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Abstra
t The paper [10℄ of J. Solymosi and Cs. T�oth impli
itly raised the following arithmeti
 problem.

Consider n pairwise disjoint s element sets and form all

�

s

2

�

n sums of pairs of elements of the same set.

What is the minimum number of distin
t sums one 
an get this way? This paper proves that the number of

distin
t sums is at least n

d

s

, where d

s

= 1=


ds=2e

is de�ned in the paper and tends to e

�1

as s goes to in�nity.

Here e is the base of the natural logarithm. As an appli
ation we improve the Solymosi-T�oth bound on an

old Erd}os problem: we prove that n distin
t points in the plane determine 
(n

4e

5e�1

��

) distin
t distan
es,

where � > 0 is arbitrary. Our bound also �nds appli
ations in other related results in dis
rete geometry. Our

bounds are proven through an involved 
al
ulation of entropies of several random variables.

Mathemati
s Subje
t Classi�
ations (2000): 52C10, 11B75

1. Introdu
tion

For an n by s matrix A = (a

ij

) we de�ne S(A) = fa

ij

+a

ik

j1 � i � n; 1 � j < k � sg the set of pairwise

sums of entries from the same row. Let f

s

(n) be the minimum size jS(A)j for a real n by s matrix with all

its sn entries being pairwise distin
t.

The goal of this paper is to study the asymptoti
 behavior of f

s

(n), espe
ially for large 
onstant values

of s.

The motivation for this problem 
omes from the breakthrough paper of J. Solymosi and Cs. T�oth [10℄.

They proved an 
(n

6=7

) bound for an old problem of P. Erd}os [4℄, the minimum number distin
t distan
es

n points determine in the plane. This result substantially improved earlier works of L. Moser [6℄, F. R.

K. Chung [2℄, F. R. K. Chung, E. Szemer�edi and W. T. Trotter [3℄, and L. Sz�ekely [12℄. See [7℄ for the

ba
kground of this intriguing old Erd}os problem and for further referen
es.

Solymosi and T�oth impli
itly use f

3

(n) = 
(n

1=3

) in their proof, and a 
loser look reveals that any

stronger bound for f

s

(n), with a 
onstant s would improve their result. Se
tion 4 has the details, Corollary

15 states the bound we get on the number of distin
t distan
es in the plane.

We have that f

2

(n) = 1, f

3

(n) = �(n

1=3

) and f

4

(n) = �(n

1=3

) but for f

5

(n) and above the 
orre
t

order of magnitude is unknown. The best 
urrent bounds for f

5

and f

6

are:

n

4=11

� f

5

(n) � f

6

(n) = O(n

2=5

):

These bounds are spe
ial 
ases of a 
onstru
tion of Imre Ruzsa and Theorem 1 below. This spe
ial 
ase

of Theorem 1 (with a worse 
onstant fa
tor) has a mu
h simpler proof than the full theorem as shown in

Se
tion 5.

The best upper bound on f

s

(n), i.e., the best 
onstru
tion is due to Imre Ruzsa [9℄, he proves

f

s

(n) = O(n

1

2

�

1

2s�2

)

for even s. The lower bound of the following Theorem is stated for odd values of s. It is interesting to note

that both the known lower and upper bounds are identi
al for the fun
tions f

2k�1

(n) � f

2k

(n) but for k � 3

we have no other indi
ation for these fun
tions being 
lose to ea
h other.

Theorem 1. For an integer k � 2 we have

f

2k�1

(n) � n

1




k

;

where for k � 14 we have




k

=

k

X

i=0

1

i!

+

1

(k � 1)k!

;

1



while for k � 14 we have




k

=

k

X

i=0

1

i!

+

k

3

� 7k

2

+ 20k � 40

(k

4

� 8k

3

+ 26k

2

� 46k + 40)k!

:

Noti
e, that both de�nitions of 


k

gives the same value for 


14

.

It is easy to see, that the limit of the values 


k

as k goes to in�nity is e, the base of the natural logarithm.

Thus we have the following

Corollary 2. For every � > 0 we have a positive integer s = s(�) with

f

s

(n) � n

1=e��

:

Note, that the limit of the exponent in the Ruzsa 
onstru
tion is 1=2, so the lower and upper bounds

are far apart.

