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Abstra
t.

We examine the 
omputational power of modular 
ounting, where

the modulus m is not a prime power, in the setting of polynomials in

boolean variables over Z

m

. In parti
ular, we say that a polynomial P

weakly represents a boolean fun
tion f (both have n variables) if for any

inputs x and y in f0; 1g

n

we have P (x) 6= P (y) whenever f(x) 6= f(y).

Barrington, Beigel, and Rudi
h (1994) investigated the minimal degree

of a polynomial representing the OR fun
tion in this way, proving an

upper bound of O(n

1=r

) (where r is the number of distin
t primes di-

viding m) and a lower bound of !(1). Here we show a lower bound

of 
(logn) when m is a produ
t of two primes and 
((log n)

1=(r�1)

) in

general. While many lower bounds are known for a mu
h stronger form

of representation of a fun
tion by a polynomial (Barrington, Beigel and

Rudi
h 1994, Tsai 1996), using this liberal (and, we argue, more nat-

ural) de�nition very little is known. While the degree is known to be


(log n) for the generalized inner produ
t be
ause of its high 
ommu-

ni
ation 
omplexity (Grolmusz 1995), our bound is the best known for

any fun
tion of low 
ommuni
ation 
omplexity and any modulus not a

prime power.
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1. Introdu
tion

One measure of our ignoran
e of 
ir
uit 
omplexity is that we still know very

little about how simple operations (su
h as AND, OR, or modular 
ounting)



2 G. Tardos and D. A. M. Barrington


an 
ombine in parallel to 
ompute boolean fun
tions. In the model of 
ir
uits

of 
onstant depth and unbounded fan-in, we know that AND and OR alone

need exponential size to 
ompute any MOD-m fun
tion, that MOD-p alone for

prime p 
annot do AND or OR at all, and that AND, OR, and MOD-p need

exponential size to do MOD-r unless r is a power of p. (See, e.g., Boppana and

Sipser (1990) for a survey of these results.) But we have very few lower bounds

on the 
omputational power of MOD-m in this setting (m not a prime power, as

prime powers are equivalent in power to their primes). A notorious statement

of this is that we 
annot yet rule out the implausible idea that MOD-6 gates

alone might be able to 
ompute NP-
omplete problems in 
onstant depth and

polynomial size, whereas we have no reason to believe that they 
an do AND

or OR within these bounds.

The lower bounds on the power of MOD-p gates in 
ir
uits use the auxiliary

model of polynomials in n boolean variables over Z

p

, with degree as the 
om-

plexity measure. Counting modulo p is 
learly an easy operation in this model.

AND and OR of unbounded fan-in are hard (hen
e the impossibility of doing

them with MOD-p gates alone) but Razborov (1987) showed that AND or OR

are approximated by polynomials of low degree. This means that small 
ir
uits

of AND, OR, and MOD-p gates 
annot perform operations like MAJORITY

or MOD-r that 
an be shown to be not approximable in this way (Razborov

1987, Smolensky 1987).

Representing 
ir
uits by polynomials is a powerful general te
hnique (for

example, see the survey arti
le of Beigel (1993), whi
h is largely 
on
erned

with using polynomials over the integers or reals to bound the power of 
ir
uits

with some MAJORITY gates). It is natural to try to use polynomials over

Z

m

to bound the power of MOD-m gates for general m, but the te
hnique

breaks down. A MOD-m gate adds its inputs modulo m, whi
h is easy for a

Z

m

polynomial, but then must somehow 
onvert the answer to boolean form,

whi
h is no longer an algebrai
ally simple operation as it was in the prime

modulus 
ase. Cir
uits 
an simulate low-degree polynomials but not, so far as

we know, vi
e versa. But even this apparently weaker model has us stumped

for the most part, as we shall see. Following Barrington, Beigel, and Rudi
h

(1994), we investigate the degree of polynomials over Z

m

that represent the

OR fun
tion and present a new lower bound on this degree.

To begin with, though, we must de
ide what it means for a polynomial P

over Z

m

to represent a boolean fun
tion f . In the de�nitions x and y denote

arbitrary 0 � 1 ve
tors. We present three su

essively more liberal 
andidate

de�nitions:
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Æ Strong representation: We insist that f(x) = P (x) for all x, in par-

ti
ular that P (x) is always zero or one.

Æ One-sided representation: We insist that f(x) = 0 i� P (x) = 0. If

f(x) = 1, we let P (x) take on any nonzero value in Z

m

.

Æ Weak representation: We insist that for any x and y, P (x) 6= P (y)

whenever f(x) 6= f(y). Equivalently, there is a subset S of Z

m

su
h that

f(x) = 0 i� P (x) 2 S.

