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1. The problem

In this short note we compare three different methods for solving the same combina-
torial problem. We start by describing the problem itself.

Consider any set system F of non-empty sets. By the matching number ν(F ) of F we
mean the maximal number of pairwise disjoint sets of F . A transversal of F is a set S that
nontrivially intersects all sets in F . In this case S is said to cover F . By the transversal

number τ(F ) of F we mean the minimum cardinality of a transversal of F .
We clearly have

ν(F ) ≤ τ(F )

for any set system F , but no inequality holds in full generality in the opposite direction.
Finding special classes of set systems for which equality holds or the transversal number
can be bounded in terms of the matching number is a central problem in combinatorial
duality theory.

The König-Hall theorem gives an example for such a class. Considering bipartite
graphs as sets of edges and identifying an edge with the set of its two endpoints one gets
that τ = ν for finite bipartite graphs. For general (non-bipartite) graphs as set systems
one trivially has τ ≤ 2ν which is tight as graphs consisting of triangle components show.

Another example where equality holds was noticed by Gallai (see Hajnal and Surányi
[5]): For finite sets F of intervals of a line we have τ(F ) = ν(F ).

The class of set systems we consider in this note is closely related to the second
example mentioned. Let d be a positive integer. A d-interval is a non-empty union of
d closed intervals on the line. We are going to compare the matching and transversal
numbers of families of d-intervals.

Sometimes it is more natural to assume that the components of the d-intervals are
separated, they lie on distinct lines. Let us fix d distinct parallel lines and define a separated

d-interval to be the union of d non-empty closed intervals, one on each line. If I is a d-
interval and 1 ≤ i ≤ d we say that Ii, the i’th component of I is the interval of I on the
i’th line. We remark here that part of the literature uses the name “d-interval” for this
and they use “homogeneous d-interval” for our previous definition.

Let us note here that the assumption of the (separated) d-intervals to be closed is
not crucial, it can be replaced by an assumption on the finiteness of the set systems we
consider. One of these assumptions is essential though, for infinite families of open intervals
even Gallai’s observation fails.

Let us define here the functions we are interested in. For positive integers k and d let
let us define g(d, k) to be the maximal transversal number of any family of d-intervals with
matching number at most k. Similarly let f(d, k) be the maximal transversal number of
any family of separated d-intervals with matching number at most k. In what follows we
survey the techniques used in upper bounding these functions. In this notation Gallai’s
observation can be stated as

f(1, k) = g(1, k) = k.
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We discuss the three methods for bounding f and g in the order they were invented.
Separated d-intervals were introduced by Gallai and he posed the problem of finding f(d, 1).
Gyárfás and Lehel [4] established that for families of (separated) d-intervals the transversal
number can be bounded in terms of d and the matching number, i.e. f(d, k) and g(d, k) are
finite. The actual bound they got is very weak (and it is left implicit in their paper). Their
strictly elementary argument is discussed in the next section. We also mention elementary
lower bounds for f and g and a connection between these functions in the same section.

In the third section we discuss the topological approach. Surprisingly it is the topology
of higher dimensional spaces that gives the best known upper bound for the transversal
number of (separated) d-intervals. It gives tight results for both 2-intervals and separated
2-intervals. This technique was used by Tardos [12] and Kaiser [6].

In the fourth section we discuss the approach of Alon [1] based on the duality of linear
programming. The bounds achieved are much better than the ones discussed in the second
chapter but worse by a factor around 2 than the ones we get from the topological approach.
The major advantage of this method is simplicity, Alon’s paper is less than a page.

In the last section we mention related results.

2. The elementary approach

Gyárfás and Lehel [4] were first to prove that for families F of separated d-intervals
τ(F ) is bounded in terms of ν(F ) and d. They proved

Theorem 1. [4] For positive integers d and k we have

f(d + 1, k) ≤ f(d, k((k + 1)d − 1)) + k.

