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Abstrat

The Hanna Neumann onjeture states that the intersetion of two nontrivial sub-

groups of rank k+1 and l+1 of a free group has rank at most kl+1. In a reent paper [3℄

W. Diks proved that a strengthened form of this onjeture is equivalent to his amalga-

mated graph onjeture. He used this equivalene to reprove all known upper bounds on

the rank of the intersetion. We use his method to improve these bounds. In partiular

we prove an upper bound of 2kl� k� l+1 for the rank of the intersetion above (k; l � 2)

improving the earlier 2kl �min(k; l) bound of [1℄.

We prove a speial ase of the amalgamated graph onjeture in the hope that it

may lead to a proof of the general ase and thus of the strengthened Hanna Neumann

onjeture.

1 Introdution

For a longer introdution to the history of the problem see [3℄. Here we borrow the

terminology from there to present a shorter version.

By the Nielsen-Shreier theorem [9,11℄ any subgroup of a free group is free, thus it

is haraterized up to isomorphism by its rank, the size of a free generating set. It is a

natural question and goes bak more than 40 years how the rank of the intersetion relates

to the rank of two subgroups of a free group. It is onvenient to introdue the redued rank

�r(H) = max(rank(H)� 1; 0). First Howson [5℄ proved that H \K is �nitely generated if

H and K are, and gave the �r(H\K) � 2�r(H)�r(K)+�r(H)+�r(K)+1 bound. Then Hanna

Neumann (with the help of R. Baer [7℄) improved the bound to �r(H\K) � 2�r(H)�r(K) and

onjetured the the stronger �r(H \K) � �r(H)�r(K) bound, later to be alled the Hanna

Neumann onjeture. This onjetured bound is tight if true as it is easy to onstrut

subgroups H and K for any given ranks satisfying �r(H \K) = �r(H)�r(K).

Despite the ontinues interest in the onjeture sine Hanna Neumann's paper (see e.

g. [2,3,4,6,8,10,12℄) there are only two papers improving the upper bound on the funtion

f(h; k) = maxf�r(H \ K)j�r(H) = h; �r(K) = kg. First Burns [1℄ proved �r(H \ K) �

2�r(H)�r(K) � min(�r(H); �r(K)) then we [13℄ proved the speial ase of Hanna Neumann

onjeture when one of the subgroups H, K is of rank 2.

For subgroups H and K of a free group we de�ne �r(H;K) =

P

�r(g

�1

Hg \K) where

the summation extends over the representatives g of the double osets HgK. As this sum
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inludes �r(H \ K) we have �r(H;K) � �r(H \ K). In [8℄ Walter Neumann proposed the

following strengthened form of the Hanna Neumann onjeture: �r(H;K) � �r(H)�r(K). He

also extended Burns' bound to �r(H;K) � 2�r(H)�r(K)�min(�r(H); �r(K)). Our paper [13℄

proves the speial ase (when one of the ranks is two) of the strengthened onjeture, so

all known upper bounds on �r(H \K) bounds �r(H;K) too.

Reently Diks [3℄ proved the equivalene of the strengthened Hanna Neumann on-

jeture with a onjeture on bipartite graphs that he alled the amalgamated graph on-

jeture (see below). Although equivalene with ertain graph onjetures is nothing new

(see e.g [10,13℄) the amalgamated graph onjeture represents a strikingly new approah

to the problem. Using that any bound on �r(H;K) is equivalent with limiting the num-

ber of edges of a bipartite graph with a ertain symmetry ondition Diks dedued both

previously known bounds.

In this paper we apply Dik's method to improve upon the known bounds. With

hardly any modi�ation of Dik's proof of the strengthened Hanna Neumann onjeture

for the ase when H or K has rank two we dedue �r(H;K) � 2�r(H)�r(K)��r(H)��r(K)+1

if �r(H); �r(K) � 1 (Corollary 6). This improves the strengthened Burns bound for all pairs

of ranks.

We an also prove a speial ase of the amalgamated graph onjeture and hope that

it an serve as an intuition for a future proof of the general ase. Right now we an use

the method of this proof to improve the bound of Corollary 6 by one for subgroups of rank

at least three (Corollary 11). This proves the Hanna Neumann onjeture in the ase both

subgroups have rank three.

2. Diks' method

De�nition. Following the terminology of [3℄ all graphs in this paper are simple

bipartite graphs together with a 2-oloring of the verties to initial and terminal verties.

