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Abstra
t

The Hanna Neumann 
onje
ture states that the interse
tion of two nontrivial sub-

groups of rank k+1 and l+1 of a free group has rank at most kl+1. In a re
ent paper [3℄

W. Di
ks proved that a strengthened form of this 
onje
ture is equivalent to his amalga-

mated graph 
onje
ture. He used this equivalen
e to reprove all known upper bounds on

the rank of the interse
tion. We use his method to improve these bounds. In parti
ular

we prove an upper bound of 2kl� k� l+1 for the rank of the interse
tion above (k; l � 2)

improving the earlier 2kl �min(k; l) bound of [1℄.

We prove a spe
ial 
ase of the amalgamated graph 
onje
ture in the hope that it

may lead to a proof of the general 
ase and thus of the strengthened Hanna Neumann


onje
ture.

1 Introdu
tion

For a longer introdu
tion to the history of the problem see [3℄. Here we borrow the

terminology from there to present a shorter version.

By the Nielsen-S
hreier theorem [9,11℄ any subgroup of a free group is free, thus it

is 
hara
terized up to isomorphism by its rank, the size of a free generating set. It is a

natural question and goes ba
k more than 40 years how the rank of the interse
tion relates

to the rank of two subgroups of a free group. It is 
onvenient to introdu
e the redu
ed rank

�r(H) = max(rank(H)� 1; 0). First Howson [5℄ proved that H \K is �nitely generated if

H and K are, and gave the �r(H\K) � 2�r(H)�r(K)+�r(H)+�r(K)+1 bound. Then Hanna

Neumann (with the help of R. Baer [7℄) improved the bound to �r(H\K) � 2�r(H)�r(K) and


onje
tured the the stronger �r(H \K) � �r(H)�r(K) bound, later to be 
alled the Hanna

Neumann 
onje
ture. This 
onje
tured bound is tight if true as it is easy to 
onstru
t

subgroups H and K for any given ranks satisfying �r(H \K) = �r(H)�r(K).

Despite the 
ontinues interest in the 
onje
ture sin
e Hanna Neumann's paper (see e.

g. [2,3,4,6,8,10,12℄) there are only two papers improving the upper bound on the fun
tion

f(h; k) = maxf�r(H \ K)j�r(H) = h; �r(K) = kg. First Burns [1℄ proved �r(H \ K) �

2�r(H)�r(K) � min(�r(H); �r(K)) then we [13℄ proved the spe
ial 
ase of Hanna Neumann


onje
ture when one of the subgroups H, K is of rank 2.

For subgroups H and K of a free group we de�ne �r(H;K) =

P

�r(g

�1

Hg \K) where

the summation extends over the representatives g of the double 
osets HgK. As this sum
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in
ludes �r(H \ K) we have �r(H;K) � �r(H \ K). In [8℄ Walter Neumann proposed the

following strengthened form of the Hanna Neumann 
onje
ture: �r(H;K) � �r(H)�r(K). He

also extended Burns' bound to �r(H;K) � 2�r(H)�r(K)�min(�r(H); �r(K)). Our paper [13℄

proves the spe
ial 
ase (when one of the ranks is two) of the strengthened 
onje
ture, so

all known upper bounds on �r(H \K) bounds �r(H;K) too.

Re
ently Di
ks [3℄ proved the equivalen
e of the strengthened Hanna Neumann 
on-

je
ture with a 
onje
ture on bipartite graphs that he 
alled the amalgamated graph 
on-

je
ture (see below). Although equivalen
e with 
ertain graph 
onje
tures is nothing new

(see e.g [10,13℄) the amalgamated graph 
onje
ture represents a strikingly new approa
h

to the problem. Using that any bound on �r(H;K) is equivalent with limiting the num-

ber of edges of a bipartite graph with a 
ertain symmetry 
ondition Di
ks dedu
ed both

previously known bounds.

In this paper we apply Di
k's method to improve upon the known bounds. With

hardly any modi�
ation of Di
k's proof of the strengthened Hanna Neumann 
onje
ture

for the 
ase when H or K has rank two we dedu
e �r(H;K) � 2�r(H)�r(K)��r(H)��r(K)+1

if �r(H); �r(K) � 1 (Corollary 6). This improves the strengthened Burns bound for all pairs

of ranks.