Ea
h de�nition gives us a 
omplexity measure on boolean fun
tions { the

minimal degree of a polynomial representing the fun
tion in ea
h way, whi
h

we will 
all the strong degree, one-sided degree, and weak degree. In the 
ase of

a prime modulus p, 
onverting a weak representation into a strong one requires

only that we multiply the degree by p� 1, so we 
an see that the three degree

measures then di�er only by a multipli
ative 
onstant. We observe below that

a similar relationship holds when the modulus is a prime power, but no su
h

relationship holds if it is not. To take one example, the \one-sided MOD-m"

fun
tion, whose one-sided representation is

P

n

i=1

x

i

, has one-sided degree 1 but

strong degree n.

The strong degree is generally easy to 
al
ulate be
ause the polynomial

strongly representing a given boolean fun
tion is essentially unique. But if we

want to use polynomials to gain insight into 
omputation by 
ir
uits, we will

need to deal with the other two measures. A one-sided or weak representation

of degree d is equivalent to a depth-two 
ir
uit 
onsisting of a single MOD-m

gate on the top and several AND gates of fan-in at most d below. The di�eren
e

is how the MOD-m gate 
onverts its Z

m

sum to a boolean value | zero to zero

and nonzero to one (as in the one-sided representation and in the most usual

de�nition for MOD-m gates) or by an arbitrary fun
tion from Z

m

to f0; 1g (as

in the weak representation).

Barrington, Beigel and Rudi
h (1994) and Tsai (1996) proved a number of

strong lower bounds for the one-sided model, that allow the 
onstru
tion of

ora
les under whi
h the 
onje
tured 
ontainments hold among the 
omplexity


lasses MOD

m

P . However, these results also point out some problems with

the model. Modulo m, the boolean fun
tion whi
h is one i� the sum of the

inputs is divisible by m (the negation of the one-sided MOD-m fun
tion above)

has linear one-sided degree, while its negation has a one-sided degree of 1. The

lower bound arguments themselves also rely on the fa
t that the target fun
tions

have a large number of zero values, whi
h impose 
orresponding zero values on

any polynomials that are one-sided representations. The bounds thus exploit
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what appears to us to be an artifa
t of the de�nition rather than a fundamental

property of modular 
ounting.

In this paper we use the weak degree (denoted �(f;m)) whi
h we argue is

the most interesting and natural of the three measures. Clearly lower bounds

on it apply to both the other measures. Furthermore, if we want to bound the


omputational power of modular 
ounting, it is only fair to allow an algorithm

to extra
t all possible information out of the result of su
h 
ounting, an element

of Z

m

.

Fortunately, as noted by Barrington, Beigel, and Rudi
h (1994), the dis-

tin
tion between one-sided and weak degree disappears in the 
ase of the OR

fun
tion, where there is only one zero value to worry about. Thus the results

there on the one-sided degree of OR apply to the weak degree, and are in fa
t

the �rst results on the weak degree of any fun
tion modulo a non-prime power.

They proved that the weak degree of OR is O(n

1=r

), where r is the number of

distin
t primes dividing m. In fa
t they a
hieve this bound by a symmetri


polynomial, they show that no symmetri
 polynomial 
an do better, and they


onje
ture that this bound is a
tually optimal for all polynomials. Their only

lower bound was !(1), obtained by a Ramsey argument, though this 
an be

improved to 
(log logn= log log logn) by an argument of Baker and S
hmidt

(1980).

In this paper we improve this lower bound signi�
antly to (logn)


(1)

. Spe
if-

i
ally, if r again is the number of distin
t primes dividingm, the weak degree is


((logn)

1=(r�1)

) (in parti
ular, 
(logn) when m is the produ
t of two primes

or prime powers).

We do not believe that this lower bound is at all tight, and in fa
t su
h a

small weak degree of OR would have some strange 
onsequen
es. As des
ribed

by Barrington, Beigel, and Rudi
h (1994), this would allow us to simulate an

AND or OR gate by a 
onstant depth quasipolynomial size 
ir
uit of MOD-

m gates alone, 
ollapsing the 
omplexity 
lasses qCC

0

and qACC

0

de�ned in

Barrington (1992a).

Determining the weak degree of OR is an interesting problem in its own

right as it deals with the ability of extremely natural problems to simulate

ea
h other in a natural setting. More importantly, it is a fo
al point for the

examination of the 
omputational power of modular 
ounting. A better upper

bound on the degree would provide a new 
omputational te
hnique that might

have wider utility. Lower bounds on the degree, su
h as the one we provide here,

are 
urrently the best we 
an do toward proving limits on this 
omputational

power.