A subgraph of a graph � is a graph onsisting of a subset of the verties of � together

with some edges of � onneting suh verties. Subgraphs naturally inherit the 2-oloring.

We all a subgraph indued (or full) if it onsists of a subset of the verties of � together

with all the edges of � onneting suh verties. We say that two graphs are isomorphi if

there is a graph-isomorphism between them preserving the 2-oloring, i. e. mapping initial

verties to initial verties, terminal verties to terminal verties. By the size of a graph we

mean the triple (n;m; e) of the number of initial, terminal verties and edges.

We say that the graphs G

1

, G

2

and G

3

amend the graph G if G

1

[G

2

[G

3

is a simple

graph and G

1

\ G

2

= G

2

\ G

3

= G

3

\ G

1

= G. We all the disjoint union of isomorphi

opies of the graphs G

1

[ G

2

, G

2

[ G

3

and G

3

[ G

1

the amended graph A(G

1

; G

2

; G

3

)

(the amended graph is therefore de�ned only up to isomorphism). We all the graph G

evenly amendable if there exist graphs G

1

, G

2

and G

3

amending it suh that the onneted

omponents of A(G

1

; G

2

; G

3

) are isomorphi in pairs.

Let us reall the following de�nitions from the Introdution: �r(H) = max(rank(H)�

1; 0) for a free group H and �r(H;K) =

P

�r(g

�1

Hg \K) for subgroups H and K of a free

group where the summation extends over the representatives g of the double osets HgK.

The main result in Diks' paper [3℄ is the following:
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Theorem 1. Let H and K be subgroups of a free group. Then there exists an evenly

amendable graph of size (2�r(H); 2�r(K); 2�r(H;K)).

This result shows that the strengthened Hanna Neumann onjeture is implied by the

following amalgamated graph onjeture: The size (n;m; e) of an evenly amendable graph

satis�es 2e � nm. We mention that [3℄ (as it laims in its title) proves the equivalene of

the two onjetures.

3. Indued subgraphs

In this setion we prove the speial ase of the amalgamated graph onjeture when

the original graph has to be an indued subgraph of the graphs amending it (Corollary 5).

De�nition. Let i and j be non-negative integers. A graph G is alled (i; j)-trivial

if it size is (n;m; e) with n � i and m � j, otherwise G is (i; j)-nontrivial. The indued

subgraphs G

1

and G

2

of G form an (i; j)-deomposition of G if G

1

[G

2

= G and G

1

\G

2

is

(i; j)-trivial. The graph G is alled (i; j)-deomposable if it has proper subgraphs forming

an (i; j)-deomposition, otherwise it is (i; j)-onneted. Maximal (i; j)-nontrivial, (i; j)-

onneted indued subgraphs of a graph G are alled the (i; j)-fators of G. The graphs

G

1

, G

2

and G

3

are said to (i; j)-evenly amend the graph G if they amend G and the

(i; j)-fators of A(G

1

; G

2

; G

3

) are isomorphi in pairs. If there exist suh graphs G

1

, G

2

and G

3

then G is alled (i; j)-evenly amendable.

We start with simple observations.

Lemma 2. Let i and j be non-negative integers.

a. The (0; 0)-fators are the onneted omponents, thus (0; 0)-evenly amendable is

evenly amendable.

b. If G

1

and G

2

form an (i; j)-deomposition of a graph G and H � G then H \G

1

and

H \G

2

form an (i; j)-deomposition of H.

. If G

1

and G

2

form an (i; j)-deomposition of a graph G then the (i; j)-fators of G

are the disjoint union of the (i; j)-fators of G

1

and the (i; j) fators of G

2

.

d. If i

0

� i, j

0

� j then the (i

0

; j

0

)-fators of G are the disjoint union of the (i

0

; j

0

)-fators

of the (i; j)-fators of G.

e. If i

0

� i, j

0

� j then graphs (i; j)-evenly amending a graph also (i

0

; j

0

)-evenly amend

it.

PROOF: Points a and b are trivial.

For  let H � G be (i; j)-onneted. By b it has to be ontained in either of G

1

or

G

2

. By the de�nition if ontained in both then H is (i; j)-trivial.

As (i; j)-fators an be obtained by repeated (i; j)-deompositions (whih are also

(i

0

; j

0

)-deompositions) d follows from .

Point e trivially follows from d.

The following lemma is entral in the proof our main results.