We 
an also prove a spe
ial 
ase of the amalgamated graph 
onje
ture and hope that

it 
an serve as an intuition for a future proof of the general 
ase. Right now we 
an use

the method of this proof to improve the bound of Corollary 6 by one for subgroups of rank

at least three (Corollary 11). This proves the Hanna Neumann 
onje
ture in the 
ase both

subgroups have rank three.

2. Di
ks' method

De�nition. Following the terminology of [3℄ all graphs in this paper are simple

bipartite graphs together with a 2-
oloring of the verti
es to initial and terminal verti
es.

A subgraph of a graph � is a graph 
onsisting of a subset of the verti
es of � together

with some edges of � 
onne
ting su
h verti
es. Subgraphs naturally inherit the 2-
oloring.

We 
all a subgraph indu
ed (or full) if it 
onsists of a subset of the verti
es of � together

with all the edges of � 
onne
ting su
h verti
es. We say that two graphs are isomorphi
 if

there is a graph-isomorphism between them preserving the 2-
oloring, i. e. mapping initial

verti
es to initial verti
es, terminal verti
es to terminal verti
es. By the size of a graph we

mean the triple (n;m; e) of the number of initial, terminal verti
es and edges.

We say that the graphs G

1

, G

2

and G

3

amend the graph G if G

1

[G

2

[G

3

is a simple

graph and G

1

\ G

2

= G

2

\ G

3

= G

3

\ G

1

= G. We 
all the disjoint union of isomorphi



opies of the graphs G

1

[ G

2

, G

2

[ G

3

and G

3

[ G

1

the amended graph A(G

1

; G

2

; G

3

)

(the amended graph is therefore de�ned only up to isomorphism). We 
all the graph G

evenly amendable if there exist graphs G

1

, G

2

and G

3

amending it su
h that the 
onne
ted


omponents of A(G

1

; G

2

; G

3

) are isomorphi
 in pairs.

Let us re
all the following de�nitions from the Introdu
tion: �r(H) = max(rank(H)�

1; 0) for a free group H and �r(H;K) =

P

�r(g

�1

Hg \K) for subgroups H and K of a free

group where the summation extends over the representatives g of the double 
osets HgK.

The main result in Di
ks' paper [3℄ is the following:
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Theorem 1. Let H and K be subgroups of a free group. Then there exists an evenly

amendable graph of size (2�r(H); 2�r(K); 2�r(H;K)).

This result shows that the strengthened Hanna Neumann 
onje
ture is implied by the

following amalgamated graph 
onje
ture: The size (n;m; e) of an evenly amendable graph

satis�es 2e � nm. We mention that [3℄ (as it 
laims in its title) proves the equivalen
e of

the two 
onje
tures.

3. Indu
ed subgraphs

In this se
tion we prove the spe
ial 
ase of the amalgamated graph 
onje
ture when

the original graph has to be an indu
ed subgraph of the graphs amending it (Corollary 5).

De�nition. Let i and j be non-negative integers. A graph G is 
alled (i; j)-trivial

if it size is (n;m; e) with n � i and m � j, otherwise G is (i; j)-nontrivial. The indu
ed

subgraphs G

1

and G

2

of G form an (i; j)-de
omposition of G if G

1

[G

2

= G and G

1

\G

2

is

(i; j)-trivial. The graph G is 
alled (i; j)-de
omposable if it has proper subgraphs forming

an (i; j)-de
omposition, otherwise it is (i; j)-
onne
ted. Maximal (i; j)-nontrivial, (i; j)-


onne
ted indu
ed subgraphs of a graph G are 
alled the (i; j)-fa
tors of G. The graphs

G

1

, G

2

and G

3

are said to (i; j)-evenly amend the graph G if they amend G and the

(i; j)-fa
tors of A(G

1

; G

2

; G

3

) are isomorphi
 in pairs. If there exist su
h graphs G

1

, G

2

and G

3

then G is 
alled (i; j)-evenly amendable.

We start with simple observations.

