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Abstrat.

We examine the omputational power of modular ounting, where

the modulus m is not a prime power, in the setting of polynomials in

boolean variables over Z

m

. In partiular, we say that a polynomial P

weakly represents a boolean funtion f (both have n variables) if for any

inputs x and y in f0; 1g

n

we have P (x) 6= P (y) whenever f(x) 6= f(y).

Barrington, Beigel, and Rudih (1994) investigated the minimal degree

of a polynomial representing the OR funtion in this way, proving an

upper bound of O(n

1=r

) (where r is the number of distint primes di-

viding m) and a lower bound of !(1). Here we show a lower bound

of 
(logn) when m is a produt of two primes and 
((log n)

1=(r�1)

) in

general. While many lower bounds are known for a muh stronger form

of representation of a funtion by a polynomial (Barrington, Beigel and

Rudih 1994, Tsai 1996), using this liberal (and, we argue, more nat-

ural) de�nition very little is known. While the degree is known to be


(log n) for the generalized inner produt beause of its high ommu-

niation omplexity (Grolmusz 1995), our bound is the best known for

any funtion of low ommuniation omplexity and any modulus not a

prime power.

Key words. Ciruit omplexity, modular ounting, boolean funtion

omplexity.

Subjet lassi�ations. 68Q15

1. Introdution

One measure of our ignorane of iruit omplexity is that we still know very

little about how simple operations (suh as AND, OR, or modular ounting)
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an ombine in parallel to ompute boolean funtions. In the model of iruits

of onstant depth and unbounded fan-in, we know that AND and OR alone

need exponential size to ompute any MOD-m funtion, that MOD-p alone for

prime p annot do AND or OR at all, and that AND, OR, and MOD-p need

exponential size to do MOD-r unless r is a power of p. (See, e.g., Boppana and

Sipser (1990) for a survey of these results.) But we have very few lower bounds

on the omputational power of MOD-m in this setting (m not a prime power, as

prime powers are equivalent in power to their primes). A notorious statement

of this is that we annot yet rule out the implausible idea that MOD-6 gates

alone might be able to ompute NP-omplete problems in onstant depth and

polynomial size, whereas we have no reason to believe that they an do AND

or OR within these bounds.

The lower bounds on the power of MOD-p gates in iruits use the auxiliary

model of polynomials in n boolean variables over Z

p

, with degree as the om-

plexity measure. Counting modulo p is learly an easy operation in this model.

AND and OR of unbounded fan-in are hard (hene the impossibility of doing

them with MOD-p gates alone) but Razborov (1987) showed that AND or OR

are approximated by polynomials of low degree. This means that small iruits

of AND, OR, and MOD-p gates annot perform operations like MAJORITY

or MOD-r that an be shown to be not approximable in this way (Razborov

1987, Smolensky 1987).

Representing iruits by polynomials is a powerful general tehnique (for

example, see the survey artile of Beigel (1993), whih is largely onerned

with using polynomials over the integers or reals to bound the power of iruits

with some MAJORITY gates). It is natural to try to use polynomials over

Z

m

to bound the power of MOD-m gates for general m, but the tehnique

breaks down. A MOD-m gate adds its inputs modulo m, whih is easy for a

Z

m

polynomial, but then must somehow onvert the answer to boolean form,

whih is no longer an algebraially simple operation as it was in the prime

modulus ase. Ciruits an simulate low-degree polynomials but not, so far as

we know, vie versa. But even this apparently weaker model has us stumped

for the most part, as we shall see. Following Barrington, Beigel, and Rudih

(1994), we investigate the degree of polynomials over Z

m

that represent the

OR funtion and present a new lower bound on this degree.

To begin with, though, we must deide what it means for a polynomial P

over Z

m

to represent a boolean funtion f . In the de�nitions x and y denote

arbitrary 0 � 1 vetors. We present three suessively more liberal andidate

de�nitions:
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Æ Strong representation: We insist that f(x) = P (x) for all x, in par-

tiular that P (x) is always zero or one.

Æ One-sided representation: We insist that f(x) = 0 i� P (x) = 0. If

f(x) = 1, we let P (x) take on any nonzero value in Z

m

.