This proves that f(d, k)) is always finite but the bound one gets is worse than kd!. To
illustrate the proof technique we show the similar proof of a somewhat stronger statement
in Károlyi and Tardos [8]:

Theorem 2. [8] For integers d ≥ 2 and k ≥ 1 we have

f(d, k) ≤ f(d, k − 1) + f(d − 1, k(d − 1)) + (d − 1)2k + 1.

Proof: Let F be a family of separated d-intervals with ν(F ) = k. For compactness reasons
we may assume F is finite. Imagine sliding a point x on the first line from left to right and
stopping as soon as we have a set S ⊂ F of (d−1)k +1 d-intervals satisfying that pairwise
intersections of members of S are contained in the first line and the first component of
each d-interval in S is to the left of x possibly containing x. We may suppose that such
point x exists as otherwise clearly ν(F ) ≤ f(d − 1, k(d − 1)). Let us fix x and S.

We partition F = F1 ∪ F2 ∪ F3 by putting the d-interval of I ∈ F into F1 if the first
component I1 is strictly to the left of x, we put I ∈ F2 if x ∈ I1 and finally we put x ∈ F3 if
I1 is strictly to the right of x. We can find a transversal of F1 consisting of f(d−1, k(d−1))
points outside the first line. The singleton {x} clearly covers F2. It remains to prove that
τ(F3) ≤ f(d, k−1)+k(d−1)2. For 2 ≤ i ≤ d consider the components {Ii|I ∈ S} and take
a set Ci of k(d− 1) points on the i’th line separating these k(d − 1) + 1 disjoint intervals.
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Let F ′
3 be the part of F3 not covered by any of the sets Ci. Now each component of a

d-interval in F ′
3 can intersect at most one element of S (and the first component intersects

none). Thus if we had a family S′ ⊂ F ′
3 of k pairwise disjoint d-intervals then they intersect

at most (d − 1)k members of S meaning that we could extend S′ with an element of S to
get k + 1 pairwise disjoint d-intervals in F . The contradiction shows ν(F ′

3) < k and thus
τ(F ′

3) ≤ f(d, k − 1). Therefore τ(F3) ≤ f(d, k − 1) + k(d − 1)2 as required.

Using the base cases f(1, k) = k and f(d, 0) = 0 the result above yields f(d, k) = O(kd)
for any fixed d. This result is still far from optimal, for better bounds see the two following
sections.

One can regard separated d-intervals as special cases of d intervals. This yields the
trivial connection between f and g:

Lemma 3. For every d and k we have f(d, k) ≥ g(d, k).

Proof: For any family F of separated d-intervals we construct a family F ′ of d-intervals
with τ(F ′) = τ(F ) and ν(F ′) = ν(F ). We take a function φ that maps the d lines of
the separated d-intervals homeomorphically to d disjoint open intervals of the one line of
the d-intervals. Now φ maps separated d-intervals to d-intervals and we can simply take
F ′ = {φ(I)|I ∈ F}

Inequality in the other direction is less obvious. In [4] the finiteness of g was established
by showing:

Lemma 4. [4] For d ≥ 2 and k ≥ 1 we have

g(d, k) ≤ (g(d − 1, k))d−1f(d, k) +
d−1∑

i=1

(g(d − 1, k))i.

A stronger bound appears in [8]:

Lemma 5. [8] For every d and k we have

g(d, k) ≤ f(d, 2d(d− 1)k).

We include the sketch of the proof of this weak result because it nicely complements
the trivial observation of Lemma 3.

Proof sketch: For any family F of d-intervals one can construct a family F ′ of separated
d-intervals such that the d-intervals in F are obtained from the members of F ′ by per-
pendicular projection. Clearly τ(F ) ≤ τ(F ′) in this case. Thus it is enough to prove that
ν(F ′) ≤ 2d(d − 1)ν(F ). This is so, since for any pairwise disjoint family S of separated
d-intervals the greedy algorithm finds a subset of size ⌈|S|/(2d(d−1))⌉ of whose projections
are also pairwise disjoint.

We conclude this section with an easy lower bound on f .
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Theorem 6. [8] For positive integers d and k we have

f(d, k) ≥ kf(d, 1) ≥ dk.

