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Abstract

The Hanna Neumann conjecture states that the intersection of two nontrivial sub-
groups of rank k+1 and [+ 1 of a free group has rank at most kI + 1. In a recent paper [3]
W. Dicks proved that a strengthened form of this conjecture is equivalent to his amalga-
mated graph conjecture. He used this equivalence to reprove all known upper bounds on
the rank of the intersection. We use his method to improve these bounds. In particular
we prove an upper bound of 2kl — k — [ + 1 for the rank of the intersection above (k,1 > 2)
improving the earlier 2kl — min(k,!) bound of [1].

We prove a special case of the amalgamated graph conjecture in the hope that it
may lead to a proof of the general case and thus of the strengthened Hanna Neumann
conjecture.

1 Introduction

For a longer introduction to the history of the problem see [3]. Here we borrow the
terminology from there to present a shorter version.

By the Nielsen-Schreier theorem [9,11] any subgroup of a free group is free, thus it
is characterized up to isomorphism by its rank, the size of a free generating set. It is a
natural question and goes back more than 40 years how the rank of the intersection relates
to the rank of two subgroups of a free group. It is convenient to introduce the reduced rank
7(H) = maz(rank(H) — 1,0). First Howson [5] proved that H N K is finitely generated if
H and K are, and gave the 7(HNK) < 27 (H)7(K)+7(H)+7(K)+1 bound. Then Hanna
Neumann (with the help of R. Baer [7]) improved the bound to r(HNK) < 27(H)7(K) and
conjectured the the stronger 7(H N K) < 7(H)r(K) bound, later to be called the Hanna
Neumann conjecture. This conjectured bound is tight if true as it is easy to construct
subgroups H and K for any given ranks satisfying #(H N K) = #(H)7(K).

Despite the continues interest in the conjecture since Hanna Neumann'’s paper (see e.
g. [2,3,4,6,8,10,12]) there are only two papers improving the upper bound on the function
f(h,k) = max{r(H N K)|r(H) = h,7(K) = k}. First Burns [1] proved 7(H N K) <
27 (H)7(K) — min(7(H),7(K)) then we [13] proved the special case of Hanna Neumann
conjecture when one of the subgroups H, K is of rank 2.

For subgroups H and K of a free group we define 7(H, K) = Y. 7(g~'Hg N K) where
the summation extends over the representatives g of the double cosets HgK. As this sum
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includes #(H N K) we have 7(H,K) > #(H N K). In [8] Walter Neumann proposed the
following strengthened form of the Hanna Neumann conjecture: 7#(H, K) < 7(H)7(K). He
also extended Burns’ bound to 7(H, K) < 27(H)7(K) — min(7(H),7(K)). Our paper [13]
proves the special case (when one of the ranks is two) of the strengthened conjecture, so
all known upper bounds on #(H N K) bounds 7(H, K) too.

Recently Dicks [3] proved the equivalence of the strengthened Hanna Neumann con-
jecture with a conjecture on bipartite graphs that he called the amalgamated graph con-
jecture (see below). Although equivalence with certain graph conjectures is nothing new
(see e.g [10,13]) the amalgamated graph conjecture represents a strikingly new approach
to the problem. Using that any bound on 7(H, K) is equivalent with limiting the num-
ber of edges of a bipartite graph with a certain symmetry condition Dicks deduced both
previously known bounds.

In this paper we apply Dick’s method to improve upon the known bounds. With
hardly any modification of Dick’s proof of the strengthened Hanna Neumann conjecture
for the case when H or K has rank two we deduce 7(H, K) < 2r(H)r(K)—7(H)—7(K)+1
if 7(H),7(K) > 1 (Corollary 6). This improves the strengthened Burns bound for all pairs
of ranks.

We can also prove a special case of the amalgamated graph conjecture and hope that
it can serve as an intuition for a future proof of the general case. Right now we can use
the method of this proof to improve the bound of Corollary 6 by one for subgroups of rank
at least three (Corollary 11). This proves the Hanna Neumann conjecture in the case both
subgroups have rank three.