Æ Weak representation: We insist that for any x and y, P (x) 6= P (y)

whenever f(x) 6= f(y). Equivalently, there is a subset S of Z

m

suh that

f(x) = 0 i� P (x) 2 S.

Eah de�nition gives us a omplexity measure on boolean funtions { the

minimal degree of a polynomial representing the funtion in eah way, whih

we will all the strong degree, one-sided degree, and weak degree. In the ase of

a prime modulus p, onverting a weak representation into a strong one requires

only that we multiply the degree by p� 1, so we an see that the three degree

measures then di�er only by a multipliative onstant. We observe below that

a similar relationship holds when the modulus is a prime power, but no suh

relationship holds if it is not. To take one example, the \one-sided MOD-m"

funtion, whose one-sided representation is

P

n

i=1

x

i

, has one-sided degree 1 but

strong degree n.

The strong degree is generally easy to alulate beause the polynomial

strongly representing a given boolean funtion is essentially unique. But if we

want to use polynomials to gain insight into omputation by iruits, we will

need to deal with the other two measures. A one-sided or weak representation

of degree d is equivalent to a depth-two iruit onsisting of a single MOD-m

gate on the top and several AND gates of fan-in at most d below. The di�erene

is how the MOD-m gate onverts its Z

m

sum to a boolean value | zero to zero

and nonzero to one (as in the one-sided representation and in the most usual

de�nition for MOD-m gates) or by an arbitrary funtion from Z

m

to f0; 1g (as

in the weak representation).

Barrington, Beigel and Rudih (1994) and Tsai (1996) proved a number of

strong lower bounds for the one-sided model, that allow the onstrution of

orales under whih the onjetured ontainments hold among the omplexity

lasses MOD

m

P . However, these results also point out some problems with

the model. Modulo m, the boolean funtion whih is one i� the sum of the

inputs is divisible by m (the negation of the one-sided MOD-m funtion above)

has linear one-sided degree, while its negation has a one-sided degree of 1. The

lower bound arguments themselves also rely on the fat that the target funtions

have a large number of zero values, whih impose orresponding zero values on

any polynomials that are one-sided representations. The bounds thus exploit
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what appears to us to be an artifat of the de�nition rather than a fundamental

property of modular ounting.

In this paper we use the weak degree (denoted �(f;m)) whih we argue is

the most interesting and natural of the three measures. Clearly lower bounds

on it apply to both the other measures. Furthermore, if we want to bound the

omputational power of modular ounting, it is only fair to allow an algorithm

to extrat all possible information out of the result of suh ounting, an element

of Z

m

.

Fortunately, as noted by Barrington, Beigel, and Rudih (1994), the dis-

tintion between one-sided and weak degree disappears in the ase of the OR

funtion, where there is only one zero value to worry about. Thus the results

there on the one-sided degree of OR apply to the weak degree, and are in fat

the �rst results on the weak degree of any funtion modulo a non-prime power.

They proved that the weak degree of OR is O(n

1=r

), where r is the number of

distint primes dividing m. In fat they ahieve this bound by a symmetri

polynomial, they show that no symmetri polynomial an do better, and they

onjeture that this bound is atually optimal for all polynomials. Their only

lower bound was !(1), obtained by a Ramsey argument, though this an be

improved to 
(log logn= log log logn) by an argument of Baker and Shmidt

(1980).

In this paper we improve this lower bound signi�antly to (logn)


(1)

. Speif-

ially, if r again is the number of distint primes dividingm, the weak degree is


((logn)

1=(r�1)

) (in partiular, 
(logn) when m is the produt of two primes

or prime powers).

We do not believe that this lower bound is at all tight, and in fat suh a

small weak degree of OR would have some strange onsequenes. As desribed

by Barrington, Beigel, and Rudih (1994), this would allow us to simulate an

AND or OR gate by a onstant depth quasipolynomial size iruit of MOD-

m gates alone, ollapsing the omplexity lasses qCC

0

and qACC

0

de�ned in

Barrington (1992a).

Determining the weak degree of OR is an interesting problem in its own

right as it deals with the ability of extremely natural problems to simulate

eah other in a natural setting. More importantly, it is a foal point for the

examination of the omputational power of modular ounting. A better upper

bound on the degree would provide a new omputational tehnique that might

have wider utility. Lower bounds on the degree, suh as the one we provide here,

are urrently the best we an do toward proving limits on this omputational

power.