Lemma 3. Let i and j be non-negative integers. Suppose G

1

, G

2

and G

3

(i; j)-evenly

amend the graph G, G

0

and G

00

form an (i; j)-deomposition of G

1

[G

2

and G has i

0

initial

3



and j

0

terminal verties outside G

0

. If G\G

00

is an indued subgraph of G

1

[G

2

[G

3

then

G

0

\G

1

, G

0

\G

2

and G

3

(i+ i

0

; j + j

0

)-evenly amend G

0

\G.

PROOF: Let G

0

i

= G

0

\ G

i

and G

00

i

= G

00

\ G

i

for i = 1; 2. It is easy to see that our

assumption that G \G

00

is an indued subgraph of G

1

[G

2

[G

3

implies that for i = 1; 2

G

00

i

is an indued subgraph of G

00

and both G

00

i

and G

0

i

[ G

3

are indued subgraphs of

G

i

[G

3

. Our goal is to show that these graphs form (i+ i

0

; j + j

0

)-deompositions of the

orresponding larger graphs.

The graph G

00

1

\G

00

2

has at most i initial and j terminal verties in G

0

and i

0

initial and

j

0

terminal verties outside G

0

, thus it is (i+i

0

; j+j

0

)-trivial. Sine G

00

1

[G

00

2

= G

00

the graphs

G

00

1

and G

00

2

form an (i + i

0

; j + j

0

)-deomposition of G

00

. Similarly for i = 1; 2 the graph

G

00

i

\(G

0

i

[G

3

) has at most i initial and j terminal verties in G

0

and at most i

0

initial and j

0

terminal verties outside G

0

thus it is (i+ i

0

; j+ j

0

)-trivial. Sine G

00

i

[ (G

0

i

[G

3

) = G

i

[G

3

the graphs G

00

i

and G

0

i

[G

3

form an (i+ i

0

; j + j

0

)-deomposition of G

i

[G

3

.

Clearly G

0

1

, G

0

2

and G

3

amend G \ G

0

. By Lemma 2.e the (i + i

0

; j + j

0

)-fators

of A(G

1

; G

2

; G

3

) are isomorphi in pairs. By the above observations and Lemma 2.

these fators are isomorphi to the (i + i

0

; j + j

0

)-fators of A(G

0

1

; G

0

2

; G

3

) plus twie the

(i+ i

0

; j + j

0

)-fators of G

00

1

and G

00

2

. Therefore the (i+ i

0

; j + j

0

)-fators of A(G

0

1

; G

0

2

; G

3

)

have to be also isomorphi in pairs.

Notie the unfortunate ondition in Lemma 3 requiring that G\G

00

is an indued sub-

graph. We need this beause in our de�nition of (i; j)-deomposition both omponents have

to be indued subgraphs. We require that in turn beause otherwise all (1; 1)-onneted

graphs would be (1; 1)-trivial.

In ase G is an indued subgraph then this ondition is automatially satis�ed. Corol-

lary 5 proves the amalgamated graph onjeture in this ase. In the general ase however

we an only prove muh weaker results.

Theorem 4. Let i and j be non-negative integers. Suppose G

1

, G

2

and G

3

(i; j)-evenly

amend the (i; j)-nontrivial graph G and G is an indued subgraph of G

1

[G

2

[G

3

. Then

the size (n;m; e) of G satis�es e � nm� (n� i)(m� j)=2.

PROOF: The proof is by indution on the number of verties of A(G

1

; G

2

; G

3

). All the

graphs G

1

[G

2

, G

2

[G

3

and G

3

[G

1

are (i; j)-nontrivial, thus if all are (i; j)-onneted,

then A(G

1

; G

2

; G

3

) has three (i; j)-fators, a ontradition. Therefore by symmetry we

may assume that G

1

[ G

2

has an (i; j)-deomposition to proper subgraphs G

0

and G

00

.

Let i

0

and j

0

be the number of initial and terminal verties of G outside G

0

, let i

00

and

j

00

be the number of initial and terminal verties of G are outside G

00

, �nally let i

0

and

j

0

the number of initial and terminal verties of G \ G

0

\ G

00

. We have i

0

� i, j

0

� j,

i

0

+ i

0

+ i

00

= n and j

0

+ j

0

+ j

00

= m. By symmetry we may assume j

0

� j

00

.

The graphs G

0

\G

1

, G

0

\G

2

and G

3

(i+ i

0

; j + j

0

)-evenly amend G \G

0

by Lemma

3. Here G\G

0

is an indued subgraph of G

0

[G

3

and A(G

0

\G

1

; G

0

\G

2

; G

3

) is a proper

subgraph of A(G

1

; G

2

; G

3

) sine G

0

is a proper subgraph of G

1

[ G

2

. Thus we may use

the indutive hypothesis for G \G

0

unless it is (i+ i

0

; j + j

0

)-trivial.