Lemma 2. Let i and j be non-negative integers.

a. The (0; 0)-fa
tors are the 
onne
ted 
omponents, thus (0; 0)-evenly amendable is

evenly amendable.

b. If G

1

and G

2

form an (i; j)-de
omposition of a graph G and H � G then H \G

1

and

H \G

2

form an (i; j)-de
omposition of H.


. If G

1

and G

2

form an (i; j)-de
omposition of a graph G then the (i; j)-fa
tors of G

are the disjoint union of the (i; j)-fa
tors of G

1

and the (i; j) fa
tors of G

2

.

d. If i

0

� i, j

0

� j then the (i

0

; j

0

)-fa
tors of G are the disjoint union of the (i

0

; j

0

)-fa
tors

of the (i; j)-fa
tors of G.

e. If i

0

� i, j

0

� j then graphs (i; j)-evenly amending a graph also (i

0

; j

0

)-evenly amend

it.

PROOF: Points a and b are trivial.

For 
 let H � G be (i; j)-
onne
ted. By b it has to be 
ontained in either of G

1

or

G

2

. By the de�nition if 
ontained in both then H is (i; j)-trivial.

As (i; j)-fa
tors 
an be obtained by repeated (i; j)-de
ompositions (whi
h are also

(i

0

; j

0

)-de
ompositions) d follows from 
.

Point e trivially follows from d.

The following lemma is 
entral in the proof our main results.

Lemma 3. Let i and j be non-negative integers. Suppose G

1

, G

2

and G

3

(i; j)-evenly

amend the graph G, G

0

and G

00

form an (i; j)-de
omposition of G

1

[G

2

and G has i

0

initial

3



and j

0

terminal verti
es outside G

0

. If G\G

00

is an indu
ed subgraph of G

1

[G

2

[G

3

then

G

0

\G

1

, G

0

\G

2

and G

3

(i+ i

0

; j + j

0

)-evenly amend G

0

\G.

PROOF: Let G

0

i

= G

0

\ G

i

and G

00

i

= G

00

\ G

i

for i = 1; 2. It is easy to see that our

assumption that G \G

00

is an indu
ed subgraph of G

1

[G

2

[G

3

implies that for i = 1; 2

G

00

i

is an indu
ed subgraph of G

00

and both G

00

i

and G

0

i

[ G

3

are indu
ed subgraphs of

G

i

[G

3

. Our goal is to show that these graphs form (i+ i

0

; j + j

0

)-de
ompositions of the


orresponding larger graphs.

The graph G

00

1

\G

00

2

has at most i initial and j terminal verti
es in G

0

and i

0

initial and

j

0

terminal verti
es outside G

0

, thus it is (i+i

0

; j+j

0

)-trivial. Sin
e G

00

1

[G

00

2

= G

00

the graphs

G

00

1

and G

00

2

form an (i + i

0

; j + j

0

)-de
omposition of G

00

. Similarly for i = 1; 2 the graph

G

00

i

\(G

0

i

[G

3

) has at most i initial and j terminal verti
es in G

0

and at most i

0

initial and j

0

terminal verti
es outside G

0

thus it is (i+ i

0

; j+ j

0

)-trivial. Sin
e G

00

i

[ (G

0

i

[G

3

) = G

i

[G

3

the graphs G

00

i

and G

0

i

[G

3

form an (i+ i

0

; j + j

0

)-de
omposition of G

i

[G

3

.

Clearly G

0

1

, G

0

2

and G

3

amend G \ G

0

. By Lemma 2.e the (i + i

0

; j + j

0

)-fa
tors

of A(G

1

; G

2

; G

3

) are isomorphi
 in pairs. By the above observations and Lemma 2.


these fa
tors are isomorphi
 to the (i + i

0

; j + j

0

)-fa
tors of A(G

0

1

; G

0

2

; G

3

) plus twi
e the

(i+ i

0

; j + j

0

)-fa
tors of G

00

1

and G

00

2

. Therefore the (i+ i

0

; j + j

0

)-fa
tors of A(G

0

1

; G

0

2

; G

3

)

have to be also isomorphi
 in pairs.