Subsequent to our work, Grolmusz (1995) has shown an 
(logn) lower
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bound on the weak degree of the generalized inner produt funtion (the parity

of 8n= logn AND's of size (logn)=8 eah). This is beause Babai, Nisan, and

Szegedy (1989) showed that this funtion has high k-party ommuniation om-

plexity for k = (logn)=8, and a funtion weakly represented by a polynomial of

degree k � 1 has k-party ommuniation omplexity only O(k logm) = O(k).

Of ourse, the OR funtion has onstant ommuniation omplexity of any

type, so suh tehniques will not work to bound its degree.

2. Lower bounds for the OR funtion

We begin by larifying the relationship between strong and weak representation

for prime power moduli, in a form that will be partiularly useful later. This

result is well-known but inluded for ompleteness | we adapt the presentation

in Barrington (1992)

Lemma 1. Let q = p

e

be a prime power, and let P be a polynomial of degree

d in n Boolean variables over Z

q

. If P weakly represents a Boolean funtion f

then there exists a polynomial P

�

over Z

p

, of degree at most (q � 1)d strongly

representing f .

Proof. Suppose �rst that P one-sidedly represents f .

We use indution on the exponent e. If e = 1, q = p is prime and we

may take P

�

= P

q�1

. For the indutive ase, we use the fat (Barrington

1992, Chandra, Sstokmeyer, and Vishkin 1984) that any polynomial Z is zero

modulo p

e+1

i� Z is zero modulo P and (

Z

p

) is zero modulo p

e

, where (

Z

p

) denotes

the sum of all possible produts of p terms from Z (we avoid using oeÆients

in writing Z as sum of monomial terms, we repeat terms instead if neessary).

Note that (

Z

p

) has degree pd. Using the indutive hypothesis, we hoose a

polynomial R over Z

p

, of degree at most (p

e

�1)(pd), whih is zero when (

P

p

) is

zero modulo p

e

and one otherwise. Then we may take P

�

= 1�(1�P

p�1

)(1�R).

The degree of P

�

is bounded above by (p� 1)d+ (p

e

� 1)pd = (q � 1)d.

If P weakly represents f then the set of zeros of f is the disjoint union of the

set of zeros of the funtion one-sidedly represented by some of the polynomials

P � , where  2 Z

q

. Thus a polynomial strongly representing f over Z

p

an be

obtained by taking a suitable linear ombination of the polynomials strongly

representing those funtions.

2
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Corollary 2. If q is a prime power, and d(q � 1) < n, no polynomial of

degree d an weakly represent the OR funtion over Z

q

.

Proof. By Lemma 1, if this happened we would have a polynomial over Z

p

,

of degree at most d(q�1), strongly representing the OR funtion of n variables.

But the polynomial that strongly represents OR is essentially unique and has

degree n.

2

We will abuse notation by denoting sets of input variables and their har-

ateristi vetors the same way (so, for example, \0" will represent the empty

set of variables or the setting where all of them are false). Our main tool is the

following lemma:

Lemma 3. Let P be an n-variable polynomial of degree d over the ring Z

q

,

where q is a prime power. If k � 1 satis�es n � k+ (q� 1)

P

d

i=1

(d+ 1� i)

�

k

i

�

,

then we an �nd pairwise disjoint and nonempty sets of variables S

1

; : : : ; S

k

suh that for every � 2 f0; 1g

k

we have P (

P

k

i=1

�

i

S

i

) = P (0).

Proof. We are going to �nd the sets S

i

reursively with jS

i

j � s

i

, where s

i

is a number to be de�ned later.

We begin by taking a set of variables S of size jSj = s

1

= (q�1)d+1. If we

restrit the degree d polynomial P to S by setting all other variables to zero, by

Corollary 2 this polynomial annot weakly represent the OR funtion modulo

q. Therefore there must be some subset S

1

of S with P (S

1

) = P (0). This

is the base step of our argument. We now give the argument for the general

reursive step, of whih this base step is a speial ase.