In Se
tions 2 and 3 we give the proof of Theorem 1. In Se
tion 4 we apply it (or rather Corollary 2) to

get an improvement over the Solymosi-T�oth bound on the number of distin
t distan
es n point determine

in the plane (see Corollary 15). We also give referen
es to other related problems where Corollary 2 
ould

be used in dis
rete geometry. In Se
tion 5 we give an elementary and simple proof of the �rst nontrivial


ase of Theorem 1: we prove that f

5

(n) = 
(n

4=11

). We 
lose the paper with 
on
luding remarks and open

problems in Se
tion 6.

2. The proof|Redu
tion to a linear program

Let us �x the positive integers s, n and an n by s real matrix A. Our proof does not use in full generality

the assumption that all entries of A are distin
t. It is enough to make the slightly weaker assumption that

no two rows of A have two 
ommon entries. Our goal is to prove a lower bound on jS(A)j.

Let I = f1; 2; 3; : : : ; sg be the set of 
olumn indi
es. For subsets U; V � I and for an s-tuple R =

(a

1

; : : : ; a

s

) we de�ne the UV pattern p

U;V

(R) of R to be a sequen
e of real numbers 
onsisting of the

di�eren
es a

i

� a

j

for i; j 2 U and for i; j 2 V and the sums a

i

+ a

j

for i 2 U and j 2 V . We de�ne

H(U; V ) = H(p

UV

(R));

where H denotes the entropy and R is a uniformly distributed random row of A. All entropies and all

logarithms in this paper are binary.

The next lemma stating linear 
onstraints on the entropies H(U; V ) is 
ru
ial for the proof.

Lemma 3. Let U;U

0

; V; V

0

� I . We have

(a) H(U; V ) = H(V; U);

(b) H(U; V ) � H(U

0

; V

0

) if U � U

0

and V � V

0

;

(
) H(U; V ) = 0 if U = ; and jV j = 1;

(d) H(U; V ) � log jS(A)j if U 6= V and jU j = jV j = 1;

(e) H(U; V ) = logn if U \ V 6= ; and jU [ V j > 1;

(f) H(U [ U

0

; V [ V

0

) +H(U \ U

0

; V \ V

0

) � H(U; V ) +H(U

0

; V

0

) if (U \ U

0

) [ (V \ V

0

) 6= ;.

Proof: We use the well known properties of the entropy to prove this lemma.

A. Range. For a random variable F that has k possible values H(F ) � log k with equality if F is

distributed uniformly.

Part (
) follows sin
e p

U;V

(R) is 
onstant in that 
ase.

Part (d) also follows sin
e p

U;V

(R) 
onsists of a single value from S(A) in that 
ase.

Part (e) of the lemma also follows from the above property. The pattern p

U;V

(R) 
ontains 2a

i

for the

index i 2 U \ V and thus it determines a

i

and with it all other values a

j

with j 2 U [ V . As two entries

uniquely determine the row of the matrix A we have that p

U;V

(R) is di�erent for all the n rows of A, thus

it is uniformly distributed among n possible values.

B. Monotoni
ity. If the value of a random variable F uniquely determines the value of another random

variable G then we have H(F ) � H(G).

Part (b) of the lemma follows as the pattern p

U

0

;V

0

(R) 
ontains all entries of the pattern p

U;V

(R).
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Part (a) of the lemma also follows as the patterns p

U;V

(R) and p

V;U

(R) 
ontain the same entries, so

they mutually determine ea
h other.

C. Submodularity. Suppose that the value of either one of the random variables F

1

and F

2

determines

the value of the random variable G

1

and the values of the random variables F

1

and F

2

together determine

the value of the random variable G

2

. In this 
ase we have H(G

1

) +H(G

2

) � H(F

1

) +H(F

2

).

For part (f) of the lemma we use the submodularity of entropy as stated above. Clearly the pattern

p

U\U

0

;V \V

0

(R) is determined by either one of p

U;V

(R) and p

U

0

;V

0

(R). We need to show an entry a

i

� a

j

in

p

U[U

0

;V [V

0

(R) is determined by the two patterns p

U;V

(R) and p

U

0

;V

0

(R). Indeed, the term a

i

� a

j

in the

former pattern 
an be expressed as a sum or di�eren
e of the terms a

i

�a

k

and a

j

�a

k

in the latter patterns

if k 2 (U \ U

0

) [ (V \ V

0

).