Subsequent to our work, Grolmusz (1995) has shown an 
(logn) lower
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bound on the weak degree of the generalized inner produ
t fun
tion (the parity

of 8n= logn AND's of size (logn)=8 ea
h). This is be
ause Babai, Nisan, and

Szegedy (1989) showed that this fun
tion has high k-party 
ommuni
ation 
om-

plexity for k = (logn)=8, and a fun
tion weakly represented by a polynomial of

degree k � 1 has k-party 
ommuni
ation 
omplexity only O(k logm) = O(k).

Of 
ourse, the OR fun
tion has 
onstant 
ommuni
ation 
omplexity of any

type, so su
h te
hniques will not work to bound its degree.

2. Lower bounds for the OR fun
tion

We begin by 
larifying the relationship between strong and weak representation

for prime power moduli, in a form that will be parti
ularly useful later. This

result is well-known but in
luded for 
ompleteness | we adapt the presentation

in Barrington (1992)

Lemma 1. Let q = p

e

be a prime power, and let P be a polynomial of degree

d in n Boolean variables over Z

q

. If P weakly represents a Boolean fun
tion f

then there exists a polynomial P

�

over Z

p

, of degree at most (q � 1)d strongly

representing f .

Proof. Suppose �rst that P one-sidedly represents f .

We use indu
tion on the exponent e. If e = 1, q = p is prime and we

may take P

�

= P

q�1

. For the indu
tive 
ase, we use the fa
t (Barrington

1992, Chandra, Ssto
kmeyer, and Vishkin 1984) that any polynomial Z is zero

modulo p

e+1

i� Z is zero modulo P and (

Z

p

) is zero modulo p

e

, where (

Z

p

) denotes

the sum of all possible produ
ts of p terms from Z (we avoid using 
oeÆ
ients

in writing Z as sum of monomial terms, we repeat terms instead if ne
essary).

Note that (

Z

p

) has degree pd. Using the indu
tive hypothesis, we 
hoose a

polynomial R over Z

p

, of degree at most (p

e

�1)(pd), whi
h is zero when (

P

p

) is

zero modulo p

e

and one otherwise. Then we may take P

�

= 1�(1�P

p�1

)(1�R).

The degree of P

�

is bounded above by (p� 1)d+ (p

e

� 1)pd = (q � 1)d.

If P weakly represents f then the set of zeros of f is the disjoint union of the

set of zeros of the fun
tion one-sidedly represented by some of the polynomials

P � 
, where 
 2 Z

q

. Thus a polynomial strongly representing f over Z

p


an be

obtained by taking a suitable linear 
ombination of the polynomials strongly

representing those fun
tions.

2
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Corollary 2. If q is a prime power, and d(q � 1) < n, no polynomial of

degree d 
an weakly represent the OR fun
tion over Z

q

.

Proof. By Lemma 1, if this happened we would have a polynomial over Z

p

,

of degree at most d(q�1), strongly representing the OR fun
tion of n variables.

But the polynomial that strongly represents OR is essentially unique and has

degree n.

2

We will abuse notation by denoting sets of input variables and their 
har-

a
teristi
 ve
tors the same way (so, for example, \0" will represent the empty

set of variables or the setting where all of them are false). Our main tool is the

following lemma:

Lemma 3. Let P be an n-variable polynomial of degree d over the ring Z

q

,

where q is a prime power. If k � 1 satis�es n � k+ (q� 1)

P

d

i=1

(d+ 1� i)

�

k

i

�

,

then we 
an �nd pairwise disjoint and nonempty sets of variables S

1

; : : : ; S

k

su
h that for every � 2 f0; 1g

k

we have P (

P

k

i=1

�

i

S

i

) = P (0).

Proof. We are going to �nd the sets S

i

re
ursively with jS

i

j � s

i

, where s

i

is a number to be de�ned later.

We begin by taking a set of variables S of size jSj = s

1

= (q�1)d+1. If we

restri
t the degree d polynomial P to S by setting all other variables to zero, by

Corollary 2 this polynomial 
annot weakly represent the OR fun
tion modulo

q. Therefore there must be some subset S

1

of S with P (S

1

) = P (0). This

is the base step of our argument. We now give the argument for the general

re
ursive step, of whi
h this base step is a spe
ial 
ase.