Let 0 � j < k. Without loss of generality we may suppose that P (0) = 0,

that the sets S

1

; : : : ; S

j

of the appropriate size are already hosen, and that

they satisfy P (

P

j

i=1

�

i

S

i

) = 0 for any � 2 f0; 1g

j

. Let us hoose a set S of

s

j+1

input variables disjoint from all of S

1

; : : : ; S

j

. We require n �

P

k

j=1

s

j

to

ensure that this is possible.

For any � 2 f0; 1g

j

, let P

�

denote the following restrition of P . We �x

all the variables in S

i

to �

i

for i = 1; : : : ; j, and �x all the variables that are

outside both S and all the S

i

's to 0. So P

�

is a polynomial over the variables

in S.

By assumption eah P

�

is zero at 0. Our goal is to �nd another ommon

zero, say P

�

(S

�

) = 0 for all �. Then the nonempty set S

�

an be hosen as our

next set S

j+1

. But if suh a set S

�

did not exist, then using Lemma 1 we ould

onstrut a low degree polynomial that would strongly represent OR modulo

p. We need only onstrut the mod p polynomial P

�

�

strongly representing
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the Boolean funtion one-sidedly represented by P

�

for eah � using Lemma 1.

Then mod p polynomial R = 1 �

Q

�2f0;1g

j

(1 � P

�

�

) takes only 0-1 values and

R(x) = 0 if and only if P

�

(x) = 0 for every � 2 f0; 1g

j

, so unless there exists the

required set S

�

, R strongly represents OR modulo q. We get a ontradition

by hoosing jSj or s

j+1

, the number of variables of R, to be larger than the

degree of R whih is at most 2

j

(q � 1)d.

We an save a little bit on this degree by taking inlusion-exlusion sums

of the P

�

�rst. As the higher degree terms are the same in the di�erent P

�

's,

they anel out.

For 0-1 vetors Æ and �, we say Æ � � if Æ

i

� �

i

for eah oordinate i, and

we de�ne jÆj to be the number of ones in Æ. Let Q

�

=

P

Æ��

(�1)

jÆj

P

Æ

. Take

any monomial term of P and an S

i

that ontains no variables from the term.

The ontribution of this term to the value of P

Æ

and P

Æ

0

is naturally the same

if Æ and Æ

0

di�er only in the ith oordinate. This makes the ontribution of our

monomial term to Q

�

vanish if �

i

= 1. So the ontribution to Q

�

of a monomial

term of P is nonzero only if the term has variables from eah set S

i

where

�

i

= 1. Thus the monomial, being of degree at most d, has at most d � j�j

variables in S. This makes the degree of Q

�

at most d� j�j and in ase j�j � d

we have Q

�

= 0.

As the ommon zeros of the P

�

are the same as the ommon zeros of the

Q

�

we an use R

0

= 1 �

Q

�2f0;1g

j

(1 � Q

�

�

) in plae of R. Here Q

�

�

is the mod

p polynomial strongly representing the funtion one-sidedly represented by Q

�

guaranteed by Lemma 1. The degree of R

0

is at most (q � 1)

P

d�1

i=0

�

j

i

�

(d � i),

so hoosing jSj larger suÆes. For this reason we de�ne s

j+1

to be 1 + (q �

1)

P

d�1

i=0

�

j

i

�

(d� i).

In order to have enough variables to hoose S

1

; : : : ; S

k

from we must have

n �

P

k

j=1

s

j

. This is exatly the bound on n in the lemma.

2

Definition 4. We all a Boolean funtion g a strit restrition of the Boolean

funtion f if g is what we get by setting some variables of f to 0, while setting

some sets of variables to be equal. The number of variables of g is therefore

the number of equivalene lasses of the nonzero variables of f . We all a

polynomial Q a strit restrition of the polynomial P if we an obtain Q from

P via this kind of restrition. Note that in this ase the degree of Q is never

more than the degree of P .

Using this notion Lemma 3 says that every n-variable modulo q polynomial

of degree d has a k-variable strit restrition that is onstant on the 0-1 inputs

if k and n satisfy the inequality in the lemma.
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Lemma 5. Let m = pq where p is a prime power and q is relatively prime to

p. Let f be an n-variable Boolean funtion and let k be a number satisfying

the inequality of Lemma 3. Then there exists a funtion g, a k-variable strit

restrition of f , suh that �(f;m) � �(g; q).