Lemma 3 
ontains linear 
onstraints on the entropies H(U; V ) and log jS(A)j, thus solving them as a

linear program provides a bound on jS(A)j. This is indeed the route we will take. The rest of the proof of

the lower bound of jS(A)j uses solely Lemma 3. We remark here that the linear program de�ned by Lemma

3 has a unique optimal solution for all values of s ex
ept for s = 27 or s = 28 where the optimal solutions

are the 
onvex 
ombinations of two extremal optimal solutions.

Our �rst step is to use averaging to de
rease the exponential number of variables to less than s

2

of them.

For integers i; j � 0, 1 � i+ j � s we de�ne

H

i;j

= 1�

1

logn

�

n

i

��

n�i

j

�

X

U;V

H(U; V );

where the summation extends over all

�

n

i

��

n�i

j

�

pairs of disjoint subsets U and V of I with jU j = i and

jV j = j. (We 
onsider the values H

i;j

to form a matrix H with some entries of this matrix missing. We will

only use the values H

i;j

satisfying 0 � i; j � k and 1 � i+ j � 2k � 1 where k = ds=2e.)

Lemma 4. For i, j nonnegative integers with 1 � i+ j � s we have:

(a) (symmetry) H

i;j

= H

j;i

;

(b) (monotoni
ity) H

i;j

� H

i+1;j

if i+ j � s� 1;

(
) H

0;1

= 1;

(d) H

1;1

� 1� log jS(A)j= logn;

(e) (
onvexity) H

i�1;j

+H

i+1;j

� 2H

i;j

if i � 1 and 2 � i+ j � s� 1;

(f) H

i;j

� H

i+1;j

+H

i;j+1

if i+ j � s� 1.

We 
ould also state the non-negativity of these variables, but we will not use it.

Proof: Parts (a), (b), (
), and (d) of this lemma follows from the 
orresponding parts of Lemma 3 by

simple averaging.

Part (e) follows from part (f) of Lemma 3, here the averaging is over the four-tuples of sets U; V; U

0

; V

0

�

I satisfying jU j = jU

0

j = i, jU \ U

0

j = i� 1, V = V

0

, jV j = j and (U [ U

0

) \ V = ;.

Finally for part (f) of this lemma 
onsider two disjoint subsets U and V

0

of I (not both the empty set)

and an index k 2 I n (U [ V

0

). Applying Lemma 3(f) for U , U

0

= U [ fkg, V = V

0

[ fkg, and V

0

one gets

H(U; V

0

) +H(U

0

; V ) � H(U; V ) +H(U

0

; V

0

):

Here Lemma 3(e) applies and yields H(U

0

; V ) = logn, thus we have

H(U; V

0

) + logn � H(U; V ) +H(U

0

; V

0

):

Part (f) of the lemma follows from averaging over all pairs of disjoint subsets U; V

0

� I with jU j = i and

jV

0

j = j and for all possible indi
es k.

We remark that the linear program de�ned by Lemma 4 is already tra
table by standard linear pro-

gramming methods for small values of s but as we will see, 
onsidering the 
ases s � 28 only 
an be

misleading.

3. Solving the linear program

3



In this rather te
hni
al se
tion we 
ombine the inequalities in Lemma 4 to prove an upper bound on

H

1;1

and thus a lower bound on the size of S(A).

The optimal solution of the linear program in Lemma 4 is the same for an odd number s and for the

next even number (and is unique unless s is either 27 or 28). Sin
e our goal is simply to prove a lower bound

on jS(A)j we assume s = 2k � 1 for some integer k � 3.