Let 0 � j < k. Without loss of generality we may suppose that P (0) = 0,

that the sets S

1

; : : : ; S

j

of the appropriate size are already 
hosen, and that

they satisfy P (

P

j

i=1

�

i

S

i

) = 0 for any � 2 f0; 1g

j

. Let us 
hoose a set S of

s

j+1

input variables disjoint from all of S

1

; : : : ; S

j

. We require n �

P

k

j=1

s

j

to

ensure that this is possible.

For any � 2 f0; 1g

j

, let P

�

denote the following restri
tion of P . We �x

all the variables in S

i

to �

i

for i = 1; : : : ; j, and �x all the variables that are

outside both S and all the S

i

's to 0. So P

�

is a polynomial over the variables

in S.

By assumption ea
h P

�

is zero at 0. Our goal is to �nd another 
ommon

zero, say P

�

(S

�

) = 0 for all �. Then the nonempty set S

�


an be 
hosen as our

next set S

j+1

. But if su
h a set S

�

did not exist, then using Lemma 1 we 
ould


onstru
t a low degree polynomial that would strongly represent OR modulo

p. We need only 
onstru
t the mod p polynomial P

�

�

strongly representing
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the Boolean fun
tion one-sidedly represented by P

�

for ea
h � using Lemma 1.

Then mod p polynomial R = 1 �

Q

�2f0;1g

j

(1 � P

�

�

) takes only 0-1 values and

R(x) = 0 if and only if P

�

(x) = 0 for every � 2 f0; 1g

j

, so unless there exists the

required set S

�

, R strongly represents OR modulo q. We get a 
ontradi
tion

by 
hoosing jSj or s

j+1

, the number of variables of R, to be larger than the

degree of R whi
h is at most 2

j

(q � 1)d.

We 
an save a little bit on this degree by taking in
lusion-ex
lusion sums

of the P

�

�rst. As the higher degree terms are the same in the di�erent P

�

's,

they 
an
el out.

For 0-1 ve
tors Æ and �, we say Æ � � if Æ

i

� �

i

for ea
h 
oordinate i, and

we de�ne jÆj to be the number of ones in Æ. Let Q

�

=

P

Æ��

(�1)

jÆj

P

Æ

. Take

any monomial term of P and an S

i

that 
ontains no variables from the term.

The 
ontribution of this term to the value of P

Æ

and P

Æ

0

is naturally the same

if Æ and Æ

0

di�er only in the ith 
oordinate. This makes the 
ontribution of our

monomial term to Q

�

vanish if �

i

= 1. So the 
ontribution to Q

�

of a monomial

term of P is nonzero only if the term has variables from ea
h set S

i

where

�

i

= 1. Thus the monomial, being of degree at most d, has at most d � j�j

variables in S. This makes the degree of Q

�

at most d� j�j and in 
ase j�j � d

we have Q

�

= 0.

As the 
ommon zeros of the P

�

are the same as the 
ommon zeros of the

Q

�

we 
an use R

0

= 1 �

Q

�2f0;1g

j

(1 � Q

�

�

) in pla
e of R. Here Q

�

�

is the mod

p polynomial strongly representing the fun
tion one-sidedly represented by Q

�

guaranteed by Lemma 1. The degree of R

0

is at most (q � 1)

P

d�1

i=0

�

j

i

�

(d � i),

so 
hoosing jSj larger suÆ
es. For this reason we de�ne s

j+1

to be 1 + (q �

1)

P

d�1

i=0

�

j

i

�

(d� i).

In order to have enough variables to 
hoose S

1

; : : : ; S

k

from we must have

n �

P

k

j=1

s

j

. This is exa
tly the bound on n in the lemma.

2

Definition 4. We 
all a Boolean fun
tion g a stri
t restri
tion of the Boolean

fun
tion f if g is what we get by setting some variables of f to 0, while setting

some sets of variables to be equal. The number of variables of g is therefore

the number of equivalen
e 
lasses of the nonzero variables of f . We 
all a

polynomial Q a stri
t restri
tion of the polynomial P if we 
an obtain Q from

P via this kind of restri
tion. Note that in this 
ase the degree of Q is never

more than the degree of P .

Using this notion Lemma 3 says that every n-variable modulo q polynomial

of degree d has a k-variable stri
t restri
tion that is 
onstant on the 0-1 inputs

if k and n satisfy the inequality in the lemma.
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Lemma 5. Let m = pq where p is a prime power and q is relatively prime to

p. Let f be an n-variable Boolean fun
tion and let k be a number satisfying

the inequality of Lemma 3. Then there exists a fun
tion g, a k-variable stri
t

restri
tion of f , su
h that �(f;m) � �(g; q).