2. Dicks’ method

Definition. Following the terminology of [3] all graphs in this paper are simple
bipartite graphs together with a 2-coloring of the vertices to initial and terminal vertices.
A subgraph of a graph T' is a graph consisting of a subset of the vertices of T' together
with some edges of I' connecting such vertices. Subgraphs naturally inherit the 2-coloring.
We call a subgraph induced (or full) if it consists of a subset of the vertices of T" together
with all the edges of I' connecting such vertices. We say that two graphs are isomorphic if
there is a graph-isomorphism between them preserving the 2-coloring, i. e. mapping initial
vertices to initial vertices, terminal vertices to terminal vertices. By the size of a graph we
mean the triple (n, m,e) of the number of initial, terminal vertices and edges.

We say that the graphs G, G2 and G3 amend the graph G if G UGy UG5 is a simple
graph and G1 NGy = GoNG3 = Gz NGy = G. We call the disjoint union of isomorphic
copies of the graphs Gy U G2, G2 U G3 and G3 U Gy the amended graph A(G1,Gs,G3)
(the amended graph is therefore defined only up to isomorphism). We call the graph G
evenly amendable if there exist graphs GG1, G2 and GG3 amending it such that the connected
components of A(G1,Gs,G3) are isomorphic in pairs.

Let us recall the following definitions from the Introduction: 7(H) = max(rank(H) —
1,0) for a free group H and #(H, K) = Y. 7(¢g~'HgnN K) for subgroups H and K of a free
group where the summation extends over the representatives g of the double cosets HgK.

The main result in Dicks’ paper [3] is the following:
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Theorem 1. Let H and K be subgroups of a free group. Then there exists an evenly
amendable graph of size (2r(H),27(K),27(H,K)). &

This result shows that the strengthened Hanna Neumann conjecture is implied by the
following amalgamated graph conjecture: The size (n,m,e) of an evenly amendable graph
satisfies 2e < nm. We mention that [3] (as it claims in its title) proves the equivalence of
the two conjectures.

3. Induced subgraphs

In this section we prove the special case of the amalgamated graph conjecture when
the original graph has to be an induced subgraph of the graphs amending it (Corollary 5).

Definition. Let 7 and j be non-negative integers. A graph G is called (i, j)-trivial
if it size is (n,m,e) with n < i and m < j, otherwise G is (i, 7)-nontrivial. The induced
subgraphs G and G of G form an (i, j)-decomposition of G if G{ UGy = G and G1 NGy is
(i, j)-trivial. The graph G is called (i, j)-decomposable if it has proper subgraphs forming
an (i, j)-decomposition, otherwise it is (i, j)-connected. Maximal (7, j)-nontrivial, (i, 7)-
connected induced subgraphs of a graph G are called the (7, j)-factors of G. The graphs
G1, G2 and G3 are said to (i,7)-evenly amend the graph G if they amend G and the
(i, j)-factors of A(G1,G2,G3) are isomorphic in pairs. If there exist such graphs Gy, G
and G3 then G is called (4, j)-evenly amendable.

We start with simple observations.

Lemma 2. Let ¢ and j be non-negative integers.

a. The (0,0)-factors are the connected components, thus (0,0)-evenly amendable is
evenly amendable.

b. If Gy and G4 form an (i, j)-decomposition of a graph G and H C G then H NGy and
H N G4 form an (i, j)-decomposition of H.

c. If Gy and G2 form an (i, j)-decomposition of a graph G then the (i, j)-factors of G
are the disjoint union of the (i, j)-factors of Gy and the (i, j) factors of Gs.

d. If i’ > i, 5 > j then the (i, j')-factors of G are the disjoint union of the (i’, j')-factors
of the (i, j)-factors of G.

e. Ifi' > i, j' > j then graphs (i, j)-evenly amending a graph also (i’, j')-evenly amend
it.

PROOF: Points a and b are trivial.

For ¢ let H C G be (i,j)-connected. By b it has to be contained in either of Gy or
G2. By the definition if contained in both then H is (i, j)-trivial.