Proof: We identify the d lines on which our separated d-intervals lie with the line of the
real numbers. Let us consider the set F of separated d-intervals I defined by Ii = [a, bi]
for i = 1, . . . , d for all possible values 0 < a < 1, a < bi ≤ 1 for all i = 1, . . . d and bi = 1
for at least one i = 1, . . . d. It is easy to see that the longest component in any pair of
separated d-intervals of F contains an entire component of the other separated d-interval,
thus the pair is intersecting and we have ν(F ) = 1. One can also see that any finite
transversal contains the point 1 in each of the d lines, thus τ(F ) ≥ d and we proved the
second inequality.

To prove the first inequality consider a pairwise intersecting family F of separated
d-intervals with transversal number f(d, 1). We may suppose F covers a finite segment of
the d lines and thus we may take the union of k translates of F covering pairwise disjoint
segments. This construction clearly multiplies both the matching and the transversal
numbers by k.

Notice that the the family constructed in the proof above satisfies that we get the
same ordering for any i = 1, . . . , d if we order the separated d-intervals according the left
endpoint of their i’th component. It was noticed in [8] that this bound is tight for such
families, i.e. this property implies τ(F ) ≤ dν(F )

As we are going to see in the next section (see Theorem 7) that the bound of Theorem
6 is tight for d = 2. It is however not tight in general. An example of 10 separated
3-intervals in [4] shows f(3, 1) ≥ 4 (equality is also established there). Theorem 6 with
Lemma 3 shows g(d, k) ≥ dk. This is not tight even for d = 2. An example of 6 2-intervals
in [4] shows g(2, 1) ≥ 3 (equality is also established there, while g(2, k) = 3k is shown in
[6], see Corollary 12).

3. The topological approach

Using the topology of higher dimensional spaces in the investigation of transversals
of d-intervals was initiated in [12] where the present author used simplicial complexes to
establish the tight bound for separated 2-intervals:

Theorem 7. [12] f(2, k) = 2k.

Proof sketch: Let us take a family F of separated 2-intervals. We may suppose F covers
a finite part of the two lines, say each element of F is contained in the separated 2-interval
[X0, Xk+1]∪ [Y0, Yk+1]. Now consider the 2k-tuples of points T = (X1, . . . , Xk; Y1, . . . , Yk)
with X0 ≤ X1 ≤ . . . ≤ Xk+1 and Y0 ≤ Y1 ≤ . . . ≤ Yk+1. The space S of these candidate
transversals T is the direct product of two k-simplexes. We define bad subsets Bi,j ⊂ S
for 0 ≤ i, j ≤ k by letting T ∈ Bi,j if and only if there exists an element of F contained in
(Xi, Xi+1) ∪ (Yj, Yj+1).

The hard part of the proof is to show the following for any collection of open subsets
Bi,j ⊆ S. If T 6∈ Bi,j holds whenever Xi = Xi+1 or Yj = Yj+1 (boundary condition)
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then either the union of all the Bi,j does not cover S or else we have a permutation σ of
{0, . . . , k} such that the intersection of the sets Bi,σ(i) is nonempty.

The proof of this claim in [12] is tedious and uses the topology of simplicial complexes.
We omit it here.

To apply the above statement we have to show that our bad sets Bi,j satisfy the con-
ditions there. The boundary condition is trivial. The sets Bi,j are open since the separated
d-intervals in F are closed. Therefore we have one of the two possible consequences there.

By the definition of the bad sets Bi,j any point T = (X1, . . . , Xk; Y1, . . . , Yk) ∈ S
outside all of the bad sets represents a transversal {X1, . . . , Xk, Y1, . . . , Yk} of F . Thus if
∪0≤i,j≤kBi,j 6= S we have τ(F ) ≤ 2k.

If T = (X1, . . . , Xk; Y1, . . . , Yk) ∈ ∩k
i=0Bi,σ(i) for a permutation σ of {0, . . . , k} then

the elements Ii of F contained in (Xi, Xi+1)∪(Yj, Yj+1) are pairwise disjoint for i = 0, . . . , k
thus ν(F ) ≥ k + 1.

