
ognizable in

polynomial time, using eÆ
ient probabilisti
 
omputation with a

ess to an NP ora
le. The

approximation there fails with negligible probability to give an approximation with relative

a

ura
y 1 +

1

poly

.

We apply the proto
ol of Lemma 3.3 to prove jSj > 2

�(k(n)+2)


 with relative a

ura
y

1=2 and negligible error, where S is the set of random tapes that 
ause M to produ
e good


onversations and 
 is the set of all random tapes of M . Instead of the bla
k-box a

ess to

membership in S we have a randomized pro
ess of approximating log(Prob

M

[
℄=Prob

(P

M

;V)

[
℄)

with Equation 8. We 
an set the relative a

ura
y of ea
h set-size approximation to within

1=(3d(n)) and the error of these approximations negligible again. This does not give exa
t

membership test in S but ex
ept for negligible error it a

epts if the random tape produ
es an

a

epting 
onversation 
 with log(Prob

M

[
℄=Prob

(P

M

;V)

[
℄) < k(n) + 2 while it reje
ts ex
ept

for a negligible probability if the output is not a

epting or if log(Prob

M

[
℄=Prob

(P

M

;V)

[
℄) >

k(n) + 3. Lemma 5.1 shows that this is enough for our purposes.

We 
an use [GOP-94℄ again to extend the above result to statisti
al knowledge 
omplexity.

Here however it is not enough to 
ite Theorem 1, we a
tually need some of the details of

the transformation of the intera
tive proof in that theorem. This more detailed statement

is impli
it in [GOP-94℄.
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Lemma 7.1 [GOP-94℄ Let (P; V ) be an intera
tive proof for a language L with statisti
al

knowledge 
omplexity k(n) soundness error Æ

s

(n) and 
ompleteness error Æ




(n). Then there

exists a prover P

0

su
h that (P

0

; V ) is an intera
tive proof for L with perfe
t knowledge


omplexity k(n)+O(logn), with 
ompleteness error Æ




(n)+Æ

0

(n) for some negligible fra
tion

Æ

0

(n), and with the same soundness error Æ

s

(n).

Note that we added spe
i�
 statement on how the transformation [GOP-94℄ preserves the

errors in the transformation: the soundness error does not 
hange at all (sin
e the veri�er is

not modi�ed) and the 
ompleteness error only in
reases by a negligible fra
tion.

Corollary 7.2 If there is a intera
tive proof for a language L with statisti
al knowledge


omplexity k(n), negligible soundness error probability Æ

s

(n) < 2

�3k(n)

and 
ompleteness

error probability below 1=5 and if k(n) is 
omputable in polynomial time, then L 2 AM

NP

.

Proof: By Lemma 7.1 the same language L has an intera
tive proof with perfe
t knowledge


omplexity k

0

(n) = k(n)+O(logn), the same soundness error probability and with 
omplete-

ness error probability below 1=4 for large enough n. We have that Æ

s

(n) < 2

�(2k

0

(n)+6)

also

holds for large enough n sin
e Æ

s

(n) is both negligible and bounded by 2

�3k(n)

. Thus Theorem

4 is appli
able and proves Corollary 7.2.

8 Open questions

Many questions regarding the relation between knowledge 
omplexity and 
omputational


omplexity are still open. Can one show a higher (
onditional) lower bound on the knowl-

edge 
omplexity of NP-
omplete languages or even of PSPACE-
omplete languages? Any

su
h bound implies PSPACE6= BPP so one would only expe
t su
h results with 
omplex-

ity assumptions like the polynomial time hierar
hy not 
ollapsing. But no su
h (
ondi-

tional) lower bound, whi
h is higher than the super-logarithmi
 lower bound we give here,

is known on the knowledge 
omplexity of any language. Does the unlikely assumption

PSPACE = PKC(log

2

n) imply that the polynomial hierar
hy 
ollapses (or another simi-

lar 
onsequen
e)?

Let us now 
onsider the low end of the knowledge 
omplexity hierar
hy. In view of the

results presented in this paper, there is no di�eren
e between the limitations known today

for zero knowledge languages and languages with logarithmi
 knowledge 
omplexity. Could

one show that these 
lasses 
ollide? Namely, does SKC(O(logn)) = SKC(0)? Is it even

true that SKC(1) = SKC(0)? Or 
an one give indi
ations that this is not the 
ase?

It is also open how ri
h the knowledge 
omplexity hierar
hy of languages is. For example,

Is there a 
onstant fa
tor 
ollapse? Namely, is SKC(2k(n)) = SKC(k(n))?