Suppose �rst that G \ G

0

is (i + i

0

; j + j

0

)-nontrivial. By the indutive hypothesis

G \ G

0

has at most (i

0

+ i

00

)(j

0

+ j

00

) � (i

0

+ i

00

� i � i

0

)(j

0

+ j

00

� j � j

0

)=2 edges. G

learly has at most i

0

j

0

+ i

0

j

0

+ i

0

j

0

edges outside G

0

. Thus the total number of edges of
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G is e � i

0

j

0

+ i

0

j

0

+ i

0

j

0

+ (i

0

+ i

00

)(j

0

+ j

00

) � (i

0

+ i

00

� i � i

0

)(j

0

+ j

00

� j � j

0

)=2 =

nm� (n� i)(m� j)=2� i

0

(j � j

0

)� j

0

(i� i

0

) � nm� (n� i)(m� j) as laimed.

If n � i thenm > j sine G is not (i; j)-trivial and thus e � nm � nm�(n�i)(m�j)=2

trivially holds.

It remained to show the inequality in the theorem when n > i and G\G

0

is (i+i

0

; j+j

0

)-

trivial and thus i

00

+ i

0

� i + i

0

. No edge of G onnets a vertex outside G

0

to a vertex

outside G

00

. Thus in this ase we have e � nm � i

0

j

00

� i

00

j

0

= nm� (n� i)(m � j

0

)=2�

(i+ i

0

� i

0

� i

00

)(j

00

� j

0

)=2� (i� i

0

)j

0

� nm� (n� i)(m� j)=2 as laimed.

Corollary 5. Suppose that the graph G of size (n;m; e) is an indued subgraph of three

graphs evenly amending it. Then 2e � nm.

PROOF: Case i = j = 0 of Theorem 4.

4. The general ase

In this setion we prove upper bounds on the number of edges of an evenly amendable

graph without the indued subgraph ondition of Corollary 5. Our main tool is still Lemma

3 so we need to make sure its indued subgraph ondition is still satis�ed. In ase a graph

has no initial verties it is an indued subgraph of all graphs ontaining it. This gives us

Theorem 7 and Corollary 8.

We mention here that this argument uses (i; j)-deompositions, (i; j)-fators et. only

in the speial ase i = 0. These onepts were already de�ned in [3℄ (under the names

j-deomposition, j-atomi fator). Our proof is also essentially idential to the proof there.

It is surprising that we are able to prove muh better bounds.

Corollary 8 improves the best previously known bound and is almost the best bound

we an prove. Corollary 11 of the next setion improves the bound of Corollary 8 by just

one.

De�nition. Let j be a non-negative integer. For simpliity we use j-deomposition,

j-deomposable, j-onneted and j-fator for (0; j)-deomposition, (0; j)-deomposable,

(0; j)-onneted and (0; j)-fator. We all a graph trivial if it ontains no initial verties

otherwise it is nontrivial. Clearly all (0; j)-trivial graphs are trivial and all j-fators (j � 1)

are nontrivial.

Lemma 6. Let j and k be non-negative integers. If the nontrivial j-evenly amendable

graph G onsists of a subgraph G

0

plus k isolated terminal verties then G

0

is (j + k)-

deomposable.

PROOF: Let G

1

, G

2

and G

3

be graphs j-evenly amending G. We prove the lemma by

indution on the number of verties of A(G

1

; G

2

; G

3

).

Consider the graphs G

1

[ G

2

, G

2

[ G

3

and G

3

[ G

1

. All are nontrivial, therefore in

ase all are j-indeomposable A(G

1

; G

2

; G

3

) has three j-fators, a ontradition. We may

assume therefore by symmetry that G

1

[ G

2

has a j-deomposition to proper subgraphs

G

0

and G

00

. Now G

0

\ G

0

and G

00

\G

0

form an j-deomposition of G

0

proving the laim

unless one of these graphs oinides with G

0

. We may therefore suppose by symmetry that

G

0

� G

0

.

5



Here G\G

00

is trivial as it onsists of some of the terminal verties from G

0

\G

00

and

all j

0

� k terminal verties of G outside G

0

. Thus every graph ontaining G\G

00

ontains

it as an indued subgraph, so Lemma 3 is appliable and we have that G

1

\ G

0

, G

2

\ G

0

and G

3

(j + j

0

)-evenly amend G \G

0

.