As (i, j)-factors can be obtained by repeated (i, j)-decompositions (which are also
(7', j')-decompositions) d follows from c.

Point e trivially follows from d. g

The following lemma is central in the proof our main results.

Lemma 3. Let i and j be non-negative integers. Suppose G1, Gy and G3 (i, j)-evenly
amend the graph G, G' and G" form an (i, j)-decomposition of G{ UG5 and G has i’ initial
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and j' terminal vertices outside G’'. If GNG" is an induced subgraph of G1 UGy UG53 then
G'NG1, G NGy and G3 (i +1',j + j')-evenly amend G' N G.

PROOF: Let G, = G'NG; and G} = G" NG, for i = 1,2. It is easy to see that our
assumption that G N G" is an induced subgraph of G; U G5 U G3 implies that for i = 1,2
G is an induced subgraph of G and both G¥ and G) U G3 are induced subgraphs of
G; U G3. Our goal is to show that these graphs form (i 4+ 4', j + j')-decompositions of the
corresponding larger graphs.

The graph GY NGY has at most ¢ initial and j terminal vertices in G’ and 4’ initial and
j'" terminal vertices outside G’, thus it is (i+i', j+j')-trivial. Since GYUGY = G" the graphs
G and G} form an (i 4+ 4, j + j')-decomposition of G”. Similarly for i = 1,2 the graph
G/ N(G;UG3) has at most 4 initial and j terminal vertices in G’ and at most 4’ initial and j'
terminal vertices outside G’ thus it is (i +1i’, j + j')-trivial. Since G U(G,UG3) = G;UG3
the graphs G and G, U G3 form an (i + 14, j + j')-decomposition of G; U Gs.

Clearly G}, G5 and G3 amend G N G'. By Lemma 2.e the (i +4,j + j')-factors
of A(G1,G9,G3) are isomorphic in pairs. By the above observations and Lemma 2.c
these factors are isomorphic to the (i + 4, j + j')-factors of A(G,G%,G3) plus twice the
(1 +14', 7+ j")-factors of G and GY. Therefore the (i + i',j + j')-factors of A(G', G5, G3)
have to be also isomorphic in pairs. |

Notice the unfortunate condition in Lemma 3 requiring that GNG" is an induced sub-
graph. We need this because in our definition of (4, j)-decomposition both components have
to be induced subgraphs. We require that in turn because otherwise all (1, 1)-connected
graphs would be (1, 1)-trivial.

In case GG is an induced subgraph then this condition is automatically satisfied. Corol-
lary 5 proves the amalgamated graph conjecture in this case. In the general case however
we can only prove much weaker results.

Theorem 4. Let i and j be non-negative integers. Suppose G, G2 and G3 (i, j)-evenly
amend the (i, j)-nontrivial graph G and G is an induced subgraph of Gy UGy U G3. Then
the size (n,m,e) of G satisfies e < nm — (n —i)(m — j)/2.

PROOF: The proof is by induction on the number of vertices of A(G1,G2,G3). All the
graphs G1 U G2, Go UG3 and G3 U Gy are (4, j)-nontrivial, thus if all are (7, j)-connected,
then A(G1,G2,G3) has three (i, j)-factors, a contradiction. Therefore by symmetry we
may assume that G; U G2 has an (i, j)-decomposition to proper subgraphs G’ and G”.
Let 7' and j’ be the number of initial and terminal vertices of G outside G’, let i" and
4" be the number of initial and terminal vertices of G' are outside G”, finally let iq and
jo the number of initial and terminal vertices of G N G' N G". We have i < i, jo < 7,
io+1i +1i" =nand jo+ j' + 7” = m. By symmetry we may assume j' < j”.

The graphs G’ NGy, G' NG and G5 (i + 4, j + j')-evenly amend G N G’ by Lemma
3. Here GNG' is an induced subgraph of G' UG53 and A(G' NG1,G' NGy, G3) is a proper
subgraph of A(G1,G2,G3) since G’ is a proper subgraph of G; U G2. Thus we may use
the inductive hypothesis for G NG’ unless it is (i + ', j + j')-trivial.