Noti
e the unfortunate 
ondition in Lemma 3 requiring that G\G

00

is an indu
ed sub-

graph. We need this be
ause in our de�nition of (i; j)-de
omposition both 
omponents have

to be indu
ed subgraphs. We require that in turn be
ause otherwise all (1; 1)-
onne
ted

graphs would be (1; 1)-trivial.

In 
ase G is an indu
ed subgraph then this 
ondition is automati
ally satis�ed. Corol-

lary 5 proves the amalgamated graph 
onje
ture in this 
ase. In the general 
ase however

we 
an only prove mu
h weaker results.

Theorem 4. Let i and j be non-negative integers. Suppose G

1

, G

2

and G

3

(i; j)-evenly

amend the (i; j)-nontrivial graph G and G is an indu
ed subgraph of G

1

[G

2

[G

3

. Then

the size (n;m; e) of G satis�es e � nm� (n� i)(m� j)=2.

PROOF: The proof is by indu
tion on the number of verti
es of A(G

1

; G

2

; G

3

). All the

graphs G

1

[G

2

, G

2

[G

3

and G

3

[G

1

are (i; j)-nontrivial, thus if all are (i; j)-
onne
ted,

then A(G

1

; G

2

; G

3

) has three (i; j)-fa
tors, a 
ontradi
tion. Therefore by symmetry we

may assume that G

1

[ G

2

has an (i; j)-de
omposition to proper subgraphs G

0

and G

00

.

Let i

0

and j

0

be the number of initial and terminal verti
es of G outside G

0

, let i

00

and

j

00

be the number of initial and terminal verti
es of G are outside G

00

, �nally let i

0

and

j

0

the number of initial and terminal verti
es of G \ G

0

\ G

00

. We have i

0

� i, j

0

� j,

i

0

+ i

0

+ i

00

= n and j

0

+ j

0

+ j

00

= m. By symmetry we may assume j

0

� j

00

.

The graphs G

0

\G

1

, G

0

\G

2

and G

3

(i+ i

0

; j + j

0

)-evenly amend G \G

0

by Lemma

3. Here G\G

0

is an indu
ed subgraph of G

0

[G

3

and A(G

0

\G

1

; G

0

\G

2

; G

3

) is a proper

subgraph of A(G

1

; G

2

; G

3

) sin
e G

0

is a proper subgraph of G

1

[ G

2

. Thus we may use

the indu
tive hypothesis for G \G

0

unless it is (i+ i

0

; j + j

0

)-trivial.

Suppose �rst that G \ G

0

is (i + i

0

; j + j

0

)-nontrivial. By the indu
tive hypothesis

G \ G

0

has at most (i

0

+ i

00

)(j

0

+ j

00

) � (i

0

+ i

00

� i � i

0

)(j

0

+ j

00

� j � j

0

)=2 edges. G


learly has at most i

0

j

0

+ i

0

j

0

+ i

0

j

0

edges outside G

0

. Thus the total number of edges of

4



G is e � i

0

j

0

+ i

0

j

0

+ i

0

j

0

+ (i

0

+ i

00

)(j

0

+ j

00

) � (i

0

+ i

00

� i � i

0

)(j

0

+ j

00

� j � j

0

)=2 =

nm� (n� i)(m� j)=2� i

0

(j � j

0

)� j

0

(i� i

0

) � nm� (n� i)(m� j) as 
laimed.

If n � i thenm > j sin
e G is not (i; j)-trivial and thus e � nm � nm�(n�i)(m�j)=2

trivially holds.

It remained to show the inequality in the theorem when n > i and G\G

0

is (i+i

0

; j+j

0

)-

trivial and thus i

00

+ i

0

� i + i

0

. No edge of G 
onne
ts a vertex outside G

0

to a vertex

outside G

00

. Thus in this 
ase we have e � nm � i

0

j

00

� i

00

j

0

= nm� (n� i)(m � j

0

)=2�

(i+ i

0

� i

0

� i

00

)(j

00

� j

0

)=2� (i� i

0

)j

0

� nm� (n� i)(m� j)=2 as 
laimed.

Corollary 5. Suppose that the graph G of size (n;m; e) is an indu
ed subgraph of three

graphs evenly amending it. Then 2e � nm.

PROOF: Case i = j = 0 of Theorem 4.

