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Abstrat The paper [10℄ of J. Solymosi and Cs. T�oth impliitly raised the following arithmeti problem.

Consider n pairwise disjoint s element sets and form all

�

s

2

�

n sums of pairs of elements of the same set.

What is the minimum number of distint sums one an get this way? This paper proves that the number of

distint sums is at least n

d

s

, where d

s

= 1=

ds=2e

is de�ned in the paper and tends to e

�1

as s goes to in�nity.

Here e is the base of the natural logarithm. As an appliation we improve the Solymosi-T�oth bound on an

old Erd}os problem: we prove that n distint points in the plane determine 
(n

4e

5e�1

��

) distint distanes,

where � > 0 is arbitrary. Our bound also �nds appliations in other related results in disrete geometry. Our

bounds are proven through an involved alulation of entropies of several random variables.
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1. Introdution

For an n by s matrix A = (a

ij

) we de�ne S(A) = fa

ij

+a

ik

j1 � i � n; 1 � j < k � sg the set of pairwise

sums of entries from the same row. Let f

s

(n) be the minimum size jS(A)j for a real n by s matrix with all

its sn entries being pairwise distint.

The goal of this paper is to study the asymptoti behavior of f

s

(n), espeially for large onstant values

of s.

The motivation for this problem omes from the breakthrough paper of J. Solymosi and Cs. T�oth [10℄.

They proved an 
(n

6=7

) bound for an old problem of P. Erd}os [4℄, the minimum number distint distanes

n points determine in the plane. This result substantially improved earlier works of L. Moser [6℄, F. R.

K. Chung [2℄, F. R. K. Chung, E. Szemer�edi and W. T. Trotter [3℄, and L. Sz�ekely [12℄. See [7℄ for the

bakground of this intriguing old Erd}os problem and for further referenes.

Solymosi and T�oth impliitly use f

3

(n) = 
(n

1=3

) in their proof, and a loser look reveals that any

stronger bound for f

s

(n), with a onstant s would improve their result. Setion 4 has the details, Corollary

15 states the bound we get on the number of distint distanes in the plane.

We have that f

2

(n) = 1, f

3

(n) = �(n

1=3

) and f

4

(n) = �(n

1=3

) but for f

5

(n) and above the orret

order of magnitude is unknown. The best urrent bounds for f

5

and f

6

are:

n

4=11

� f

5

(n) � f

6

(n) = O(n

2=5

):

These bounds are speial ases of a onstrution of Imre Ruzsa and Theorem 1 below. This speial ase

of Theorem 1 (with a worse onstant fator) has a muh simpler proof than the full theorem as shown in

Setion 5.

The best upper bound on f

s

(n), i.e., the best onstrution is due to Imre Ruzsa [9℄, he proves

f

s

(n) = O(n

1

2

�

1

2s�2

)

for even s. The lower bound of the following Theorem is stated for odd values of s. It is interesting to note

that both the known lower and upper bounds are idential for the funtions f

2k�1

(n) � f

2k

(n) but for k � 3

we have no other indiation for these funtions being lose to eah other.

Theorem 1. For an integer k � 2 we have

f

2k�1

(n) � n

1



k

;

where for k � 14 we have



k

=

k

X

i=0

1

i!

+

1

(k � 1)k!

;

1



while for k � 14 we have



k

=

k

X

i=0

1

i!

+

k

3

� 7k

2

+ 20k � 40

(k

4

� 8k

3

+ 26k

2

� 46k + 40)k!

:

Notie, that both de�nitions of 

k

gives the same value for 

14

.

It is easy to see, that the limit of the values 

k

as k goes to in�nity is e, the base of the natural logarithm.

Thus we have the following

Corollary 2. For every � > 0 we have a positive integer s = s(�) with

f

s

(n) � n

1=e��

:

Note, that the limit of the exponent in the Ruzsa onstrution is 1=2, so the lower and upper bounds

are far apart.