For families F of separated 2-intervals with ν(F ) ≤ k we thus must have τ(F ) ≤ 2k
and therefore f(2, k) ≤ 2k as claimed. The inequality in the opposite direction comes from
Theorem 6.

Notice the striking similarity of the core topological statement of the proof to Sperner’s
Lemma. As it was already pointed out in [12] the same proof can bound f(d, k) for arbitrary
d if the right analog of the topological statement on the alternatives is proved. This was
implicitly done by Kaiser [6]. He also simplified the presentation of the argument and
through the use of the Borsuk-Ulam theorem greatly simplified the proof.

We present here Kaiser’s upper bound on g(d, n), i.e. the transversal number of d-
intervals.

Theorem 8. [6] g(d, k) ≤ (d2 − d + 1)k

Proof: Take a family F of d-intervals. We may suppose again that all the d-intervals of
F are contained in the unite interval [0, 1].

Let us fix n ≥ 1 and define the n-simplex S = {(y1, . . . , yn)|0 ≤ y1 ≤ . . . ≤ yn ≤ 1}.
We think of (y1, . . . , yn) ∈ S to represent the set {y1, . . . , yn} and thus S is the space
of transversal-candidates for F of size at most n. We set V = {0, 1, . . . , n}. A point
y = (y1, . . . , yn) ∈ S determines the open intervals Li(y) = (yi, yi+1) for i ∈ V where we
take y0 = 0 and yd+1 = 1. (Note that some of these intervals may be empty.) For a set
e ⊂ V we define

wy(e) = sup
I

dist(y, I)

with I ranging over the d-intervals of F contained in ∪i∈eLi(y) but intersecting every Li(y)
with i ∈ e. Here dist denotes minimum distance between sets on the line.

For i ∈ V and y ∈ S we define

wy(i) =
∑

e∋i

wy(e).

Observation 9.

(a) wy(e) ≥ 0, furthermore wy(e) = 0 for every set e of size |e| > d or for e = ∅.
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(b) wy(e) = 0 if there exist an index i ∈ e with Li(y) = ∅ and thus wy(i) = 0 if Li(y) = ∅
(c) if wy(e) = 0 for every set e ⊂ V then y represents a transversal of F .
(d) as a function of y ∈ S all the functions wy(e) (e ⊂ V ) and thus the functions wy(i)

(i ∈ V ) are continuous.

Proof: (a) follows from the fact that F is a collection of nonempty d-intervals. Parts (b)
and (d) are trivial. For (c) notice that any element of F disjoint from the set represented
by y has a positive contribution to the supremum in the definition of wy(E) for a (unique)
set E. Here we also use that F consists of closed sets.

The following observation is the heart of this proof. This is the point, where topology
is used. Note that we did not suppose anything about the family F or the parameter n
for the observation.

Lemma 10. There exist a point y ∈ S for which wy(i) is independent of i ∈ V .

Proof: To be able to use the Borsuk-Ulam theorem we have to shift attention from the
simplex S to the sphere Sn = {(z0, . . . , zn|

∑
z2
i = 1} ⊂ Rn+1. We do it through the map

g : S → Sn defined by
g(z0, . . . , zn) = (t1, . . . , tn),

ti =

i−1∑

j=0

z2
i , for i = 1, . . . , n.

Note that g(z) does not depend on the sign of the coordinates of z.
We combine g with the weight functions wy(i) to define the functions hi : Sn → R for

i = 1, . . . , n by
hi(z) = sign(zi)wg(z)(i) − sign(z0)wg(z)(0)

where z = (z0, . . . , zn).
Notice that by Observation 9 (d) all functions in the above definition are continuous

except for the sign function. But at the jump of the sign function sign(zi) (i ∈ V ) we have
Li(g(z)) = ∅ and thus by Observation 9 (b) we have wg(z)(i) = 0. Therefore the functions
hi are continuous everywhere.