The graph G \ G

0

is nontrivial and it onsists of G

0

and k � j

0

isolated verties. As

G

0

is a proper subgraph of G

1

[G

2

the amended graph A(G

1

\G

0

; G

2

\G

0

; G

3

) is a proper

subgraph of A(G

1

; G

2

; G

3

). Therefore we an apply the indutive hypothesis for G \ G

0

and we get that G

0

is (j + j

0

) + (k � j

0

) = (j + k)-deomposable as laimed.

We have proved this lemma to limit the number of the edges in an evenly amendable

graph.

Theorem 7. If the graph G of size (n;m; e) is evenly amendable and n;m � 2 then

e � mn�m� n+ 2.

PROOF: If G is the disjoint union of two graphs, eah ontaining both initial and terminal

verties then the bound follows.

Otherwise G must onsist of a onneted subgraph G

0

and some number k � 0 of

isolated verties of the same olor. By symmetry we may suppose they are terminal

verties. Lemma 6 tells us that G

0

is k-deomposable. Thus we have k 6= 0 and the

number of terminal verties onneted to all initial verties is at most k. The rest of the

terminal verties have degree at most n � 1 while k of them are isolated. Thus we have

e � kn+ (m� 2k)(n� 1) = mn�m� k(n� 2) � mn�m� n+ 2.

Using Theorem 1 and 7 we an immediately dedue a new bound on the rank of the

intersetion of subgroups of a free group.

Corollary 8. For subgroups H and K of a free group with �r(H) � 1 and �r(K) � 1 we

have �r(H;K) � 2�r(H)�r(K)� �r(H)� �r(K) + 1.

3. One step further

The bound in Corollary 8 is tight if one of the ranks is two. The plus one term from

the bound an be removed otherwise. We present this rather small improvement to show

the limits of this proof tehnique. After the improved bound (Corollary 11) we indiate

why it is hard to go beyond that with this method (Lemma 12).

Lemma 9. Let i and j be non-negative integers. The omplete bipartite graph of size

(n;m; nm) with n > i and m > j is not (i; j)-evenly amendable.

PROOF: Any (bipartite) graph ontaining a omplete bipartite graph as a subgraph on-

tains it as indued subgraph. Thus we an apply Theorem 4 and sine nm > nm � (n �

i)(m� j)=2 we get that the omplete graph is not (i; j)-evenly amendable.

We remark here that a single appliation of Lemma 3 is also suÆient to prove Lemma

9. For the onverse see Theorem 13.

Theorem 10. If the graph G of size (n;m; e) is evenly amendable and n;m > 2 then

e � 2nm� n�m.

PROOF: As the number of edges of an evenly amendable graph is trivially even we only

have to rule out equality in Theorem 7.
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If G is the disjoint union of two graphs eah ontaining both initial and terminal

verties then equality in Theorem 7 holds only if G is the disjoint union of a omplete

bipartite graph on n� 1 initial and m� 1 terminal verties and an edge.

Otherwise by the proof of Theorem 7 we may suppose that G onsists of a on-

neted omponent G

0

and some number j � 1 of isolated terminal verties. Here G

0

is

j-deomposable and equality in Theorem 7 implies j = 1 and that G

0

has one terminal

vertex of degree n and m � 2 terminal verties of degree n � 1. The initial vertex not

onneted to these m � 2 terminal verties must oinide otherwise G

0

would not be 1-

deomposable. Thus in this ase G onsists of a omplete bipartite graph on n� 1 initial

and m � 1 terminal verties, plus an initial vertex of degree one onneted to one of the

m� 1 terminal verties of the omplete graph plus an isolated terminal vertex.

In both extremal ases G ontains a omplete subgraph K on n� 1 initial and m� 1

terminal verties. We need to show that neither extremal graph is evenly amendable.

Let therefore G be one of the two extremal graphs and we dedue ontradition from

the assumption that the graphs G

1

, G

2

and G

3

evenly amend it. Without loss of gen-

erality we may suppose that all omponents of the graphs G

i

(i = 1; 2; 3) interset G as

omponents disjoint from G an be removed. One of G

1

[ G

2

, G

2

[ G

3

and G

3

[ G

1

has to be disonneted as otherwise A(G

1

; G

2

; G

3

) has three omponents, a ontradition.