In Setions 2 and 3 we give the proof of Theorem 1. In Setion 4 we apply it (or rather Corollary 2) to

get an improvement over the Solymosi-T�oth bound on the number of distint distanes n point determine

in the plane (see Corollary 15). We also give referenes to other related problems where Corollary 2 ould

be used in disrete geometry. In Setion 5 we give an elementary and simple proof of the �rst nontrivial

ase of Theorem 1: we prove that f

5

(n) = 
(n

4=11

). We lose the paper with onluding remarks and open

problems in Setion 6.

2. The proof|Redution to a linear program

Let us �x the positive integers s, n and an n by s real matrix A. Our proof does not use in full generality

the assumption that all entries of A are distint. It is enough to make the slightly weaker assumption that

no two rows of A have two ommon entries. Our goal is to prove a lower bound on jS(A)j.

Let I = f1; 2; 3; : : : ; sg be the set of olumn indies. For subsets U; V � I and for an s-tuple R =

(a

1

; : : : ; a

s

) we de�ne the UV pattern p

U;V

(R) of R to be a sequene of real numbers onsisting of the

di�erenes a

i

� a

j

for i; j 2 U and for i; j 2 V and the sums a

i

+ a

j

for i 2 U and j 2 V . We de�ne

H(U; V ) = H(p

UV

(R));

where H denotes the entropy and R is a uniformly distributed random row of A. All entropies and all

logarithms in this paper are binary.

The next lemma stating linear onstraints on the entropies H(U; V ) is ruial for the proof.

Lemma 3. Let U;U

0

; V; V

0

� I . We have

(a) H(U; V ) = H(V; U);

(b) H(U; V ) � H(U

0

; V

0

) if U � U

0

and V � V

0

;

() H(U; V ) = 0 if U = ; and jV j = 1;

(d) H(U; V ) � log jS(A)j if U 6= V and jU j = jV j = 1;

(e) H(U; V ) = logn if U \ V 6= ; and jU [ V j > 1;

(f) H(U [ U

0

; V [ V

0

) +H(U \ U

0

; V \ V

0

) � H(U; V ) +H(U

0

; V

0

) if (U \ U

0

) [ (V \ V

0

) 6= ;.

Proof: We use the well known properties of the entropy to prove this lemma.

A. Range. For a random variable F that has k possible values H(F ) � log k with equality if F is

distributed uniformly.

Part () follows sine p

U;V

(R) is onstant in that ase.

Part (d) also follows sine p

U;V

(R) onsists of a single value from S(A) in that ase.

Part (e) of the lemma also follows from the above property. The pattern p

U;V

(R) ontains 2a

i

for the

index i 2 U \ V and thus it determines a

i

and with it all other values a

j

with j 2 U [ V . As two entries

uniquely determine the row of the matrix A we have that p

U;V

(R) is di�erent for all the n rows of A, thus

it is uniformly distributed among n possible values.

B. Monotoniity. If the value of a random variable F uniquely determines the value of another random

variable G then we have H(F ) � H(G).

Part (b) of the lemma follows as the pattern p

U

0

;V

0

(R) ontains all entries of the pattern p

U;V

(R).
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Part (a) of the lemma also follows as the patterns p

U;V

(R) and p

V;U

(R) ontain the same entries, so

they mutually determine eah other.

C. Submodularity. Suppose that the value of either one of the random variables F

1

and F

2

determines

the value of the random variable G

1

and the values of the random variables F

1

and F

2

together determine

the value of the random variable G

2

. In this ase we have H(G

1

) +H(G

2

) � H(F

1

) +H(F

2

).

For part (f) of the lemma we use the submodularity of entropy as stated above. Clearly the pattern

p

U\U

0

;V \V

0

(R) is determined by either one of p

U;V

(R) and p

U

0

;V

0

(R). We need to show an entry a

i

� a

j

in

p

U[U

0

;V [V

0

(R) is determined by the two patterns p

U;V

(R) and p

U

0

;V

0

(R). Indeed, the term a

i

� a

j

in the

former pattern an be expressed as a sum or di�erene of the terms a

i

�a

k

and a

j

�a

k

in the latter patterns

if k 2 (U \ U

0

) [ (V \ V

0

).