Proof. Suppose P is a polynomial over Z

m

weakly representing f . Let P

p

be P modulo p and P

q

be P modulo q. Using Lemma 3 P

p

has a k-variable

strit restrition that is onstant on the 0-1 inputs. Now the same restrition

of P

q

has to weakly represent the orresponding restrition of f . This gives the

lemma.

2

Lemma 5 immediately gives a lower bound on the weak degree of the OR

funtion modulo omposite numbers. By a \maximal prime power divisor", we

mean a prime power p > 1 suh that m = pq and p and q are relatively prime.

Theorem 6. Let m have r � 2 distint prime divisors, and let p be the small-

est maximal prime power divisor of m. Then for the n-variable OR funtion

we have �(OR;m) � ((1=(p� 1)� o(1)) logn)

1=(r�1)

.

Proof. It is more onvenient to onsider the maximal number n(m; d) of

variables of an OR funtion weakly representable by a degree d polynomial

modulo m. In this setting we need to prove logn(m; d) � (p � 1 + o(1))d

r�1

.

For prime power modulus p we have n(p; d) = (p� 1)d. For general moduli we

use indution on r. Let m = p

1

q where p

1

is a maximal prime power divisor

of m di�erent from p. Sine any strit restrition of the OR funtion is again

an OR funtion, by Lemma 5 we get n(m; d) < k+ (p

1

� 1)

P

d

i=1

(d+ 1� i)

�

k

i

�

where k = n(d; q) + 1.

If r = 2 then q = p is a prime power and k = (p�1)d+1. Using

P

d

i=1

�

k

i

�

<

P

k

i=0

�

k

i

�

= 2

k

we have n(m; d) � 2(p

1

� 1)d2

(p�1)d

. Thus logn(m; d) � (p �

1 + o(1))d.

By indution we have log k � (p�1+o(1))d

r�2

in the r > 2 ase. We use a

di�erent method to estimate the sum: n(m; d) � k+(p

1

�1)

P

d

i=1

(d+1�i)

�

k

i

�

�

(p

1

� 1)k

d

. Thus logn(m; d) � log(p

1

� 1) + d log k � (p� 1 + o(1))d

r�1

.

2

We remark that more areful alulation an improve the 1=(p�1) onstant

in the result to 1=((p� 1)H(1=(p� 1))) with the binary entropy funtion H.

The best previous result for the weak degree of OR is impliit in Baker

and Shmidt (1980) | it works equally well for any (onstant) modulus but is
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inferior to our result. (In this paper we have not onsidered moduli growing

with n.)

Theorem 7. (Baker and Shmidt, 1980) For any �xed integer m and the n-

variable OR funtion we have �(OR;m) = 
(log logn= log log logn).

3. Open problems

The upper and lower bounds for �(OR;m) are still far apart for any m not a

prime power. If m is the produt of two di�erent primes the bounds are O(

p

n)

and 
(logn). It would be interesting to improve on either bound. Also, for

moduli with more than two distint prime fators, there remains the tehnial

problem of whether the ombinatorial tehniques here an be improved to get

an 
(logn) degree bound.

While the power of linear polynomials to weakly represent OR is easily

understood, the quadrati ase already poses an amusing spei� problem.

What is the largest n suh that the OR funtion of n variables an be weakly

represented by a quadrati polynomial modulo 6, for example? The argument

of Barrington, Beigel and Rudih (1994) shows that n = 8 is the exat answer

for symmetri polynomials, but general polynomials for n = 10 are easy to

onstrut. Is this best possible? Extensive (but not exhaustive) omputer

searhes by the seond author have failed to �nd a polynomial for n = 11, and

we onjeture that none exists. The argument of this paper shows that n = 21

is impossible, as we onstrut sets of size at most s

1

= 5, s

2

= 7, and s

3

= 9.

In fat an ad ho argument shows that we an �nd a set S

1

of size three, so

the best known upper bound is n � 18.

Currently, 
(logn) is the best lower bound on the weak degree of not only

the OR funtion but of any expliit funtion modulo an m not a prime power.

(Grolmusz (1995) proves suh a bound for the generalized inner produt fun-

tion.) The most important open problem on this omplexity measure is to

prove high (
(n) or at least n


(1)

) lower bounds on the weak degree of an

expliit funtion.
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