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Abstract.

We examine the computational power of modular counting, where
the modulus m is not a prime power, in the setting of polynomials in
boolean variables over Z,,. In particular, we say that a polynomial P
weakly represents a boolean function f (both have n variables) if for any
inputs z and y in {0,1}" we have P(z) # P(y) whenever f(z) # f(y).
Barrington, Beigel, and Rudich (1994) investigated the minimal degree
of a polynomial representing the OR function in this way, proving an
upper bound of O(n!/") (where r is the number of distinct primes di-
viding m) and a lower bound of w(1). Here we show a lower bound
of Q(logn) when m is a product of two primes and Q((logn)'/("—1)) in
general. While many lower bounds are known for a much stronger form
of representation of a function by a polynomial (Barrington, Beigel and
Rudich 1994, Tsai 1996), using this liberal (and, we argue, more nat-
ural) definition very little is known. While the degree is known to be
Q(logn) for the generalized inner product because of its high commu-
nication complexity (Grolmusz 1995), our bound is the best known for
any function of low communication complexity and any modulus not a
prime power.
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1. Introduction

One measure of our ignorance of circuit complexity is that we still know very
little about how simple operations (such as AND, OR, or modular counting)
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can combine in parallel to compute boolean functions. In the model of circuits
of constant depth and unbounded fan-in, we know that AND and OR alone
need exponential size to compute any MOD-m function, that MOD-p alone for
prime p cannot do AND or OR at all, and that AND, OR, and MOD-p need
exponential size to do MOD-r unless r is a power of p. (See, e.g., Boppana and
Sipser (1990) for a survey of these results.) But we have very few lower bounds
on the computational power of MOD-m in this setting (m not a prime power, as
prime powers are equivalent in power to their primes). A notorious statement
of this is that we cannot yet rule out the implausible idea that MOD-6 gates
alone might be able to compute NP-complete problems in constant depth and
polynomial size, whereas we have no reason to believe that they can do AND
or OR within these bounds.

The lower bounds on the power of MOD-p gates in circuits use the auxiliary
model of polynomials in n boolean variables over Z,, with degree as the com-
plexity measure. Counting modulo p is clearly an easy operation in this model.
AND and OR of unbounded fan-in are hard (hence the impossibility of doing
them with MOD-p gates alone) but Razborov (1987) showed that AND or OR
are approximated by polynomials of low degree. This means that small circuits
of AND, OR, and MOD-p gates cannot perform operations like MAJORITY
or MOD-r that can be shown to be not approximable in this way (Razborov
1987, Smolensky 1987).

Representing circuits by polynomials is a powerful general technique (for
example, see the survey article of Beigel (1993), which is largely concerned
with using polynomials over the integers or reals to bound the power of circuits
with some MAJORITY gates). It is natural to try to use polynomials over
Zm to bound the power of MOD-m gates for general m, but the technique
breaks down. A MOD-m gate adds its inputs modulo m, which is easy for a
Zm polynomial, but then must somehow convert the answer to boolean form,
which is no longer an algebraically simple operation as it was in the prime
modulus case. Circuits can simulate low-degree polynomials but not, so far as
we know, vice versa. But even this apparently weaker model has us stumped
for the most part, as we shall see. Following Barrington, Beigel, and Rudich
(1994), we investigate the degree of polynomials over Z,, that represent the
OR function and present a new lower bound on this degree.

To begin with, though, we must decide what it means for a polynomial P
over Z,, to represent a boolean function f. In the definitions x and y denote
arbitrary 0 — 1 vectors. We present three successively more liberal candidate
definitions:
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o Strong representation: We insist that f(z) = P(z) for all z, in par-
ticular that P(z) is always zero or one.

o One-sided representation: We insist that f(x) = 0 iff P(x) = 0. If
f(z) =1, we let P(z) take on any nonzero value in Z,,,.

o Weak representation: We insist that for any x and y, P(z) # P(y)
whenever f(x) # f(y). Equivalently, there is a subset S of Z,, such that
f(z) =0iff P(x) € S.

Each definition gives us a complexity measure on boolean functions — the
minimal degree of a polynomial representing the function in each way, which
we will call the strong degree, one-sided degree, and weak degree. In the case of
a prime modulus p, converting a weak representation into a strong one requires
only that we multiply the degree by p — 1, so we can see that the three degree
measures then differ only by a multiplicative constant. We observe below that
a similar relationship holds when the modulus is a prime power, but no such
relationship holds if it is not. To take one example, the “one-sided MOD-m”
function, whose one-sided representation is )./, z;, has one-sided degree 1 but
strong degree n.