Lemma 3 ontains linear onstraints on the entropies H(U; V ) and log jS(A)j, thus solving them as a

linear program provides a bound on jS(A)j. This is indeed the route we will take. The rest of the proof of

the lower bound of jS(A)j uses solely Lemma 3. We remark here that the linear program de�ned by Lemma

3 has a unique optimal solution for all values of s exept for s = 27 or s = 28 where the optimal solutions

are the onvex ombinations of two extremal optimal solutions.

Our �rst step is to use averaging to derease the exponential number of variables to less than s

2

of them.

For integers i; j � 0, 1 � i+ j � s we de�ne

H

i;j

= 1�

1

logn

�

n

i

��

n�i

j

�

X

U;V

H(U; V );

where the summation extends over all

�

n

i

��

n�i

j

�

pairs of disjoint subsets U and V of I with jU j = i and

jV j = j. (We onsider the values H

i;j

to form a matrix H with some entries of this matrix missing. We will

only use the values H

i;j

satisfying 0 � i; j � k and 1 � i+ j � 2k � 1 where k = ds=2e.)

Lemma 4. For i, j nonnegative integers with 1 � i+ j � s we have:

(a) (symmetry) H

i;j

= H

j;i

;

(b) (monotoniity) H

i;j

� H

i+1;j

if i+ j � s� 1;

() H

0;1

= 1;

(d) H

1;1

� 1� log jS(A)j= logn;

(e) (onvexity) H

i�1;j

+H

i+1;j

� 2H

i;j

if i � 1 and 2 � i+ j � s� 1;

(f) H

i;j

� H

i+1;j

+H

i;j+1

if i+ j � s� 1.

We ould also state the non-negativity of these variables, but we will not use it.

Proof: Parts (a), (b), (), and (d) of this lemma follows from the orresponding parts of Lemma 3 by

simple averaging.

Part (e) follows from part (f) of Lemma 3, here the averaging is over the four-tuples of sets U; V; U

0

; V

0

�

I satisfying jU j = jU

0

j = i, jU \ U

0

j = i� 1, V = V

0

, jV j = j and (U [ U

0

) \ V = ;.

Finally for part (f) of this lemma onsider two disjoint subsets U and V

0

of I (not both the empty set)

and an index k 2 I n (U [ V

0

). Applying Lemma 3(f) for U , U

0

= U [ fkg, V = V

0

[ fkg, and V

0

one gets

H(U; V

0

) +H(U

0

; V ) � H(U; V ) +H(U

0

; V

0

):

Here Lemma 3(e) applies and yields H(U

0

; V ) = logn, thus we have

H(U; V

0

) + logn � H(U; V ) +H(U

0

; V

0

):

Part (f) of the lemma follows from averaging over all pairs of disjoint subsets U; V

0

� I with jU j = i and

jV

0

j = j and for all possible indies k.

We remark that the linear program de�ned by Lemma 4 is already tratable by standard linear pro-

gramming methods for small values of s but as we will see, onsidering the ases s � 28 only an be

misleading.

3. Solving the linear program

3



In this rather tehnial setion we ombine the inequalities in Lemma 4 to prove an upper bound on

H

1;1

and thus a lower bound on the size of S(A).

The optimal solution of the linear program in Lemma 4 is the same for an odd number s and for the

next even number (and is unique unless s is either 27 or 28). Sine our goal is simply to prove a lower bound

on jS(A)j we assume s = 2k � 1 for some integer k � 3.