Lemma 5. H

k�2;k�1

�

3

k+1

H

0;k�1

Proof: By Lemma 4(e) the 
olumns of the matrix H are 
onvex, therefore we have

H

0;k�1

�H

k�2;k�1

k � 2

� H

k�3;k�1

�H

k�2;k�1

�

H

k�2;k�1

�H

k;k�1

2

:

Using parts (f), (b) and (a) of Lemma 4 we get

H

k�3;k�1

�H

k�2;k�1

� H

k�3;k

� H

k�1;k

= H

k;k�1

:

Combining the last two displayed inequalities we get

H

0;k�1

�H

k�2;k�1

k � 2

�

H

k�2;k�1

�H

k;k�1

2

�

H

k�2;k�1

� (H

k�3;k�1

�H

k�2;k�1

)

2

�

H

k�2;k�1

�

H

0;k�1

�H

k�2;k�1

k�2

2

;

yielding the 
laimed statement by rearrangement.

Lemma 6. Suppose we have H

j�1;j

� �H

0;j

for some 3 � j < k and � > 0. If (j � 3)� � 2 then we also

have H

j�2;j�1

� �H

0;j�1

for � = (2 + �)=(j + �) > 0 and (j � 4)� � 2 is also satis�ed.

Proof: We 
onsider the following four inequalities:

H

0;j

+H

1;j�1

� H

0;j�1

;

by Lemma 4(f);

H

j�2;j�1

�H

j;j�1

2

�

H

0;j�1

�H

j�2;j�1

j � 2

;

by the 
onvexity of 
olumn j � 1 (Lemma 4(e));

H

j�2;j�1

�H

j;j�1

2

�

H

1;j�1

�H

j�2;j�1

j � 3

;

for j > 3 by the 
onvexity of the same 
olumn; �nally

H

j;j�1

� �H

0;j

;

by assumption and symmetry (Lemma 4(a)). We sum these inequalities with the non-negative 
oeÆ
ients �,

2� (j�3)�, (j�3)�, and 1, respe
tively, and rearrange to get the inequality H

j�2;j�1

� �H

0;j�1

as 
laimed

in the lemma. Noti
e that for j = 3 the third inequality is not valid but we use it with zero 
oeÆ
ient.

Simple 
al
ulation yields the 
laimed bound on �.

We need a 
losed form for the 
ontinued fra
tion in the next lemma. Note that as a 
onsequen
e of the

lemma, the 
orresponding in�nite 
ontinued fra
tion evaluates to e, the base of the natural logarithm.
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Lemma 7. For an integer k � 1 and real x < k

2

=(k � 1) we have

3�

1

4�

2

5�

3

6�:::

k+1�

k�1

k+2�x

=

k

X

i=0

1

i!

+

k � x

(k

2

� (k � 1)x)k!

:

For k = 1; 2; 3; : : : the left hand side of the equation in the lemma is understood to be

3� x;

3�

1

4� x

;

3�

1

4�

2

5�x

;

et
.

Proof: The proof is by indu
tion on k. The k = 1 
ase is trivial. For k > 1 we use the indu
tive

hypothesis for k

0

= k� 1 and x

0

= (k� 1)=(k+2�x) < (k� 1)

2

=(k� 2), and a simple 
al
ulation yields the

lemma.

Instead of Theorem 1 we prove the somewhat stronger statements of Theorems 8 and 10.

Theorem 8. Let 2 � k � 14, n � 1, and let A be an n by (2k � 1) real matrix with no two distin
t rows

sharing more than a single entry. Then we have

jS(A)j � n

1=


k

;

with 


k

=

P

k

i=0

1

i!

+

1

(k�1)k!

.

Proof: Previously in this se
tion we assumed k � 3 so the k = 2 (s = 3) 
ase must be dealt with

separately. One 
an either solve the linear program of Lemma 4 (there are only four distin
t relevant

variables in this 
ase) or use dire
t reasoning as in the beginning of Se
tion 5. This s = 3 
ase was already

dis
ussed in [10℄.