Notice also the antipodality: hi(−z) = −hi(z) follows from g(z) = g(−z). Now we can
use the Borsuk-Ulam theorem. It states that n continuous, antipodal, real functions on Sn

always have a common zero. (See e.g. [11].) In particular there exists a z ∈ Sn for which
hi(z) = 0 for i = 1, . . . , n. This clearly implies that for y = g(z) we have wy(i) = wy(0)
for i = 1, . . . , n as claimed.

For the rest of the proof we fix y ∈ S to be the point claimed in Observation 9 and
let x be the common value of wy(i) for i ∈ V . The connection between the matching and
transversal numbers of F will follow from the following alternative. If x = 0 then the
transversal number is small, if x 6= 0 then the matching number is large.

Suppose first that x = 0. Then clearly wy(e) = 0 for all e ⊂ V . By Observation 9 (c)
this implies τ(F ) ≤ n.

Let us now suppose that x > 0. We define M = (V, E) to be the hypergraph on the
vertex set V with the edge set E = {e ⊂ V |wy(e) > 0}.
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Let us first observe that ν(M) ≤ ν(F ). Indeed, we can choose a d-interval Ie ∈ F
for every edge e ∈ E such that Ie ⊂ ∪i∈eLy(i). The d-intervals chosen for disjoint edges
are clearly disjoint, thus the inequality holds as claimed. Thus it is enough for us to lower
bound ν(M).

A partial matching of a hypergraph N is an assignment of non-negative weights to the
edges such that the sum of weights on edges containing any particular vertex is at most 1.
The partial matching number ν∗(N) is the supremum of the total weights assigned by any
partial matching of M . We clearly have ν∗(N) ≥ ν(N). We will later need inequalities in
the other direction.

The function wy(e)/x clearly forms a partial matching of M . Therefore ν∗(M) ≥∑
e∈E wy(e)/x. Here by Observation 9 (a) all edges in E have size at most d and thus

d
∑

e∈E wy(e) ≥
∑

e∈E |e|wy(e) =
∑

i∈V

∑
e∋i wy(e) = (n + 1)x. Thus

ν∗(M) ≥
n + 1

d
.

The last task to finish the proof is to connect ν∗(M) and ν(M). The following ob-
servation is trivial. For every hypergraph M with edges having at most d elements we
have:

ν∗(M) ≤ dν(M).

For the proof notice that if M ′ ⊂ M is any maximal matching then every edge of M
contains one of the points in H = ∪M ′ and thus the weight of any edge in a fractional
matching is counted at the vertex weights of vertices in H thus ν∗(M) ≤ |H| ≤ d|M ′|.
Notice that this already implies

g(d, k) ≤ d2k.

Slight improvement of the trivial argument above is given by Füredi in [3]:

Lemma 11. [3] For every hypergraph M with edges having at most d elements we have:
ν∗(M) ≤ (d − 1 + 1/d)ν(M).

Now we have that either x = 0 and then τ(F ) ≤ n or x 6= 0 and then ν(F ) ≥ ν(M) ≥
ν∗(M)/(d − 1 + 1/d) ≥ (n + 1)/(d2 − d + 1). Thus with the choice n = (d2 − d + 1)k for
any family F with ν(F ) ≤ k we must not have x 6= 0 thus we must have τ(F ) ≤ n. This
finishes the proof of Theorem 8.

We further remark here that in case d > 2 and there is no projective plane of order
d − 1 the statement of Lemma 11 can be made stronger to ν∗(M) ≤ (d − 1)ν(M), see [3].
This leads to the tighter bound g(d, k) ≤ (d2 − d)k for such d. Let us also mention that
the bound of Theorem 8 is tight for the d = 2 special case:

Corollary 12. [6] g(2, k) = 3k

Proof: g(2, k) ≤ 3k is a special case of Theorem 8. The example in [4] already mentioned
at the end of Section 2 shows g(2, 1) ≥ 3 and g(2, k) ≥ kg(2, 1) is trivial (similarly to the
first inequality of Theorem 6).

We remark that the special case d = 2 of Lemma 11 was first proved by Lovász in [9].
Using Lemma 3 one sees that the bound of Theorem 8 also applies for f in place of

g. Using the proof technique directly the paper [6] establishes the slightly better bound:
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Theorem 13. [6] f(d, k) ≤ (d2 − d)k.