Proof. Suppose P is a polynomial over Z

m

weakly representing f . Let P

p

be P modulo p and P

q

be P modulo q. Using Lemma 3 P

p

has a k-variable

stri
t restri
tion that is 
onstant on the 0-1 inputs. Now the same restri
tion

of P

q

has to weakly represent the 
orresponding restri
tion of f . This gives the

lemma.

2

Lemma 5 immediately gives a lower bound on the weak degree of the OR

fun
tion modulo 
omposite numbers. By a \maximal prime power divisor", we

mean a prime power p > 1 su
h that m = pq and p and q are relatively prime.

Theorem 6. Let m have r � 2 distin
t prime divisors, and let p be the small-

est maximal prime power divisor of m. Then for the n-variable OR fun
tion

we have �(OR;m) � ((1=(p� 1)� o(1)) logn)

1=(r�1)

.

Proof. It is more 
onvenient to 
onsider the maximal number n(m; d) of

variables of an OR fun
tion weakly representable by a degree d polynomial

modulo m. In this setting we need to prove logn(m; d) � (p � 1 + o(1))d

r�1

.

For prime power modulus p we have n(p; d) = (p� 1)d. For general moduli we

use indu
tion on r. Let m = p

1

q where p

1

is a maximal prime power divisor

of m di�erent from p. Sin
e any stri
t restri
tion of the OR fun
tion is again

an OR fun
tion, by Lemma 5 we get n(m; d) < k+ (p

1

� 1)

P

d

i=1

(d+ 1� i)

�

k

i

�

where k = n(d; q) + 1.

If r = 2 then q = p is a prime power and k = (p�1)d+1. Using

P

d

i=1

�

k

i

�

<

P

k

i=0

�

k

i

�

= 2

k

we have n(m; d) � 2(p

1

� 1)d2

(p�1)d

. Thus logn(m; d) � (p �

1 + o(1))d.

By indu
tion we have log k � (p�1+o(1))d

r�2

in the r > 2 
ase. We use a

di�erent method to estimate the sum: n(m; d) � k+(p

1

�1)

P

d

i=1

(d+1�i)

�

k

i

�

�

(p

1

� 1)k

d

. Thus logn(m; d) � log(p

1

� 1) + d log k � (p� 1 + o(1))d

r�1

.

2

We remark that more 
areful 
al
ulation 
an improve the 1=(p�1) 
onstant

in the result to 1=((p� 1)H(1=(p� 1))) with the binary entropy fun
tion H.

The best previous result for the weak degree of OR is impli
it in Baker

and S
hmidt (1980) | it works equally well for any (
onstant) modulus but is
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inferior to our result. (In this paper we have not 
onsidered moduli growing

with n.)

Theorem 7. (Baker and S
hmidt, 1980) For any �xed integer m and the n-

variable OR fun
tion we have �(OR;m) = 
(log logn= log log logn).

3. Open problems

The upper and lower bounds for �(OR;m) are still far apart for any m not a

prime power. If m is the produ
t of two di�erent primes the bounds are O(

p

n)

and 
(logn). It would be interesting to improve on either bound. Also, for

moduli with more than two distin
t prime fa
tors, there remains the te
hni
al

problem of whether the 
ombinatorial te
hniques here 
an be improved to get

an 
(logn) degree bound.

While the power of linear polynomials to weakly represent OR is easily

understood, the quadrati
 
ase already poses an amusing spe
i�
 problem.

What is the largest n su
h that the OR fun
tion of n variables 
an be weakly

represented by a quadrati
 polynomial modulo 6, for example? The argument

of Barrington, Beigel and Rudi
h (1994) shows that n = 8 is the exa
t answer

for symmetri
 polynomials, but general polynomials for n = 10 are easy to


onstru
t. Is this best possible? Extensive (but not exhaustive) 
omputer

sear
hes by the se
ond author have failed to �nd a polynomial for n = 11, and

we 
onje
ture that none exists. The argument of this paper shows that n = 21

is impossible, as we 
onstru
t sets of size at most s

1

= 5, s

2

= 7, and s

3

= 9.

In fa
t an ad ho
 argument shows that we 
an �nd a set S

1

of size three, so

the best known upper bound is n � 18.

Currently, 
(logn) is the best lower bound on the weak degree of not only

the OR fun
tion but of any expli
it fun
tion modulo an m not a prime power.

(Grolmusz (1995) proves su
h a bound for the generalized inner produ
t fun
-

tion.) The most important open problem on this 
omplexity measure is to

prove high (
(n) or at least n


(1)

) lower bounds on the weak degree of an

expli
it fun
tion.
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