Lemma 5. H

k�2;k�1

�

3

k+1

H

0;k�1

Proof: By Lemma 4(e) the olumns of the matrix H are onvex, therefore we have

H

0;k�1

�H

k�2;k�1

k � 2

� H

k�3;k�1

�H

k�2;k�1

�

H

k�2;k�1

�H

k;k�1

2

:

Using parts (f), (b) and (a) of Lemma 4 we get

H

k�3;k�1

�H

k�2;k�1

� H

k�3;k

� H

k�1;k

= H

k;k�1

:

Combining the last two displayed inequalities we get

H

0;k�1

�H

k�2;k�1

k � 2

�

H

k�2;k�1

�H

k;k�1

2

�

H

k�2;k�1

� (H

k�3;k�1

�H

k�2;k�1

)

2

�

H

k�2;k�1

�

H

0;k�1

�H

k�2;k�1

k�2

2

;

yielding the laimed statement by rearrangement.

Lemma 6. Suppose we have H

j�1;j

� �H

0;j

for some 3 � j < k and � > 0. If (j � 3)� � 2 then we also

have H

j�2;j�1

� �H

0;j�1

for � = (2 + �)=(j + �) > 0 and (j � 4)� � 2 is also satis�ed.

Proof: We onsider the following four inequalities:

H

0;j

+H

1;j�1

� H

0;j�1

;

by Lemma 4(f);

H

j�2;j�1

�H

j;j�1

2

�

H

0;j�1

�H

j�2;j�1

j � 2

;

by the onvexity of olumn j � 1 (Lemma 4(e));

H

j�2;j�1

�H

j;j�1

2

�

H

1;j�1

�H

j�2;j�1

j � 3

;

for j > 3 by the onvexity of the same olumn; �nally

H

j;j�1

� �H

0;j

;

by assumption and symmetry (Lemma 4(a)). We sum these inequalities with the non-negative oeÆients �,

2� (j�3)�, (j�3)�, and 1, respetively, and rearrange to get the inequality H

j�2;j�1

� �H

0;j�1

as laimed

in the lemma. Notie that for j = 3 the third inequality is not valid but we use it with zero oeÆient.

Simple alulation yields the laimed bound on �.

We need a losed form for the ontinued fration in the next lemma. Note that as a onsequene of the

lemma, the orresponding in�nite ontinued fration evaluates to e, the base of the natural logarithm.
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Lemma 7. For an integer k � 1 and real x < k

2

=(k � 1) we have

3�

1

4�

2

5�

3

6�:::

k+1�

k�1

k+2�x

=

k

X

i=0

1

i!

+

k � x

(k

2

� (k � 1)x)k!

:

For k = 1; 2; 3; : : : the left hand side of the equation in the lemma is understood to be

3� x;

3�

1

4� x

;

3�

1

4�

2

5�x

;

et.

Proof: The proof is by indution on k. The k = 1 ase is trivial. For k > 1 we use the indutive

hypothesis for k

0

= k� 1 and x

0

= (k� 1)=(k+2�x) < (k� 1)

2

=(k� 2), and a simple alulation yields the

lemma.

Instead of Theorem 1 we prove the somewhat stronger statements of Theorems 8 and 10.

Theorem 8. Let 2 � k � 14, n � 1, and let A be an n by (2k � 1) real matrix with no two distint rows

sharing more than a single entry. Then we have

jS(A)j � n

1=

k

;

with 

k

=

P

k

i=0

1

i!

+

1

(k�1)k!

.

Proof: Previously in this setion we assumed k � 3 so the k = 2 (s = 3) ase must be dealt with

separately. One an either solve the linear program of Lemma 4 (there are only four distint relevant

variables in this ase) or use diret reasoning as in the beginning of Setion 5. This s = 3 ase was already

disussed in [10℄.