The proof is similar but one has to use a recent extension of the Borsuk-Ulam theorem
by Ramos [10]. This theorem is about the common zeros of functions defined on product
of spheres. Notice that Theorem 7 is a special case of this Theorem 13.

4. Using the duality theorem

In this section we survey the short note of Noga Alon [1]. This paper uses the method
of Alon and Kleitman [2], it is based on the duality theorem for linear programming and
on Turán’s theorem in extremal graph theory. It is worth to include the short proof in its
entirety.

Theorem 14. [1] g(d, k) ≤ 2d2k − 1.

Proof: Let F be a family of d-intervals with ν(F ) ≤ k. For compactness reasons it is
again enough to consider finite families, let n = |F |. As there are no k+1 pairwise disjoint
elements of F Turán’s theorem yields that there are more than n2/(2k) unordered pairs
of (not necessarily) distinct intersecting members of F . For any such pair P one finds two
ordered triplets (p, I, I ′) with p being an endpoint in a member of the d-interval I, p ∈ I ′

and {I, I ′} = P . There are at most 2dn endpoints p thus one of them is contained in
n/(2dk) d-intervals of F .

Let us assign non negative rational weights aI/b to the d-intervals I ∈ F . Applying the
above argument to a multiset F ′ obtained from F via replicating each d-interval I aI times,
one gets a point p that lies on a collection of d-intervals representing more than 1/(2dk)
fraction of the total weight. We apply the min-max theorem of linear programming to
deduce the existence of a multiset M of m points such that each d-interval in F contains
more than m/(2dk) of them. Now we select the points in M whose rank in the linear
ordering is divisible by ⌊m/(2d2k)⌋ + 1. Any interval disjoint from these points contains
at most m/(2d2k) points of M thus non of the d-intervals in F can be disjoint of the less
than 2d2k points selected.

The bound obtained here is worse than Kaiser’s bound discussed in the preceding
section by a factor approaching 2 for large d.

5. Applications and open problems

It is not surprising that one can use the connection of the matching and transversal
numbers of (separated) d-intervals to obtain similar connection for other families of (mostly
geometrical) sets. We give one example here. Let S be a closed set in the Euclidean plane.
We define an S-box to be the intersection of an axis-parallel rectangle with S. In [8]
Theorem 7 is used to prove

Theorem 15. [8] For any family F of S-boxes

τ(F ) ≤ 4ν(F )⌊log ν(F ) + 1⌋2.

It is perhaps more noteworthy when a topological method similar to that of Section
3 is proved to be applicable in a different setting. An example is the paper of Kaiser and
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Rabinovich [7] about a Helly-type problem. They consider convex (n, d)-bodies, ordered n-
tuples of convex sets in Rd. A family F of convex (n, d)-bodies is called weakly intersecting

if there is an n-tuple (p1, . . . , pn) of points in Rd such that for every convex (n, d)-body
(K1, . . . , Kn) ∈ F one has pi ∈ Ki for at least one i = 1, . . . , n. The family F is called
strongly intersecting if there exist a point p ∈ Rd and an index 1 ≤ i ≤ n with p ∈ Ki for
each convex (n, d)-body (K1, . . . , Kn) ∈ F .

Theorem 16. [7] Suppose every subfamily F ′ of the family F of convex (n, d)-bodies is
strongly intersecting if |F ′| ≤ ⌈log2(n + 2)⌉d. Then F is weakly intersecting.

Finding out if there are more combinatorial problems where a similar line of reasoning
is fruitful and what these problems are can be an interesting research project.

Writing a survey paper about a simple combinatorial problem of finding the values of
the function f(d, k) and g(d, k) we must admit that none of these values is known exactly
for d ≥ 3 and k ≥ 1 except for the single case f(3, 1) = 4 settled in [4]. It seems that the
most intriguing question is to find the order of magnitude for the maximum transversal
number of an intersecting family of d-intervals. Note that the upper bound for this number
g(d, 1) is quadratic (Theorem 8) while the lower bound is linear (Theorem 6).
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