4. The general 
ase

In this se
tion we prove upper bounds on the number of edges of an evenly amendable

graph without the indu
ed subgraph 
ondition of Corollary 5. Our main tool is still Lemma

3 so we need to make sure its indu
ed subgraph 
ondition is still satis�ed. In 
ase a graph

has no initial verti
es it is an indu
ed subgraph of all graphs 
ontaining it. This gives us

Theorem 7 and Corollary 8.

We mention here that this argument uses (i; j)-de
ompositions, (i; j)-fa
tors et
. only

in the spe
ial 
ase i = 0. These 
on
epts were already de�ned in [3℄ (under the names

j-de
omposition, j-atomi
 fa
tor). Our proof is also essentially identi
al to the proof there.

It is surprising that we are able to prove mu
h better bounds.

Corollary 8 improves the best previously known bound and is almost the best bound

we 
an prove. Corollary 11 of the next se
tion improves the bound of Corollary 8 by just

one.

De�nition. Let j be a non-negative integer. For simpli
ity we use j-de
omposition,

j-de
omposable, j-
onne
ted and j-fa
tor for (0; j)-de
omposition, (0; j)-de
omposable,

(0; j)-
onne
ted and (0; j)-fa
tor. We 
all a graph trivial if it 
ontains no initial verti
es

otherwise it is nontrivial. Clearly all (0; j)-trivial graphs are trivial and all j-fa
tors (j � 1)

are nontrivial.

Lemma 6. Let j and k be non-negative integers. If the nontrivial j-evenly amendable

graph G 
onsists of a subgraph G

0

plus k isolated terminal verti
es then G

0

is (j + k)-

de
omposable.

PROOF: Let G

1

, G

2

and G

3

be graphs j-evenly amending G. We prove the lemma by

indu
tion on the number of verti
es of A(G

1

; G

2

; G

3

).

Consider the graphs G

1

[ G

2

, G

2

[ G

3

and G

3

[ G

1

. All are nontrivial, therefore in


ase all are j-inde
omposable A(G

1

; G

2

; G

3

) has three j-fa
tors, a 
ontradi
tion. We may

assume therefore by symmetry that G

1

[ G

2

has a j-de
omposition to proper subgraphs

G

0

and G

00

. Now G

0

\ G

0

and G

00

\G

0

form an j-de
omposition of G

0

proving the 
laim

unless one of these graphs 
oin
ides with G

0

. We may therefore suppose by symmetry that

G

0

� G

0

.

5



Here G\G

00

is trivial as it 
onsists of some of the terminal verti
es from G

0

\G

00

and

all j

0

� k terminal verti
es of G outside G

0

. Thus every graph 
ontaining G\G

00


ontains

it as an indu
ed subgraph, so Lemma 3 is appli
able and we have that G

1

\ G

0

, G

2

\ G

0

and G

3

(j + j

0

)-evenly amend G \G

0

.

The graph G \ G

0

is nontrivial and it 
onsists of G

0

and k � j

0

isolated verti
es. As

G

0

is a proper subgraph of G

1

[G

2

the amended graph A(G

1

\G

0

; G

2

\G

0

; G

3

) is a proper

subgraph of A(G

1

; G

2

; G

3

). Therefore we 
an apply the indu
tive hypothesis for G \ G

0

and we get that G

0

is (j + j

0

) + (k � j

0

) = (j + k)-de
omposable as 
laimed.

We have proved this lemma to limit the number of the edges in an evenly amendable

graph.

Theorem 7. If the graph G of size (n;m; e) is evenly amendable and n;m � 2 then

e � mn�m� n+ 2.

PROOF: If G is the disjoint union of two graphs, ea
h 
ontaining both initial and terminal

verti
es then the bound follows.

Otherwise G must 
onsist of a 
onne
ted subgraph G

0

and some number k � 0 of

isolated verti
es of the same 
olor. By symmetry we may suppose they are terminal

verti
es. Lemma 6 tells us that G

0

is k-de
omposable. Thus we have k 6= 0 and the

number of terminal verti
es 
onne
ted to all initial verti
es is at most k. The rest of the

terminal verti
es have degree at most n � 1 while k of them are isolated. Thus we have

e � kn+ (m� 2k)(n� 1) = mn�m� k(n� 2) � mn�m� n+ 2.