Suppose first that G NG is (i + ', j + j')-nontrivial. By the inductive hypothesis
G' N G’ has at most (ig + i")(jo + 5") — (o + " — i — ") (jo + 7" — 5 — j')/2 edges. G
clearly has at most i'j" + 1’59 + igj’ edges outside G’. Thus the total number of edges of
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Gise <dj +ioj +ijo+ (o +3")jo+5")— o+ —i—Yjo+ 5" —7—3)/2 =
nm — (n—1i)(m—75)/2—14(j — jo) — j (i —ip) <nm — (n—1i)(m — j) as claimed.

If n < ithenm > jsince G is not (i, j)-trivial and thus e < nm < nm—(n—i)(m—j)/2
trivially holds.

It remained to show the inequality in the theorem when n > ¢ and GNG" is (i+4', j+7)-
trivial and thus i"” 4+ iy < 7 +4'. No edge of G connects a vertex outside G’ to a vertex
outside G”. Thus in this case we have e < nm —i'j" —i"j" = nm — (n —i)(m — jo)/2 —
i+ —ig—i")(3" = 7")/2 = (i —d0)j <nm— (n—1i)(m—7)/2 as claimed. g

Corollary 5. Suppose that the graph G of size (n,m,e) is an induced subgraph of three
graphs evenly amending it. Then 2e < nm.

PROOF: Case ¢ = j = 0 of Theorem 4. g

4. The general case

In this section we prove upper bounds on the number of edges of an evenly amendable
graph without the induced subgraph condition of Corollary 5. Our main tool is still Lemma
3 so we need to make sure its induced subgraph condition is still satisfied. In case a graph
has no initial vertices it is an induced subgraph of all graphs containing it. This gives us
Theorem 7 and Corollary 8.

We mention here that this argument uses (4, j)-decompositions, (i, j)-factors etc. only
in the special case i = 0. These concepts were already defined in [3] (under the names
j-decomposition, j-atomic factor). Our proof is also essentially identical to the proof there.
It is surprising that we are able to prove much better bounds.

Corollary 8 improves the best previously known bound and is almost the best bound
we can prove. Corollary 11 of the next section improves the bound of Corollary 8 by just
one.

Definition. Let 7 be a non-negative integer. For simplicity we use j-decomposition,
j-decomposable, j-connected and j-factor for (0, j)-decomposition, (0, j)-decomposable,
(0, 7)-connected and (0, j)-factor. We call a graph trivial if it contains no initial vertices
otherwise it is nontrivial. Clearly all (0, j)-trivial graphs are trivial and all j-factors (j > 1)
are nontrivial.

Lemma 6. Let 7 and k be non-negative integers. If the nontrivial j-evenly amendable
graph G consists of a subgraph Gy plus k isolated terminal vertices then Gy is (j + k)-
decomposable.

PROOF: Let G1, G2 and G3 be graphs j-evenly amending G. We prove the lemma by
induction on the number of vertices of A(G1,G3,G3).

Consider the graphs G; U Gy, G2 U G3 and G3 U G1. All are nontrivial, therefore in
case all are j-indecomposable A(G1,G2,G3) has three j-factors, a contradiction. We may
assume therefore by symmetry that G; U G5 has a j-decomposition to proper subgraphs
G' and G”. Now G' NGy and G"” NGy form an j-decomposition of G proving the claim

unless one of these graphs coincides with Gp. We may therefore suppose by symmetry that
Gy C G".



Here GNG" is trivial as it consists of some of the terminal vertices from G’ N G"” and
all j/ < k terminal vertices of G outside G'. Thus every graph containing G N G"” contains
it as an induced subgraph, so Lemma 3 is applicable and we have that G; N G', Go N G’
and G3 (j + j')-evenly amend G N G'.