For k � 3 we prove a bound H

j�1;j

� �

j

H

0;j

by reverse indu
tion on j = k � 1; : : : ; 2. We use

Lemma 5 to get �

k�1

= 3=(k + 1) as the bases of our indu
tion. We use Lemma 6 for the indu
tive

step to get �

j�1

= (2 + �

j

)=(j + �

j

). Noti
e that the (j � 3)�

j

� 2 
ondition is satis�ed at j = k � 1

be
ause of the k � 14 assumption and this 
ondition is preserved by Lemma 6. Rewriting the re
ursion to

1��

j�1

= (j� 2)=((j+1)� (1��

j

)) and writing 1��

k�1

= (k� 2)=(k+1) we get the following 
ontinued

fra
tion expansion for �

2

:

1� �

2

=

1

4�

2

5�

3

6�:::

k�

k�2

k+1

:

We further have

2H

1;1

�H

0;1

� H

2;1

= H

1;2

� �

2

H

0;2

� �

2

(H

0;1

�H

1;1

);

by Lemma 4(e), Lemma 4(a), the statement above, and Lemma 4(f), respe
tively. By rearrangement, and

using H

0;1

= 1 (Lemma 4(
)) we get the bound H

1;1

� (1 + �

2

)=(2 + �

2

). By Lemma 4(d) we get

logn= log jSj �

1

1�H

1;1

� 2 + �

2

= 3�

1

4�

2

5�

3

6�:::

k�

k�2

k+1

:

Lemma 7 provides a 
losed form for the 
ontinued fra
tion of the above statement and thus proves the

theorem.

In order to use Lemma 6 re
ursively as in the proof of Theorem 8 we need a base 
ase. Lemma 5 
annot

be used for this if k > 14 as the inequality required for Lemma 6 to apply ((j � 3)� � 2) does not hold for

j = k � 1 and � = 3=(k + 1). The next lemma provides the base j = k � 2 
ase for large k.

5



Lemma 9. If k � 14 we have H

k�3;k�2

�

2k+3

k

2

�k+4

H

0;k�2

.

Proof: We 
ombine six inequalities to get the desired bound. We use

H

k�2;k�1

�

3

k + 1

H

0;k�1

and

H

k�2;k�1

�

3

k

H

1;k�1

:

The former inequality is provided by Lemma 5, while the latter inequality 
an be proven the same way. We

also use

H

0;k�1

+H

1;k�2

� H

0;k�2

and

H

1;k�1

+H

2;k�2

� H

1;k�2

provided by Lemma 4(f). Finally we also use

H

k�3;k�2

�H

k�2;k�1

2

�

H

1;k�2

�H

k�3;k�2

k � 4

and

H

k�3;k�2

�H

k�2;k�1

2

�

H

2;k�2

�H

k�3;k�2

k � 5

;

both 
oming from symmetry (Lemma 4(a)) and the 
onvexity of 
olumn k � 2 (Lemma 4(e)). We sum the

above six inequalities with 
oeÆ
ients (k + 1)(2k + 3), k(k � 14), 3(2k + 3), 3(k � 14), 3(k � 4)(k + 17),

and 3(k � 5)(k � 14), in this order, and rearrange to obtain the bound of the Lemma. Note, that all these


oeÆ
ients are non-negative if k � 14.

Theorem 10. Let k � 14, n � 1, and let A be an n by (2k � 1) real matrix with no two distin
t rows

sharing more than a single entry. Then we have

jS(A)j � n

1=


k

;

with 


k

=

P

k

i=0

1

i!

+

k

3

�7k

2

+20k�40

(k

4

�8k

3

+26k

2

�46k+40)k!

.

Proof: We 
opy the proof Theorem 8. We prove a bound H

j�1;j

� �

j

H

0;j

by reverse indu
tion on

j = k � 2; : : : ; 2. We use Lemma 9 for the base 
ase j = k � 2 and �

k�2

= (2k + 3)=(k

2

� k + 4). Lemma 6

gives �

j�1

= (2+�

j

)=(j+�

j

)) sin
e (j�3)�

j

� 2 for j = k�2 and so it is true for all values of j 
onsidered.

As in the proof of Theorem 8 we get a 
ontinued fra
tion expansion of �

2

, in this 
ase it is:

1� �

2

=

1

4�

2

5�

3

6�:::

k�2�

k�4

k�1�

k

2

�3k+1

k

2

�k+4

:

Just as in the proof of Theorem 8 we get

logn= log jSj � 2 + �

2

:

Thus we have

logn= log jSj � 3�

1

4�

2

5�

3

6�:::

k�2�

k�4

k�1�

k

2

�3k+1

k

2

�k+4

:

Lemma 7 provides a 
losed form for the 
ontinued fra
tion of the above statement and thus proves the

Theorem.