For k � 3 we prove a bound H

j�1;j

� �

j

H

0;j

by reverse indution on j = k � 1; : : : ; 2. We use

Lemma 5 to get �

k�1

= 3=(k + 1) as the bases of our indution. We use Lemma 6 for the indutive

step to get �

j�1

= (2 + �

j

)=(j + �

j

). Notie that the (j � 3)�

j

� 2 ondition is satis�ed at j = k � 1

beause of the k � 14 assumption and this ondition is preserved by Lemma 6. Rewriting the reursion to

1��

j�1

= (j� 2)=((j+1)� (1��

j

)) and writing 1��

k�1

= (k� 2)=(k+1) we get the following ontinued

fration expansion for �

2

:

1� �

2

=

1

4�

2

5�

3

6�:::

k�

k�2

k+1

:

We further have

2H

1;1

�H

0;1

� H

2;1

= H

1;2

� �

2

H

0;2

� �

2

(H

0;1

�H

1;1

);

by Lemma 4(e), Lemma 4(a), the statement above, and Lemma 4(f), respetively. By rearrangement, and

using H

0;1

= 1 (Lemma 4()) we get the bound H

1;1

� (1 + �

2

)=(2 + �

2

). By Lemma 4(d) we get

logn= log jSj �

1

1�H

1;1

� 2 + �

2

= 3�

1

4�

2

5�

3

6�:::

k�

k�2

k+1

:

Lemma 7 provides a losed form for the ontinued fration of the above statement and thus proves the

theorem.

In order to use Lemma 6 reursively as in the proof of Theorem 8 we need a base ase. Lemma 5 annot

be used for this if k > 14 as the inequality required for Lemma 6 to apply ((j � 3)� � 2) does not hold for

j = k � 1 and � = 3=(k + 1). The next lemma provides the base j = k � 2 ase for large k.
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Lemma 9. If k � 14 we have H

k�3;k�2

�

2k+3

k

2

�k+4

H

0;k�2

.

Proof: We ombine six inequalities to get the desired bound. We use

H

k�2;k�1

�

3

k + 1

H

0;k�1

and

H

k�2;k�1

�

3

k

H

1;k�1

:

The former inequality is provided by Lemma 5, while the latter inequality an be proven the same way. We

also use

H

0;k�1

+H

1;k�2

� H

0;k�2

and

H

1;k�1

+H

2;k�2

� H

1;k�2

provided by Lemma 4(f). Finally we also use

H

k�3;k�2

�H

k�2;k�1

2

�

H

1;k�2

�H

k�3;k�2

k � 4

and

H

k�3;k�2

�H

k�2;k�1

2

�

H

2;k�2

�H

k�3;k�2

k � 5

;

both oming from symmetry (Lemma 4(a)) and the onvexity of olumn k � 2 (Lemma 4(e)). We sum the

above six inequalities with oeÆients (k + 1)(2k + 3), k(k � 14), 3(2k + 3), 3(k � 14), 3(k � 4)(k + 17),

and 3(k � 5)(k � 14), in this order, and rearrange to obtain the bound of the Lemma. Note, that all these

oeÆients are non-negative if k � 14.

Theorem 10. Let k � 14, n � 1, and let A be an n by (2k � 1) real matrix with no two distint rows

sharing more than a single entry. Then we have

jS(A)j � n

1=

k

;

with 

k

=

P

k

i=0

1

i!

+

k

3

�7k

2

+20k�40

(k

4

�8k

3

+26k

2

�46k+40)k!

.

Proof: We opy the proof Theorem 8. We prove a bound H

j�1;j

� �

j

H

0;j

by reverse indution on

j = k � 2; : : : ; 2. We use Lemma 9 for the base ase j = k � 2 and �

k�2

= (2k + 3)=(k

2

� k + 4). Lemma 6

gives �

j�1

= (2+�

j

)=(j+�

j

)) sine (j�3)�

j

� 2 for j = k�2 and so it is true for all values of j onsidered.

As in the proof of Theorem 8 we get a ontinued fration expansion of �

2

, in this ase it is:

1� �

2

=

1

4�

2

5�

3

6�:::

k�2�

k�4

k�1�

k

2

�3k+1

k

2

�k+4

:

Just as in the proof of Theorem 8 we get

logn= log jSj � 2 + �

2

:

Thus we have

logn= log jSj � 3�

1

4�

2

5�

3

6�:::

k�2�

k�4

k�1�

k

2

�3k+1

k

2

�k+4

:

Lemma 7 provides a losed form for the ontinued fration of the above statement and thus proves the

Theorem.