The graph G NG’ is nontrivial and it consists of Gy and k — j' isolated vertices. As
G' is a proper subgraph of G1 UG5 the amended graph A(G1NG',GaNG’,G3) is a proper
subgraph of A(G1,G2,G3). Therefore we can apply the inductive hypothesis for G N G’
and we get that Go is (j + j') + (k — j') = (j + k)-decomposable as claimed. g

We have proved this lemma to limit the number of the edges in an evenly amendable
graph.

Theorem 7. If the graph G of size (n,m,e) is evenly amendable and n,m > 2 then
e<mn-—m-—n-+ 2.

PROOF: If G is the disjoint union of two graphs, each containing both initial and terminal
vertices then the bound follows.

Otherwise G must consist of a connected subgraph Gy and some number k£ > 0 of
isolated vertices of the same color. By symmetry we may suppose they are terminal
vertices. Lemma 6 tells us that Gy is k-decomposable. Thus we have k£ # 0 and the
number of terminal vertices connected to all initial vertices is at most k. The rest of the
terminal vertices have degree at most n — 1 while k£ of them are isolated. Thus we have
e<kn+(m—-2k)(n—1)=mn—m—-k(n—2)<mn—-—m-—n+2. g

Using Theorem 1 and 7 we can immediately deduce a new bound on the rank of the
intersection of subgroups of a free group.

Corollary 8. For subgroups H and K of a free group with 7(H) > 1 and 7(K) > 1 we
have r(H,K) < 2r(H)r(K) —r(H) —7(K)+ 1. g

3. One step further

The bound in Corollary 8 is tight if one of the ranks is two. The plus one term from
the bound can be removed otherwise. We present this rather small improvement to show
the limits of this proof technique. After the improved bound (Corollary 11) we indicate
why it is hard to go beyond that with this method (Lemma 12).

Lemma 9. Let ¢ and j be non-negative integers. The complete bipartite graph of size
(n,m,nm) with n > i and m > j is not (i, j)-evenly amendable.

PROOF: Any (bipartite) graph containing a complete bipartite graph as a subgraph con-
tains it as induced subgraph. Thus we can apply Theorem 4 and since nm > nm — (n —
i)(m — 7)/2 we get that the complete graph is not (7, j)-evenly amendable. g

We remark here that a single application of Lemma 3 is also sufficient to prove Lemma
9. For the converse see Theorem 13.
Theorem 10. If the graph G of size (n,m,e) is evenly amendable and n,m > 2 then

e<2nm-—n-—m.

PROOF: As the number of edges of an evenly amendable graph is trivially even we only
have to rule out equality in Theorem 7.



If G is the disjoint union of two graphs each containing both initial and terminal
vertices then equality in Theorem 7 holds only if GG is the disjoint union of a complete
bipartite graph on n — 1 initial and m — 1 terminal vertices and an edge.

Otherwise by the proof of Theorem 7 we may suppose that G consists of a con-
nected component GGy and some number 5 > 1 of isolated terminal vertices. Here G is
j-decomposable and equality in Theorem 7 implies ;7 = 1 and that Gy has one terminal
vertex of degree n and m — 2 terminal vertices of degree n — 1. The initial vertex not
connected to these m — 2 terminal vertices must coincide otherwise Gy would not be 1-
decomposable. Thus in this case G consists of a complete bipartite graph on n — 1 initial
and m — 1 terminal vertices, plus an initial vertex of degree one connected to one of the
m — 1 terminal vertices of the complete graph plus an isolated terminal vertex.

In both extremal cases G contains a complete subgraph K on n — 1 initial and m — 1
terminal vertices. We need to show that neither extremal graph is evenly amendable.

Let therefore G’ be one of the two extremal graphs and we deduce contradiction from
the assumption that the graphs G1, G5 and G3 evenly amend it. Without loss of gen-
erality we may suppose that all components of the graphs G; (i = 1,2,3) intersect G as
components disjoint from G can be removed. One of G4 U Gy, Gy U G3 and G3 U G4
has to be disconnected as otherwise A(G1, G2, G3) has three components, a contradiction.
(These observations are valid for all evenly amendable graphs and appear in [3] to prove
that such graphs are disconnected.) We may suppose by symmetry that G; U G5 is dis-
connected. As G has two components G'1 U G2 must also have two components G’ and G”
both intersecting G. By symmetry we may assume K C G'.