4. Distin
t distan
es in the plane

As mentioned in the introdu
tion, the problem 
onsidered in this paper is a byprodu
t of the paper [10℄

by J. Solymosi and Cs. T�oth. One of their lemmas 
an be stated in our notation as follows.

6



Lemma 11. [10, Lemma 5℄ Let A = (a

ij

) be an n by 3 real matrix with all its entries pairwise distin
t.

Assume that a

i1

< a

i2

< a

i3

for i = 1; : : : ; n, and assume also that a

i3

< a

i+1;1

for all but at most t � 1

indi
es i = 1; : : : ; n� 1. Then

jS(A)j = 
(N=t

2=3

):

We generalize this lemma as follows. We in
lude the simple proof along the same lines.

Lemma 12. Let s, and t � n be positive integers and let A = (a

ij

) be an n by s real matrix with all the ns

entries pairwise distin
t. Assume that max

j

a

ij

< min

j

a

i+1;j

holds for all but at most t � 1 of the indi
es

i = 1; : : : ; n� 1. Then

jS(A)j �

j

n

2t

k

� f

s

(t):

Proof: We �nd b

n

2t


 pairwise disjoint real intervals, ea
h 
ontaining all entries of t rows of A. This 
an

be done from left to right on the real line using a greedy strategy. Let A

I

be the submatrix of A 
onsisting

of the t rows fully 
ontained in the interval I . Clearly jS(A

I

)j � f

s

(t) and S(A

I

) � S(A). Furthermore

S(A

I

) and S(A

I

0

) are disjoint if I and I

0

are disjoint, yielding the lemma.

With the help of this lemma we get:

Theorem 13. Let us be given n points in the plane su
h that from any one of the points there are at most

t distin
t distan
es to the other points. Then

t

5

f

s

(t)

� 
n

4

;

where 
 = 
(s) is a positive 
onstant depending on s.

Proof sket
h: Solymosi and T�oth in [10℄ prove that n points in the plane determine 
(n

6=7

) distin
t

distan
es. Their proof 
an be 
onsidered the s = 3 spe
ial 
ase of our proof. The beautiful proof is based

on the method of L. Sz�ekely, uses the 
rossing number theorem of M. Ajtai, V. Chv�atal, M. Newborn, and

E. Szemer�edi [1℄ and F. T. Leighton [5℄, and the point-line in
iden
e theorem of E. Szemer�edi and W. T.

Trotter [13℄. As most of the proof goes through without a 
hange we only sket
h the di�eren
es and refer

the reader to the original proof for details.

We 
onsider the same in
iden
es between points and 
ir
les as in [10℄. We partition the points in
ident

to a 
ir
le into s-tuples (rather than triplets as in [10℄). We 
onstru
t a topologi
al graph by 
onne
ting at

most a single pair of points along the 
ir
le from every s-tuple, a pair with a bise
tor not ri
h, i.e., not going

through more than �n

2

=t

2

points. If no su
h pair exists we 
all the s-tuple bad. We dedu
e (as in [10℄) from

the 
rossing number theorem that most of the s-tuples are bad. Now we 
ontrast the upper bound of the

Szemer�edi-Trotter theorem on in
iden
es between points and ri
h lines, to the lower bound obtained from

Lemma 12 (in pla
e of Lemma 11 in [10℄). All 
al
ulations of the paper go through with this modi�
ation

and they yield Theorem 13.

The next 
orollary is straightforward 
onsequen
e of Theorem 13, while Corollary 15 below is a 
onse-

quen
e of Corollaries 2 and 14.

Corollary 14. If for some positive integer s and positive real � we have f

s

(n) = 
(n

�

) then the following

holds. Any set P of n points in the plane has an element from whi
h the number of distin
t distan
es to the

other points of P is


(n

4

5��

):

Corollary 15. For any � > 0 we have that any set P of n points in the plane has an element from whi
h

the number of distin
t distan
es to the other points of P is


(n

4e

5e�1

��

):

Subsequent to the paper [10℄, it turned out that the same proof te
hnique 
an be used to prove gener-

alizations of the result in [10℄. The bound on the number of appearan
es of the k most frequent distan
es

among n points in the plane in [11℄ and the bound on the number of equilateral triangles n points in the
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plane determine in [8℄ both imply Corollary 15, and both heavily rely on Corollary 2, the main result of this

paper.