The strong degree is generally easy to calculate because the polynomial
strongly representing a given boolean function is essentially unique. But if we
want to use polynomials to gain insight into computation by circuits, we will
need to deal with the other two measures. A one-sided or weak representation
of degree d is equivalent to a depth-two circuit consisting of a single MOD-m
gate on the top and several AND gates of fan-in at most d below. The difference
is how the MOD-m gate converts its Z,, sum to a boolean value — zero to zero
and nonzero to one (as in the one-sided representation and in the most usual
definition for MOD-m gates) or by an arbitrary function from 7, to {0,1} (as
in the weak representation).

Barrington, Beigel and Rudich (1994) and Tsai (1996) proved a number of
strong lower bounds for the one-sided model, that allow the construction of
oracles under which the conjectured containments hold among the complexity
classes MOD,,P. However, these results also point out some problems with
the model. Modulo m, the boolean function which is one iff the sum of the
inputs is divisible by m (the negation of the one-sided MOD-m function above)
has linear one-sided degree, while its negation has a one-sided degree of 1. The
lower bound arguments themselves also rely on the fact that the target functions
have a large number of zero values, which impose corresponding zero values on
any polynomials that are one-sided representations. The bounds thus exploit
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what appears to us to be an artifact of the definition rather than a fundamental
property of modular counting.

In this paper we use the weak degree (denoted A(f,m)) which we argue is
the most interesting and natural of the three measures. Clearly lower bounds
on it apply to both the other measures. Furthermore, if we want to bound the
computational power of modular counting, it is only fair to allow an algorithm
to extract all possible information out of the result of such counting, an element
of Z,,.

Fortunately, as noted by Barrington, Beigel, and Rudich (1994), the dis-
tinction between one-sided and weak degree disappears in the case of the OR
function, where there is only one zero value to worry about. Thus the results
there on the one-sided degree of OR apply to the weak degree, and are in fact
the first results on the weak degree of any function modulo a non-prime power.
They proved that the weak degree of OR is O(n'/"), where 7 is the number of
distinct primes dividing m. In fact they achieve this bound by a symmetric
polynomial, they show that no symmetric polynomial can do better, and they
conjecture that this bound is actually optimal for all polynomials. Their only
lower bound was w(1), obtained by a Ramsey argument, though this can be
improved to Q(loglogn/logloglogn) by an argument of Baker and Schmidt
(1980).

In this paper we improve this lower bound significantly to (logn)*"). Specif-
ically, if r again is the number of distinct primes dividing m, the weak degree is
Q((logn)=1) (in particular, Q(logn) when m is the product of two primes
or prime powers).

We do not believe that this lower bound is at all tight, and in fact such a
small weak degree of OR would have some strange consequences. As described
by Barrington, Beigel, and Rudich (1994), this would allow us to simulate an
AND or OR gate by a constant depth quasipolynomial size circuit of MOD-
m gates alone, collapsing the complexity classes ¢qC'C? and ¢gACC? defined in
Barrington (1992a).

Determining the weak degree of OR is an interesting problem in its own
right as it deals with the ability of extremely natural problems to simulate
each other in a natural setting. More importantly, it is a focal point for the
examination of the computational power of modular counting. A better upper
bound on the degree would provide a new computational technique that might
have wider utility. Lower bounds on the degree, such as the one we provide here,
are currently the best we can do toward proving limits on this computational
power.

Subsequent to our work, Grolmusz (1995) has shown an Q(logn) lower
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bound on the weak degree of the generalized inner product function (the parity
of 8n/logn AND’s of size (logn)/8 each). This is because Babai, Nisan, and
Szegedy (1989) showed that this function has high k-party communication com-
plexity for k = (logn)/8, and a function weakly represented by a polynomial of
degree k — 1 has k-party communication complexity only O(klogm) = O(k).
Of course, the OR function has constant communication complexity of any
type, so such techniques will not work to bound its degree.

2. Lower bounds for the OR function

We begin by clarifying the relationship between strong and weak representation
for prime power moduli, in a form that will be particularly useful later. This
result is well-known but included for completeness — we adapt the presentation
in Barrington (1992)

LEMMA 1. Let ¢ = p° be a prime power, and let P be a polynomial of degree
d in n Boolean variables over Z,. If P weakly represents a Boolean function f
then there exists a polynomial P* over Z,, of degree at most (¢ — 1)d strongly
representing f.

PROOF. Suppose first that P one-sidedly represents f.

We use induction on the exponent e. If ¢ = 1, ¢ = p is prime and we
may take P* = P97l For the inductive case, we use the fact (Barrington
1992, Chandra, Sstockmeyer, and Vishkin 1984) that any polynomial 7 is zero
modulo p¢*! iff Z is zero modulo P and (i) is zero modulo p®, where (i) denotes
the sum of all possible products of p terms from Z (we avoid using coefficients
in writing Z as sum of monomial terms, we repeat terms instead if necessary).
Note that (i) has degree pd. Using the inductive hypothesis, we choose a
polynomial R over Z,, of degree at most (p®—1)(pd), which is zero when (1;) is
zero modulo p® and one otherwise. Then we may take P* = 1—(1—PP!)(1—R).
The degree of P* is bounded above by (p — 1)d + (p® — 1)pd = (¢ — 1)d.