The statement of Theorem 3 is symmetri
, it 
laims the same about the languages having

low knowledge 
omplexity and about their 
omplements. The same 
annot be said about

Theorem 4 and Corollary 7.2. This asymmetry 
omes from the more demanding require-

ments of set size upper bound proto
ols. Theorem 4 implies that languages having 
ertain

intera
tive proofs are in �

P

3

. Can one prove that the same languages are in �

P

3

? A bolder

goal would be to prove that 
ertain knowledge 
omplexity 
lasses, say SKC(O(logn)) are
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losed under 
omplementation. This would extend the work in [Oka-96, GV-98℄ establishing

this for SZK.

Our main result (Theorem 3) bounds the 
omputational 
omplexity of languages having

negligible error intera
tive proofs leaking only logarithmi
 knowledge. It is not 
lear what


an be said if the soundness error probability is allowed to be high. Our te
hniques break

down as soon as Lemma 5.1 does not provide a separation.
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Appendix: Proof of Lemma 5.2

The following Lemma is impli
it in [GOP-94℄. It was proven there as part of the proof of

Lemma 4.2 where it was shown for a spe
i�
 set A of a

epting 
onversations. One should

note that the proof holds for any set A. For the sake of self 
ontainment we provide their

proof here.

Lemma 5.2 (restated): Let k be the perfe
t knowledge 
omplexity of the intera
tion be-

tween the probabilisti
 parties P and V , and let M be the 
orresponding simulator, P

M

the

simulation-based prover. Then, for any set A of 
onversations it holds that:

Prob

(P

M

;V)

[A℄ � (Prob

(P;V)

[A℄)

2

� 2

�k

:

The intuition of the proof is as follows. The set A has probability Prob

(P;V)

[A℄ when P

intera
ts with V and it has probability at least 2

�k

� Prob

(P;V)

[A℄ in the output of the

simulation, whi
h 
an be thought of as P

M

intera
ting with V

M

. (The simulation-based

veri�er V

M

is de�ned similarly to the simulation-based prover P

M

.) When we look at a

kind of \intermediate" intera
tion between P

M

and V , we intuitively expe
t the probability

Prob

(P

M

;V)

[A℄ to be in-between the two probabilities or above the minimum of the two. This

is not ne
essarily true, i.e., the probability of events in the intermediate intera
tion is not

always in between the two intera
tions, but this intuition does lead to the above Lemma,

whi
h looses an additional fa
tor as Prob

(P;V)

[A℄ is squared. The formal details follow.

Proof: Re
all that the perfe
t simulation means that there is a subset of the random tapes

of the simulator, denoted S, whi
h has density at least 2

�k

and su
h that if we pi
k a random

tape in S and run the simulation then we get exa
tly the distribution of 
onversations that

are output during the original intera
tion of P and V .

We begin by de�ning subsets of the possible random tapes of the simulator. Let 
 be

all the possible random tapes of the simulator, let S be the \good" subspa
e of this set

mentioned above. Let 	 be the set of good random tapes of the simulator on whi
h the

simulator outputs 
onversations in the set A.
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For any pre�x h of a 
onversation, we de�ne three 
orresponding subsets: 


h

is the set

of random tapes that make the simulation output a 
onversation of whi
h h is a pre�x. S

h


ontains the random tapes in S with the same property, i.e., S

h

= 


h

\ S. And last, we

de�ne 	

h

= S

h

\ 	. This is the set of random tapes in the \good" subset on whi
h the

simulator outputs 
onversations in the set A having pre�x h.

So let's 
he
k a few properties of these sets. First, S = S

�

and 
 = 


�

(where � is

the empty string). Se
ond, jS

�

j=j


�

j � 2

�k

, this is the density of S in the random tapes

of the simulator. Sin
e the simulator on a uniformly 
hosen random tape in S outputs the

distribution of the original intera
tion between P and V , it also holds that Prob

(P;V)

[A℄ =

j	

�

j=jS

�

j. Another useful expression is that given a partial history h, the probability that the

simulation-based prover outputs the message � on a given history h is exa
tly j


hÆ�

j=j


h

j.

We may write the probability that the original veri�er answers � on a given history h as

jS

hÆ�

j=jS

h

j.

We would like to show that

Prob

(P

M

;V)

[A℄ � (Prob

(P;V)

[A℄)

2

� 2

�k

: (10)

Using the fa
t that Prob

(P;V)

[A℄ =

j	

�

j

jS

�

j

, we have

 

j	

�

j

jS

�

j

!