5. An elementary proof

In this se
tion we 
onsider f

s

for small values of s. Trivially f

1

(n) = 0, f

2

(n) = 1.

We 
laim that f

3

(n) � (6n)

1=3

, more pre
isely,

f

3

(n) = min

�

m

�

�

�

�

m

3

�

� n

�

:

Indeed, ea
h row of an n by 3 matrix A of all distin
t entries determines three distin
t sums in S(A) and

these three sums in turn determine the entries and thus the row. Thus

�

f

3

(n)

3

�

� n must hold. To see the


laimed equality we 
onstru
t for an arbitrary integer m � 3 a matrix A

S

of n =

�

m

3

�

rows and three 
olumns

from a rationally independent set S of m reals. Ea
h row of A

S

is of the form

(

x+ y � z

2

;

x� y + z

2

;

�x+ y + z

2

);

where fx; y; zg is a di�erent three element subset of S for ea
h row. Noti
e that all entries of A

S

are di�erent

and S(A

S

) = S.

It is easy to see, that f

3

(n) � f

4

(n) � 2f

3

(n), thus f

4

has the same order of magnitude as f

3

(namely

n

1=3

). Indeed add an extra 
olumn to the matrix A

S


onstru
ted above making ea
h row add up to zero.

Noti
e that the modi�ed matrix A

0

S

has still all di�erent entries and furthermore S(A

0

S

) = S [ (�S). More

pre
isely, we 
laim that

min

�

m

�

�

�

�

m

3

�

� 4n

�

� f

4

(n) � 2min

�

m

�

�

�

2

�

m

3

�

� n

�

:

Indeed, ea
h three element subset of a row of an n by 4 matrix A of all di�erent entries determine three

di�erent sums in S(A) and a moment noti
e veri�es that all 4n triplets obtained this way are distin
t proving

the lower bound on f

4

(n). For the upper bound 
onsider an m element rationally independent set S and

the

�

m

3

�

by 4 matrix A

0

S


onstru
ted above. Noti
e that by using all rows of A

0

S

and �A

0

S

we get a 2

�

m

3

�

by

4 matrix A

00

(S) of all di�erent entries with S(A

00

S

) = S(A

0

S

) = S [ (�S). Noti
e that the lower and upper

bounds di�er by at most 3 (and this 
an be further redu
ed by simple observations).

The observations above on f

3

appeared already in the paper of Solymosi and T�oth [10℄ and were used to

prove a lower bound on the number of distin
t distan
es n points determine in the plane. It was 
lear from

their proof, that an improved lower bound for f

s

even if for a higher 
onstant value of s would improve their

bound on the number of distan
es. It was independently found by Gyula K�arolyi and Tibor Szab�o that f

4

has the same order of magnitude as f

3

and thus it 
annot be used in this manner.

Next we 
onsider f

5

(n) for whi
h the a
tual order of magnitude is not known, but Theorem 1 gives

f

5

(n) � n

4=11

. Here we give an elementary proof of this result (with a 
onstant multipli
ative fa
tor in the

bound). This proof 
an serve as a motivation for the general result, the te
hniques of the proof of Theorem

1 were introdu
ed to generalize this elementary proof below. Note also that the lower bound for f

s

(n) in

Theorem 1 is very 
lose to the lower bound presented here: for arbitrary s � 7 the improvement in the

exponent of n is only in the third digit after the de
imal point.

Theorem 16. f

5

(n) = 
(n

4=11

).

Proof: Let A be an n by 5 real matrix of all distin
t entries with S = S(A) having minimal size

jSj = m = f

5

(n). We 
all a real value x heavy if it 
an be expressed as x = u � v with u; v 2 S in at least

m

1=4

di�erent ways and x is light otherwise. We 
all a row of A heavy it has two distin
t entries b and 


with b� 
 being heavy, otherwise the row is 
alled light.