If P weakly represents f then the set of zeros of f is the disjoint union of the
set of zeros of the function one-sidedly represented by some of the polynomials
P —c, where ¢ € Z,. Thus a polynomial strongly representing f over Z, can be
obtained by taking a suitable linear combination of the polynomials strongly
representing those functions. O
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COROLLARY 2. If ¢ is a prime power, and d(q — 1) < n, no polynomial of
degree d can weakly represent the OR function over Z,,.

ProOOF. By Lemma 1, if this happened we would have a polynomial over Z,,
of degree at most d(q— 1), strongly representing the OR function of n variables.
But the polynomial that strongly represents OR is essentially unique and has
degree n. O

We will abuse notation by denoting sets of input variables and their char-
acteristic vectors the same way (so, for example, “0” will represent the empty
set of variables or the setting where all of them are false). Our main tool is the
following lemma:

LEMMA 3. Let P be an n-variable polynomial of degree d over the ring Z,,
where q is a prime power. If k > 1 satisfies n > k+ (¢ — 1) X%, (d + 1 — 1) (’:),
then we can find pairwise disjoint and nonempty sets of variables S', ..., S*
such that for every e € {0,1}* we have P(XF_, ¢;,S") = P(0).

PROOF. We are going to find the sets S* recursively with |S?| < s;, where s;
is a number to be defined later.

We begin by taking a set of variables S of size |S| = s; = (¢ —1)d+1. If we
restrict the degree d polynomial P to S by setting all other variables to zero, by
Corollary 2 this polynomial cannot weakly represent the OR function modulo
q. Therefore there must be some subset S' of S with P(S') = P(0). This
is the base step of our argument. We now give the argument for the general
recursive step, of which this base step is a special case.

Let 0 < j < k. Without loss of generality we may suppose that P(0) = 0,
that the sets S', e S7 of the appropriate size are already chosen, and that
they satisfy P(37_,¢S") = 0 for any ¢ € {0,1}/. Let us choose a set S of
sj11 input variables disjoint from all of S*,...,S7. We require n > Zle 55 to
ensure that this is possible.

For any ¢ € {0,1}/, let P. denote the following restriction of P. We fix
all the variables in S? to ¢; for ¢ = 1,...,7, and fix all the variables that are
outside both S and all the S%’s to 0. So P. is a polynomial over the variables
in S.

By assumption each P. is zero at 0. Our goal is to find another common
zero, say P.(S*) = 0 for all e. Then the nonempty set S* can be chosen as our
next set S7T!. But if such a set S* did not exist, then using Lemma 1 we could
construct a low degree polynomial that would strongly represent OR modulo
p. We need only construct the mod p polynomial P’ strongly representing
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the Boolean function one-sidedly represented by P, for each ¢ using Lemma 1.
Then mod p polynomial R = 1 — [T.eq0,135 (1 — P) takes only 0-1 values and
R(x) = 0 if and only if P.(x) = 0 for every ¢ € {0, 1}/, so unless there exists the
required set S*, R strongly represents OR modulo ¢q. We get a contradiction
by choosing |S| or s;;1, the number of variables of R, to be larger than the
degree of R which is at most 27(q — 1)d.

We can save a little bit on this degree by taking inclusion-exclusion sums
of the P. first. As the higher degree terms are the same in the different P,’s,
they cancel out.

For 0-1 vectors ¢ and €, we say d < € if §; < ¢; for each coordinate 7, and
we define |§| to be the number of ones in 6. Let Q. = Y. (—1)°P;. Take
any monomial term of P and an S? that contains no variables from the term.
The contribution of this term to the value of Ps and Py is naturally the same
if § and ¢’ differ only in the ith coordinate. This makes the contribution of our
monomial term to (). vanish if ¢, = 1. So the contribution to (). of a monomial
term of P is nonzero only if the term has variables from each set S° where
¢; = 1. Thus the monomial, being of degree at most d, has at most d — |e|
variables in S. This makes the degree of Q). at most d — |¢| and in case |¢| > d
we have Q). = 0.

As the common zeros of the P. are the same as the common zeros of the
Qc we can use R' = 1 — [[.eq0,13 (1 — QF) in place of R. Here Q7 is the mod
p polynomial strongly representing the function one-sidedly represented by Q).
guaranteed by Lemma 1. The degree of R’ is at most (¢ — 1) 2474 (Z) (d —1),
so choosing |S| larger suffices. For this reason we define s;,1 to be 1 + (¢ —
DT (1) d—i).