4. Distint distanes in the plane

As mentioned in the introdution, the problem onsidered in this paper is a byprodut of the paper [10℄

by J. Solymosi and Cs. T�oth. One of their lemmas an be stated in our notation as follows.
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Lemma 11. [10, Lemma 5℄ Let A = (a

ij

) be an n by 3 real matrix with all its entries pairwise distint.

Assume that a

i1

< a

i2

< a

i3

for i = 1; : : : ; n, and assume also that a

i3

< a

i+1;1

for all but at most t � 1

indies i = 1; : : : ; n� 1. Then

jS(A)j = 
(N=t

2=3

):

We generalize this lemma as follows. We inlude the simple proof along the same lines.

Lemma 12. Let s, and t � n be positive integers and let A = (a

ij

) be an n by s real matrix with all the ns

entries pairwise distint. Assume that max

j

a

ij

< min

j

a

i+1;j

holds for all but at most t � 1 of the indies

i = 1; : : : ; n� 1. Then

jS(A)j �

j

n

2t

k

� f

s

(t):

Proof: We �nd b

n

2t

 pairwise disjoint real intervals, eah ontaining all entries of t rows of A. This an

be done from left to right on the real line using a greedy strategy. Let A

I

be the submatrix of A onsisting

of the t rows fully ontained in the interval I . Clearly jS(A

I

)j � f

s

(t) and S(A

I

) � S(A). Furthermore

S(A

I

) and S(A

I

0

) are disjoint if I and I

0

are disjoint, yielding the lemma.

With the help of this lemma we get:

Theorem 13. Let us be given n points in the plane suh that from any one of the points there are at most

t distint distanes to the other points. Then

t

5

f

s

(t)

� n

4

;

where  = (s) is a positive onstant depending on s.

Proof sketh: Solymosi and T�oth in [10℄ prove that n points in the plane determine 
(n

6=7

) distint

distanes. Their proof an be onsidered the s = 3 speial ase of our proof. The beautiful proof is based

on the method of L. Sz�ekely, uses the rossing number theorem of M. Ajtai, V. Chv�atal, M. Newborn, and

E. Szemer�edi [1℄ and F. T. Leighton [5℄, and the point-line inidene theorem of E. Szemer�edi and W. T.

Trotter [13℄. As most of the proof goes through without a hange we only sketh the di�erenes and refer

the reader to the original proof for details.

We onsider the same inidenes between points and irles as in [10℄. We partition the points inident

to a irle into s-tuples (rather than triplets as in [10℄). We onstrut a topologial graph by onneting at

most a single pair of points along the irle from every s-tuple, a pair with a bisetor not rih, i.e., not going

through more than �n

2

=t

2

points. If no suh pair exists we all the s-tuple bad. We dedue (as in [10℄) from

the rossing number theorem that most of the s-tuples are bad. Now we ontrast the upper bound of the

Szemer�edi-Trotter theorem on inidenes between points and rih lines, to the lower bound obtained from

Lemma 12 (in plae of Lemma 11 in [10℄). All alulations of the paper go through with this modi�ation

and they yield Theorem 13.

The next orollary is straightforward onsequene of Theorem 13, while Corollary 15 below is a onse-

quene of Corollaries 2 and 14.

Corollary 14. If for some positive integer s and positive real � we have f

s

(n) = 
(n

�

) then the following

holds. Any set P of n points in the plane has an element from whih the number of distint distanes to the

other points of P is


(n

4

5��

):

Corollary 15. For any � > 0 we have that any set P of n points in the plane has an element from whih

the number of distint distanes to the other points of P is


(n

4e

5e�1

��

):

Subsequent to the paper [10℄, it turned out that the same proof tehnique an be used to prove gener-

alizations of the result in [10℄. The bound on the number of appearanes of the k most frequent distanes

among n points in the plane in [11℄ and the bound on the number of equilateral triangles n points in the
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plane determine in [8℄ both imply Corollary 15, and both heavily rely on Corollary 2, the main result of this

paper.