(These observations are valid for all evenly amendable graphs and appear in [3℄ to prove

that suh graphs are disonneted.) We may suppose by symmetry that G

1

[ G

2

is dis-

onneted. As G has two omponents G

1

[G

2

must also have two omponents G

0

and G

00

both interseting G. By symmetry we may assume K � G

0

.

Here G

00

\G is either a vertex or two verties onneted by an edge. In both ases all

graphs ontaining it ontains it as an indued subgraph thus Lemma 3 is appliable. In

the seond ase we get that K is (1; 1)-evenly amendable, ontraditing Lemma 9. Thus

we only have the �rst ase and there we get that the graph K

0

onsisting of K and a new

initial vertex onneted to one of the terminal verties of K is 1-evenly amendable.

We derive ontradition from the assumption that K

0

is 1-evenly amendable the usual

way. Let K

1

, K

2

and K

3

be the smallest (in total number of verties) set of graphs 1-

evenly amending K

0

. If all the graphs K

1

[K

2

, K

2

[K

3

and K

3

[K

1

are 1-onneted then

A(K

1

; K

2

; K

3

) has three 1-fators, a ontradition. Thus we may suppose by symmetry

that K

1

[K

2

has a 1-deomposition to proper subgraphs K

0

and K

00

. As the subgraph K

is 1-onneted it must be ontained in one of them, say K � K

0

. The graphs K

0

0

= K

0

\K

0

and K

00

0

= K

00

\K

0

form a 1-deomposition of K

0

thus we have two possibilities. Either

K

0

0

= K

0

and then K

00

0

is empty or it onsists of a single terminal vertex or else K

0

0

= K

and then K

00

0

onsists of the edge of K

0

outside K and the verties it onnets. As K

00

0

is a omplete bipartite graph in both ases and thus always an indued subgraph we an

apply Lemma 3. In the �rst ase we get a smaller triple of graphs 1-evenly amending K

0

and this ontradits the minimality of K

1

, K

2

and K

3

. In the seond ase we get that K

is (1; 1)-evenly amendable, ontraditing Lemma 9.

The ontraditions prove the theorem.

Corollary 11. For subgroups H and K of a free group with �r(H) � 2 and �r(K) � 2 we

have �r(H;K) � 2�r(H)�r(K)� �r(H)� �r(K).

PROOF: Theorems 1 and 10 give the proof.
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To show the limits of this method we lose the paper by showing the onverse of

Lemma 9.

Lemma 12. If a graph G is not a omplete bipartite graph then it is (1; 1)-evenly amend-

able.

PROOF: Let x be an initial and y a terminal vertex of G not onneted in G. Let e be the

number of edges in G and let us number these edges. For k = 1; : : : ; e let x

k

be the initial

and y

k

the terminal vertex of the kth edge and let H

k

be the subgraph of G onsisting of

all G's verties and the �rst k � 1 edges. Let H

0

k

be isomorphi to H

k

with the verties

of H

0

k

orresponding to x

k

and y

k

of H

k

oiniding with x and y. Let all other verties of

H

0

k

be outside G and outside all other H

0

l

(l 6= k).

The graphs G

1

= G, G

2

onsisting of G plus an edge E onneting x and y and

G

3

= [

e

k=1

H

0

k

[ G amend G. We have G

1

[ G

2

= G

2

. The graph G

1

[ G

3

= G

3

an be

deomposed through repeated (1; 1)-deompositions to G and the graphs H

0

k

(k = 1; : : : ; e).

The graph G

2

[ G

3

an be similarly deomposed to G

2

and the graphs H

00

k

onsisting of

H

0

k

plus the edge E (k = 1; : : : ; e). Here H

00

k

is isomorphi to H

k+1

for k = 1; : : : ; e � 1

and H

00

e

is isomorphi to G. Thus repeated (1; 1)-deompositions break up A(G

1

; G

2

; G

3

)

to subgraphs that are isomorphi in pairs plus the subgraph H

0

1

ontaining no edges and

having therefore no (1; 1)-fators. Thus G

1

, G

2

and G

3

(1; 1)-evenly amend G proving the

lemma.

Theorem 13. Let i and j be positive integers. A graph G of size (n;m; e) is (i; j)-evenly

amendable if and only if n � i or m � j or e < nm.

PROOF: The only if part is proved by Lemma 9. If e < nm then G is (1; 1)-evenly

amendable by Lemma 12 and therefore it is (i; j)-evenly amendable. Finally if n � i or

m � j then G has no (i; j) fators thus G

1

= G

2

= G

3

= G (i; j)-evenly amends it.
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