Here G"” NG is either a vertex or two vertices connected by an edge. In both cases all
graphs containing it contains it as an induced subgraph thus Lemma 3 is applicable. In
the second case we get that K is (1,1)-evenly amendable, contradicting Lemma 9. Thus
we only have the first case and there we get that the graph K consisting of K and a new
initial vertex connected to one of the terminal vertices of K is 1-evenly amendable.

We derive contradiction from the assumption that K is 1-evenly amendable the usual
way. Let Ky, Ky and K3 be the smallest (in total number of vertices) set of graphs 1-
evenly amending K. If all the graphs K1 UK, Ko UK3 and K3U K; are 1-connected then
A(K1, Ko, K3) has three 1-factors, a contradiction. Thus we may suppose by symmetry
that K7 U K5 has a 1-decomposition to proper subgraphs K’ and K”. As the subgraph K
is 1-connected it must be contained in one of them, say K C K'. The graphs K, = K'NKy
and K = K" N K, form a 1-decomposition of K, thus we have two possibilities. Either
K| = K, and then K{] is empty or it consists of a single terminal vertex or else K| = K
and then K/ consists of the edge of K outside K and the vertices it connects. As K/
is a complete bipartite graph in both cases and thus always an induced subgraph we can
apply Lemma 3. In the first case we get a smaller triple of graphs 1-evenly amending K’
and this contradicts the minimality of K, K5 and Kj3. In the second case we get that K
is (1,1)-evenly amendable, contradicting Lemma 9.

The contradictions prove the theorem. g

Corollary 11. For subgroups H and K of a free group with 7#(H) > 2 and 7(K) > 2 we
have 7(H,K) < 2f(H)7(K) — 7(H) — 7(K).

PROOF: Theorems 1 and 10 give the proof. g
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To show the limits of this method we close the paper by showing the converse of
Lemma 9.

Lemma 12. Ifa graph G is not a complete bipartite graph then it is (1, 1)-evenly amend-
able.

PROOF: Let = be an initial and y a terminal vertex of G not connected in GG. Let e be the
number of edges in GG and let us number these edges. For kK =1,..., e let xj be the initial
and yi the terminal vertex of the kth edge and let Hy be the subgraph of G consisting of
all G’s vertices and the first £ — 1 edges. Let Hj be isomorphic to Hj with the vertices
of H; corresponding to = and yi of Hy coinciding with = and y. Let all other vertices of
H;. be outside G and outside all other H] (I # k).

The graphs G; = G, G2 consisting of G plus an edge E connecting x and y and
G3 = Us,_;H; UG amend G. We have G UGy = G3. The graph G; U G35 = G3 can be
decomposed through repeated (1, 1)-decompositions to G and the graphs H;, (k=1,...,¢).
The graph G, U G3 can be similarly decomposed to G2 and the graphs H;' consisting of
Hj, plus the edge E (k = 1,...,e). Here H; is isomorphic to Hy4q for k=1,...;e —1
and H! is isomorphic to G. Thus repeated (1,1)-decompositions break up A(G1, G2, G3)
to subgraphs that are isomorphic in pairs plus the subgraph H] containing no edges and
having therefore no (1, 1)-factors. Thus Gy, G2 and G3 (1,1)-evenly amend G proving the
lemma.

Theorem 13. Let i and j be positive integers. A graph G of size (n,m,e) is (i, j)-evenly
amendable if and only if n < i orm < j or e < nm.

PROOF: The only if part is proved by Lemma 9. If e < nm then G is (1,1)-evenly
amendable by Lemma 12 and therefore it is (4, j)-evenly amendable. Finally if n < i or
m < j then G has no (i, 7) factors thus Gy = Gy = G3 = G (i, j)-evenly amends it. |
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