2

�

jS

�

j

j


�

j

�

�

Prob

(P;V)

[A℄

�

2

� 2

�k

(11)

and sin
e j	




j � jS




j � j





j for every 
, and 	




is empty for a 
omplete trans
ript 
 62 A, we

have

Prob

(P

M

;V)

[A℄ � Exp




"

j	




j

2

jS




j � j





j

#

: (12)

Here and in the rest of this appendix Exp




denotes the expe
tation over the random 
onver-

sation 
 output by P

M

and V . Note that a problem rises here for 
onversations 
 that have

positive probability in the intera
tion (P

M

; V ) but 
annot o

ur in the original intera
tion

(P; V ). In this 
ase, we have jS




j = j	




j = 0 and in the above expe
tation we get a division

of zero by zero. Thus, we modify the expe
tation to sum only over 
onversations that have

positive probability in the original intera
tion (P; V ). In other words, in this expe
tation,

we de�ne j	




j

2

=(jS




j � j





j) to be zero for 
onversations 
 with S




= ;. Using Equation 11

and 12 we get that in order to prove that Equation 10 holds, it is enough to show that

Exp




"

j	




j

2

jS




j � j





j

#

� Exp




"

j	

�

j

2

jS

�

j � j


�

j

#

: (13)

Equation 13 involves a relation between sets des
ribing full 
onversations (on the left

side) and sets des
ribing empty 
onversations (on the right side). We shall prove that the

same inequality holds for any in
rease of one round in the 
onversations involved in the set

des
ription and thus by transitivity we shall get that Equation 13 holds. For any round i, let




i

denote the �rst i rounds of a given 
onversation 
. We will show that for all 0 � i � d� 1

(where d is the number of rounds) it holds that

Exp




"

j	




i+1

j

2

jS




i+1

j � j





i+1

j

#

� Exp




"

j	




i

j

2

jS




i

j � j





i

j

#

(14)
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A
tually, we will show something stronger. We will show that for any pre�x h of a 
onver-

sation that has positive probability in the original intera
tion (P; V ) (i.e., with S

h

6= ;), it

holds that

X

�

Prob

(P

M

;V)

(h Æ �jh) �

j	

hÆ�

j

2

jS

hÆ�

j � j


hÆ�

j

�

j	

h

j

2

jS

h

j � j


h

j

(15)

Where the summation is over all possible messages � that might follow the history h in the

original intera
tion (P; V ). Having proven Equation 15, we get that this also holds when

we take the expe
tation over all possible h of length i and Equation 14 holds as well. So it

remains to prove Equation 15 and we shall do that separately for � being played in a prover

round (i.e., by the simulation-based prover) and for � being played in a veri�er round (by

the original veri�er).

Prover's step: The left term of Equation 15 in this 
ase is

X

�

Prob(P

M

(h) = �) �

j	

hÆ�

j

2

jS

hÆ�

j � j


hÆ�

j

=

X

�

j


hÆ�

j

j


h

j

�

j	

hÆ�

j

2

jS

hÆ�

j � j


hÆ�

j

The last equality is true sin
e (by de�nition) P

M

behave exa
tly like the simulator a
ts in

prover steps. By the Cau
hy-S
hwartz inequality we 
an write

1

j


h

j

X

�

j	

hÆ�

j

2

jS

hÆ�

j

�

1

j


h

j

�

(

P

�

j	

hÆ�

j)

2

P

�

jS

hÆ�

j

:

The sets 	

hÆ�

over all � satisfying S

hÆ�

6= ; are a partition of the set 	

h

sin
e 	

hÆ�

� S

hÆ�

.

Thus, it holds that

P

�

j	

hÆ�

j = j	

h

j. The same is true also for S

hÆ�

and S

h

. Thus the

expression on the right equals

j	

h

j

2

jS

h

j � j


h

j

as needed.

Veri�er's step: The left term of Equation 15 in this 
ase is

X

�

Prob(V (h) = �) �

j	

hÆ�

j

2

jS

hÆ�

j � j


hÆ�

j
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�
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j
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h

j

�

j	

hÆ�

j

2

jS

hÆ�

j � j


hÆ�

j

The last equality is true sin
e V behave exa
tly like the simulator a
ts on the random tapes

in S. Using Cau
hy-S
hwartz again, the above is equal to

1

jS

h

j

�

X

�

j	

hÆ�

j

2

j


hÆ�

j

�

j	

h

j

2

jS

h

j � j


h

j

Note again that the sets 	

hÆ�

over all � satisfying S

hÆ�

6= ; are a partition of the set 	

h

sin
e

	

hÆ�

� S

hÆ�

. The sets 


hÆ�

over all � su
h that S

hÆ�

6= ; are not ne
essarily a partition of




h

as nonempty parts 
orresponding to � with S

hÆ�

= ; may be missing. Thus, we 
an only


laim that

P

�

j


hÆ�

j � j


h

j, but this is good enough for us, and we are done with the proof

of Lemma 5.2.
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