Our goal is to bound the number n of rows of A in terms of m and we do this separately for heavy and

light rows.
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Clearly there are only m

2

ways to form a di�eren
e x = u � v from values u; v 2 S, so there are at

most m

2

=m

1=4

= m

7=4

heavy numbers. Given any value x it 
an be expressed as the di�eren
e between two

distin
t entries of the same row of A in only m di�erent ways, as the sum of these two entries is a value

in S and the sum and the di�eren
e together determines the entries (we use here that all entries of A are

distin
t). The last two statements together bound the number of heavy rows in A by m

7=4

�m = m

11=4

.

Now 
onsider a light row (a

1

; a

2

; a

3

; a

4

; a

5

) of A. We identify this row with revealing limited information,

and use this to bound the number of light rows. We �rst reveal u = a

1

+a

2

and u

0

= a

1

+a

3

. Both numbers are

from the m-element set S so we havem

2


hoi
es for these values. With this we also identi�ed u�u

0

= a

2

�a

3

whi
h must be a light number. Thus writing u� u

0

= (a

2

+ a

4

)� (a

3

+ a

4

) = (a

2

+ a

5

)� (a

3

+ a

5

) are two

of the less than m

1=4

ways u � u

0


an be expressed as the di�eren
e of two values in S. So we have less

than (m

1=4

)

2

= m

1=2


hoi
es when revealing the values v = a

2

+ a

4

, v

0

= a

2

+ a

5

. Just as above, the value

v�v

0

= a

4

�a

5

is now revealed, and it must be light number, thus v�v

0

= (a

1

+a

4

)� (a

1

+a

5

) is one of the

less than m

1=4

ways v � v

0


an be expressed as a di�eren
e of values in S. So for revealing w = a

1

+ a

4

we

have less than m

1=4


hoi
es. At this point a

1

= (u+ w � v)=2 is also revealed, so the row itself is identi�ed

(as all entries of A are distin
t). This limits the number of light rows by m

2

�m

1=2

�m

1=4

= m

11=4

.

Thus n < 2m

11=4

and so f

5

(n) = m > (n=2)

4=11

.

6. Con
luding remarks and open problems

As we have already mentioned the orders of magnitude of the fun
tions f

s

(n) are unknown for s � 5.

Improving either the lower or the upper bounds is a 
hallenge.

One 
ould hope to improve the lower bounds by the methods of this paper, i.e., 
onsidering a uniformly

distributed random row of a matrix with all distin
t entries, several linear fun
tions on this row, and using

inequalities on the (joint) entropies of these fun
tions. There is room for improvement. In this paper we

restri
ted our attention to spe
i�
 
olle
tions of pairwise sums and di�eren
es only. One 
an try use di�erent


olle
tions, like H(a+ b; 
+ d) or even linear 
ombinations of a di�erent type, like H(a+ b+ 
+ d). Here a,

b, 
, and d represent distin
t entries of the random row. Submodularity gives a lot of inequalities, like

H(a+ b; b+ 
; 
+ d) +H(a+ b+ 
+ d) � H(a+ b; 
+ d) +H(b+ 
; d+ a);

but the author was unable to use these additional inequalities to obtain better bounds on f

s

. One 
ould

also try to use information inequalities that are not 
onsequen
es of the basi
 inequalities of Shannon type

(monotoni
ity and submodularity). Su
h inequalities were published by Zhen Zhang and RaymondW. Yeung

[14℄ but they seem to be too 
ompli
ated to easily lend themselves to appli
ations.

The original motivation for the problem 
onsidered in this paper is its appli
ability to the Erd}os problem

of �nding the minimum number of distin
t distan
es n points determine in the plane as formulated in

Corollary 15. The Ruzsa 
onstru
tion shows that one 
annot use this theorem dire
tly to prove an 
(n

8=9

)

bound on the number of distin
t distan
es. One may try to modify the lower bound proof on the number of

distin
t distan
es by letting the parameter s grow with n. Unfortunately a simple modi�
ation of the Ruzsa


onstru
tion is still in the way of proving 
(n

8=9+�

) in this way. Indeed, one 
an show that for every � > 0

there exists Æ > 0 with

f

n

Æ
(n) = O(n

1=2+�

):
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