5. An elementary proof

In this setion we onsider f

s

for small values of s. Trivially f

1

(n) = 0, f

2

(n) = 1.

We laim that f

3

(n) � (6n)

1=3

, more preisely,

f

3

(n) = min

�

m

�

�

�

�

m

3

�

� n

�

:

Indeed, eah row of an n by 3 matrix A of all distint entries determines three distint sums in S(A) and

these three sums in turn determine the entries and thus the row. Thus

�

f

3

(n)

3

�

� n must hold. To see the

laimed equality we onstrut for an arbitrary integer m � 3 a matrix A

S

of n =

�

m

3

�

rows and three olumns

from a rationally independent set S of m reals. Eah row of A

S

is of the form

(

x+ y � z

2

;

x� y + z

2

;

�x+ y + z

2

);

where fx; y; zg is a di�erent three element subset of S for eah row. Notie that all entries of A

S

are di�erent

and S(A

S

) = S.

It is easy to see, that f

3

(n) � f

4

(n) � 2f

3

(n), thus f

4

has the same order of magnitude as f

3

(namely

n

1=3

). Indeed add an extra olumn to the matrix A

S

onstruted above making eah row add up to zero.

Notie that the modi�ed matrix A

0

S

has still all di�erent entries and furthermore S(A

0

S

) = S [ (�S). More

preisely, we laim that

min

�

m

�

�

�

�

m

3

�

� 4n

�

� f

4

(n) � 2min

�

m

�

�

�

2

�

m

3

�

� n

�

:

Indeed, eah three element subset of a row of an n by 4 matrix A of all di�erent entries determine three

di�erent sums in S(A) and a moment notie veri�es that all 4n triplets obtained this way are distint proving

the lower bound on f

4

(n). For the upper bound onsider an m element rationally independent set S and

the

�

m

3

�

by 4 matrix A

0

S

onstruted above. Notie that by using all rows of A

0

S

and �A

0

S

we get a 2

�

m

3

�

by

4 matrix A

00

(S) of all di�erent entries with S(A

00

S

) = S(A

0

S

) = S [ (�S). Notie that the lower and upper

bounds di�er by at most 3 (and this an be further redued by simple observations).

The observations above on f

3

appeared already in the paper of Solymosi and T�oth [10℄ and were used to

prove a lower bound on the number of distint distanes n points determine in the plane. It was lear from

their proof, that an improved lower bound for f

s

even if for a higher onstant value of s would improve their

bound on the number of distanes. It was independently found by Gyula K�arolyi and Tibor Szab�o that f

4

has the same order of magnitude as f

3

and thus it annot be used in this manner.

Next we onsider f

5

(n) for whih the atual order of magnitude is not known, but Theorem 1 gives

f

5

(n) � n

4=11

. Here we give an elementary proof of this result (with a onstant multipliative fator in the

bound). This proof an serve as a motivation for the general result, the tehniques of the proof of Theorem

1 were introdued to generalize this elementary proof below. Note also that the lower bound for f

s

(n) in

Theorem 1 is very lose to the lower bound presented here: for arbitrary s � 7 the improvement in the

exponent of n is only in the third digit after the deimal point.

Theorem 16. f

5

(n) = 
(n

4=11

).

Proof: Let A be an n by 5 real matrix of all distint entries with S = S(A) having minimal size

jSj = m = f

5

(n). We all a real value x heavy if it an be expressed as x = u � v with u; v 2 S in at least

m

1=4

di�erent ways and x is light otherwise. We all a row of A heavy it has two distint entries b and 

with b�  being heavy, otherwise the row is alled light.