Using Theorem 1 and 7 we 
an immediately dedu
e a new bound on the rank of the

interse
tion of subgroups of a free group.

Corollary 8. For subgroups H and K of a free group with �r(H) � 1 and �r(K) � 1 we

have �r(H;K) � 2�r(H)�r(K)� �r(H)� �r(K) + 1.

3. One step further

The bound in Corollary 8 is tight if one of the ranks is two. The plus one term from

the bound 
an be removed otherwise. We present this rather small improvement to show

the limits of this proof te
hnique. After the improved bound (Corollary 11) we indi
ate

why it is hard to go beyond that with this method (Lemma 12).

Lemma 9. Let i and j be non-negative integers. The 
omplete bipartite graph of size

(n;m; nm) with n > i and m > j is not (i; j)-evenly amendable.

PROOF: Any (bipartite) graph 
ontaining a 
omplete bipartite graph as a subgraph 
on-

tains it as indu
ed subgraph. Thus we 
an apply Theorem 4 and sin
e nm > nm � (n �

i)(m� j)=2 we get that the 
omplete graph is not (i; j)-evenly amendable.

We remark here that a single appli
ation of Lemma 3 is also suÆ
ient to prove Lemma

9. For the 
onverse see Theorem 13.

Theorem 10. If the graph G of size (n;m; e) is evenly amendable and n;m > 2 then

e � 2nm� n�m.

PROOF: As the number of edges of an evenly amendable graph is trivially even we only

have to rule out equality in Theorem 7.
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If G is the disjoint union of two graphs ea
h 
ontaining both initial and terminal

verti
es then equality in Theorem 7 holds only if G is the disjoint union of a 
omplete

bipartite graph on n� 1 initial and m� 1 terminal verti
es and an edge.

Otherwise by the proof of Theorem 7 we may suppose that G 
onsists of a 
on-

ne
ted 
omponent G

0

and some number j � 1 of isolated terminal verti
es. Here G

0

is

j-de
omposable and equality in Theorem 7 implies j = 1 and that G

0

has one terminal

vertex of degree n and m � 2 terminal verti
es of degree n � 1. The initial vertex not


onne
ted to these m � 2 terminal verti
es must 
oin
ide otherwise G

0

would not be 1-

de
omposable. Thus in this 
ase G 
onsists of a 
omplete bipartite graph on n� 1 initial

and m � 1 terminal verti
es, plus an initial vertex of degree one 
onne
ted to one of the

m� 1 terminal verti
es of the 
omplete graph plus an isolated terminal vertex.

In both extremal 
ases G 
ontains a 
omplete subgraph K on n� 1 initial and m� 1

terminal verti
es. We need to show that neither extremal graph is evenly amendable.

Let therefore G be one of the two extremal graphs and we dedu
e 
ontradi
tion from

the assumption that the graphs G

1

, G

2

and G

3

evenly amend it. Without loss of gen-

erality we may suppose that all 
omponents of the graphs G

i

(i = 1; 2; 3) interse
t G as


omponents disjoint from G 
an be removed. One of G

1

[ G

2

, G

2

[ G

3

and G

3

[ G

1

has to be dis
onne
ted as otherwise A(G

1

; G

2

; G

3

) has three 
omponents, a 
ontradi
tion.

(These observations are valid for all evenly amendable graphs and appear in [3℄ to prove

that su
h graphs are dis
onne
ted.) We may suppose by symmetry that G

1

[ G

2

is dis-


onne
ted. As G has two 
omponents G

1

[G

2

must also have two 
omponents G

0

and G

00

both interse
ting G. By symmetry we may assume K � G

0

.

Here G

00

\G is either a vertex or two verti
es 
onne
ted by an edge. In both 
ases all

graphs 
ontaining it 
ontains it as an indu
ed subgraph thus Lemma 3 is appli
able. In

the se
ond 
ase we get that K is (1; 1)-evenly amendable, 
ontradi
ting Lemma 9. Thus

we only have the �rst 
ase and there we get that the graph K

0


onsisting of K and a new

initial vertex 
onne
ted to one of the terminal verti
es of K is 1-evenly amendable.