In order to have enough variables to choose S, ..., S*¥ from we must have
n > Z?Zl sj. This is exactly the bound on n in the lemma. O

DEFINITION 4. We call a Boolean function g a strict restriction of the Boolean
function f if g is what we get by setting some variables of f to 0, while setting
some sets of variables to be equal. The number of variables of g is therefore
the number of equivalence classes of the nonzero variables of f. We call a
polynomial Q) a strict restriction of the polynomial P if we can obtain () from
P via this kind of restriction. Note that in this case the degree of () is never
more than the degree of P.

Using this notion Lemma 3 says that every n-variable modulo ¢ polynomial
of degree d has a k-variable strict restriction that is constant on the 0-1 inputs
if £ and n satisfy the inequality in the lemma.
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LEMMA 5. Let m = pq where p is a prime power and q is relatively prime to
p. Let f be an n-variable Boolean function and let k be a number satisfying
the inequality of Lemma 3. Then there exists a function g, a k-variable strict
restriction of f, such that A(f,m) > A(g,q).

PROOF. Suppose P is a polynomial over Z,, weakly representing f. Let P,
be P modulo p and P, be P modulo ¢q. Using Lemma 3 P, has a k-variable
strict restriction that is constant on the 0-1 inputs. Now the same restriction
of P, has to weakly represent the corresponding restriction of f. This gives the
lemma. O

Lemma 5 immediately gives a lower bound on the weak degree of the OR
function modulo composite numbers. By a “maximal prime power divisor”, we
mean a prime power p > 1 such that m = pq and p and q are relatively prime.

THEOREM 6. Let m have r > 2 distinct prime divisors, and let p be the small-
est maximal prime power divisor of m. Then for the n-variable OR function

we have A(OR,m) > ((1/(p — 1) — o(1)) logn)"/=1,

PrROOF. It is more convenient to consider the maximal number n(m,d) of
variables of an OR function weakly representable by a degree d polynomial
modulo m. In this setting we need to prove logn(m,d) < (p — 1+ o(1))d"~".
For prime power modulus p we have n(p,d) = (p — 1)d. For general moduli we
use induction on r. Let m = p;q where p; is a maximal prime power divisor
of m different from p. Since any strict restriction of the OR function is again
an OR. function, by Lemma 5 we get n(m,d) < k+ (py — 1) 2%, (d + 1 — ) (’:)
where k = n(d, q) + 1.

If r = 2 then ¢ = p is a prime power and k = (p—1)d+1. Using ¥, (’:) <

Y, (f) = 2% we have n(m,d) < 2(p; — 1)d2®=Y4 Thus logn(m,d) < (p —
1+ o(1))d.

By induction we have logk < (p—1+0(1))d"~2 in the r > 2 case. We use a
different method to estimate the sum: n(m,d) < k+(p;—1) oL, (d+1—1) (’:) <

(p1 — 1)k%. Thus logn(m,d) < log(p, — 1) +dlogk < (p—1+o0(1))d". O

We remark that more careful calculation can improve the 1/(p—1) constant
in the result to 1/((p —1)H(1/(p — 1))) with the binary entropy function H.

The best previous result for the weak degree of OR is implicit in Baker
and Schmidt (1980) — it works equally well for any (constant) modulus but is
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inferior to our result. (In this paper we have not considered moduli growing
with n.)

THEOREM 7. (Baker and Schmidt, 1980) For any fixed integer m and the n-
variable OR function we have A(OR, m) = Q(loglogn/logloglogn).

3. Open problems

The upper and lower bounds for A(OR, m) are still far apart for any m not a
prime power. If m is the product of two different primes the bounds are O(y/n)
and Q(logn). It would be interesting to improve on either bound. Also, for
moduli with more than two distinct prime factors, there remains the technical
problem of whether the combinatorial techniques here can be improved to get
an (logn) degree bound.

While the power of linear polynomials to weakly represent OR is easily
understood, the quadratic case already poses an amusing specific problem.
What is the largest n such that the OR function of n variables can be weakly
represented by a quadratic polynomial modulo 6, for example? The argument
of Barrington, Beigel and Rudich (1994) shows that n = 8 is the exact answer
for symmetric polynomials, but general polynomials for n = 10 are easy to
construct. Is this best possible? Extensive (but not exhaustive) computer
searches by the second author have failed to find a polynomial for n = 11, and
we conjecture that none exists. The argument of this paper shows that n = 21
is impossible, as we construct sets of size at most s; = 5, so = 7, and s3 = 9.
In fact an ad hoc argument shows that we can find a set S' of size three, so
the best known upper bound is n < 18.

Currently, Q(logn) is the best lower bound on the weak degree of not only
the OR function but of any explicit function modulo an m not a prime power.
(Grolmusz (1995) proves such a bound for the generalized inner product func-
tion.) The most important open problem on this complexity measure is to
prove high (Q(n) or at least n(")) lower bounds on the weak degree of an
explicit function.
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