Our goal is to bound the number n of rows of A in terms of m and we do this separately for heavy and

light rows.

8



Clearly there are only m

2

ways to form a di�erene x = u � v from values u; v 2 S, so there are at

most m

2

=m

1=4

= m

7=4

heavy numbers. Given any value x it an be expressed as the di�erene between two

distint entries of the same row of A in only m di�erent ways, as the sum of these two entries is a value

in S and the sum and the di�erene together determines the entries (we use here that all entries of A are

distint). The last two statements together bound the number of heavy rows in A by m

7=4

�m = m

11=4

.

Now onsider a light row (a

1

; a

2

; a

3

; a

4

; a

5

) of A. We identify this row with revealing limited information,

and use this to bound the number of light rows. We �rst reveal u = a

1

+a

2

and u

0

= a

1

+a

3

. Both numbers are

from the m-element set S so we havem

2

hoies for these values. With this we also identi�ed u�u

0

= a

2

�a

3

whih must be a light number. Thus writing u� u

0

= (a

2

+ a

4

)� (a

3

+ a

4

) = (a

2

+ a

5

)� (a

3

+ a

5

) are two

of the less than m

1=4

ways u � u

0

an be expressed as the di�erene of two values in S. So we have less

than (m

1=4

)

2

= m

1=2

hoies when revealing the values v = a

2

+ a

4

, v

0

= a

2

+ a

5

. Just as above, the value

v�v

0

= a

4

�a

5

is now revealed, and it must be light number, thus v�v

0

= (a

1

+a

4

)� (a

1

+a

5

) is one of the

less than m

1=4

ways v � v

0

an be expressed as a di�erene of values in S. So for revealing w = a

1

+ a

4

we

have less than m

1=4

hoies. At this point a

1

= (u+ w � v)=2 is also revealed, so the row itself is identi�ed

(as all entries of A are distint). This limits the number of light rows by m

2

�m

1=2

�m

1=4

= m

11=4

.

Thus n < 2m

11=4

and so f

5

(n) = m > (n=2)

4=11

.

6. Conluding remarks and open problems

As we have already mentioned the orders of magnitude of the funtions f

s

(n) are unknown for s � 5.

Improving either the lower or the upper bounds is a hallenge.

One ould hope to improve the lower bounds by the methods of this paper, i.e., onsidering a uniformly

distributed random row of a matrix with all distint entries, several linear funtions on this row, and using

inequalities on the (joint) entropies of these funtions. There is room for improvement. In this paper we

restrited our attention to spei� olletions of pairwise sums and di�erenes only. One an try use di�erent

olletions, like H(a+ b; + d) or even linear ombinations of a di�erent type, like H(a+ b+ + d). Here a,

b, , and d represent distint entries of the random row. Submodularity gives a lot of inequalities, like

H(a+ b; b+ ; + d) +H(a+ b+ + d) � H(a+ b; + d) +H(b+ ; d+ a);

but the author was unable to use these additional inequalities to obtain better bounds on f

s

. One ould

also try to use information inequalities that are not onsequenes of the basi inequalities of Shannon type

(monotoniity and submodularity). Suh inequalities were published by Zhen Zhang and RaymondW. Yeung

[14℄ but they seem to be too ompliated to easily lend themselves to appliations.

The original motivation for the problem onsidered in this paper is its appliability to the Erd}os problem

of �nding the minimum number of distint distanes n points determine in the plane as formulated in

Corollary 15. The Ruzsa onstrution shows that one annot use this theorem diretly to prove an 
(n

8=9

)

bound on the number of distint distanes. One may try to modify the lower bound proof on the number of

distint distanes by letting the parameter s grow with n. Unfortunately a simple modi�ation of the Ruzsa

onstrution is still in the way of proving 
(n

8=9+�

) in this way. Indeed, one an show that for every � > 0

there exists Æ > 0 with

f

n

Æ
(n) = O(n

1=2+�

):
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