We derive 
ontradi
tion from the assumption that K

0

is 1-evenly amendable the usual

way. Let K

1

, K

2

and K

3

be the smallest (in total number of verti
es) set of graphs 1-

evenly amending K

0

. If all the graphs K

1

[K

2

, K

2

[K

3

and K

3

[K

1

are 1-
onne
ted then

A(K

1

; K

2

; K

3

) has three 1-fa
tors, a 
ontradi
tion. Thus we may suppose by symmetry

that K

1

[K

2

has a 1-de
omposition to proper subgraphs K

0

and K

00

. As the subgraph K

is 1-
onne
ted it must be 
ontained in one of them, say K � K

0

. The graphs K

0

0

= K

0

\K

0

and K

00

0

= K

00

\K

0

form a 1-de
omposition of K

0

thus we have two possibilities. Either

K

0

0

= K

0

and then K

00

0

is empty or it 
onsists of a single terminal vertex or else K

0

0

= K

and then K

00

0


onsists of the edge of K

0

outside K and the verti
es it 
onne
ts. As K

00

0

is a 
omplete bipartite graph in both 
ases and thus always an indu
ed subgraph we 
an

apply Lemma 3. In the �rst 
ase we get a smaller triple of graphs 1-evenly amending K

0

and this 
ontradi
ts the minimality of K

1

, K

2

and K

3

. In the se
ond 
ase we get that K

is (1; 1)-evenly amendable, 
ontradi
ting Lemma 9.

The 
ontradi
tions prove the theorem.

Corollary 11. For subgroups H and K of a free group with �r(H) � 2 and �r(K) � 2 we

have �r(H;K) � 2�r(H)�r(K)� �r(H)� �r(K).

PROOF: Theorems 1 and 10 give the proof.
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To show the limits of this method we 
lose the paper by showing the 
onverse of

Lemma 9.

Lemma 12. If a graph G is not a 
omplete bipartite graph then it is (1; 1)-evenly amend-

able.

PROOF: Let x be an initial and y a terminal vertex of G not 
onne
ted in G. Let e be the

number of edges in G and let us number these edges. For k = 1; : : : ; e let x

k

be the initial

and y

k

the terminal vertex of the kth edge and let H

k

be the subgraph of G 
onsisting of

all G's verti
es and the �rst k � 1 edges. Let H

0

k

be isomorphi
 to H

k

with the verti
es

of H

0

k


orresponding to x

k

and y

k

of H

k


oin
iding with x and y. Let all other verti
es of

H

0

k

be outside G and outside all other H

0

l

(l 6= k).

The graphs G

1

= G, G

2


onsisting of G plus an edge E 
onne
ting x and y and

G

3

= [

e

k=1

H

0

k

[ G amend G. We have G

1

[ G

2

= G

2

. The graph G

1

[ G

3

= G

3


an be

de
omposed through repeated (1; 1)-de
ompositions to G and the graphs H

0

k

(k = 1; : : : ; e).

The graph G

2

[ G

3


an be similarly de
omposed to G

2

and the graphs H

00

k


onsisting of

H

0

k

plus the edge E (k = 1; : : : ; e). Here H

00

k

is isomorphi
 to H

k+1

for k = 1; : : : ; e � 1

and H

00

e

is isomorphi
 to G. Thus repeated (1; 1)-de
ompositions break up A(G

1

; G

2

; G

3

)

to subgraphs that are isomorphi
 in pairs plus the subgraph H

0

1


ontaining no edges and

having therefore no (1; 1)-fa
tors. Thus G

1

, G

2

and G

3

(1; 1)-evenly amend G proving the

lemma.

Theorem 13. Let i and j be positive integers. A graph G of size (n;m; e) is (i; j)-evenly

amendable if and only if n � i or m � j or e < nm.

PROOF: The only if part is proved by Lemma 9. If e < nm then G is (1; 1)-evenly

amendable by Lemma 12 and therefore it is (i; j)-evenly amendable. Finally if n � i or

m � j then G has no (i; j) fa
tors thus G

1

= G

2

= G

3

= G (i; j)-evenly amends it.
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