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Abstrat. We observe returns of a simple random walk on a �nite graph to

a �xed node, and would like to infer properties of the graph, in partiular

properties of the spetrum of the transition matrix. This is not possible in

general, but at least the eigenvalues an be reovered under fairly general

onditions, e.g. when the graph has a node-transitive automorphism group.

The main result is that by observing polynomially many returns, it is possible

to estimate the spetral gap of suh a graph up to a onstant fator.

1. Introdution

A spelunker has an aident in the ave. His lamp goes out, he annot move, all

he an hear is a bat ying by every now and then on its random ight around the

ave. What an he learn about the shape of the ave?

In other words: What an we learn about the struture of a �nite graph using

only information obtained by observing the returns of a random walk on the graph

to this node?

Let G = (V;E) be a onneted simple graph with n = jV j > 1 verties, and let

r 2 V be a �xed node. Let w

0

= r; w

1

; w

2

; : : : be the steps of a simple random walk

on G starting from r. Assume that we observe the return time sequene, the in�nite

sequene of (random) times 0 < T

1

< T

2

< : : : when the walk visits r. Alternatively

this an be desribed as a sequene a

1

; a

2

; a

3

; ::: of bits, where a

i

= 1 if the walk is

at r at time i, 0 otherwise. Note that T

2

�T

1

; T

3

�T

2

; : : : are independent samples

from the same distribution as T

1

, whih we all the return distribution of G to r.

We say that a parameter p(G; r) of the graph G and root r an be reonstruted

(from the return time sequene), if for every two rooted graphs (G; r) and (G

0

; r

0

)

for whih the return time sequene has the same distribution, we have p(G; r) =

p(G

0

; r

0

).

Whih graph parameters an be reonstruted from the return time sequene?

There is a trivial way to onstrut di�erent graphs with the same return sequene:

take two isomorphi opies and glue them together at the root. Sometimes it makes

sense to assume that we also know the degree d(r) of the root. In this ase, we an

reonstrut the number of edges through

jEj = d(r)E(T

1

)=2: (1)

If the graph is regular, then we an reonstrut the number of nodes:

n = jV j = E(T

1

): (2)

Another trivial example is to observe if all the numbers T

i

are even. This is so

if the graph is bipartite, and it happens with probability 0 otherwise.

A natural andidate for a reonstrutible quantity is the spetrum of the transi-

tion matrix M of the random walk on G. Let �

1

= 1; �

2

; :::; �

n

be the eigenvalues

1
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of M , arranged in dereasing order. Bipartiteness is equivalent to saying that

�

n

= �1.

We are going to show by a simple example that the spetrum is not reon-

strutible in general. On the other hand, we show that if � is an eigenvalue of G

whih has an eigenvetor v 2 R

V

suh that v

r

6= 0, then � is reonstrutible. We

note that the multipliity of � is not neessarily reonstrutible.

A speial ase where the eigenvetor ondition above is satis�ed for all eigenvalues

is when G is node-transitive. We don't know whether in this ase the multipliities

are reonstrutible.

Of partiular interest is the issue of eÆient reonstrution, by whih we mean

observing a polynomial (or expeted polynomial) number of returns. We onsider

this question in the ase of the spetral gap � = 1��

2

. Assuming the graph is node

transitive, we desribe a proedure to estimate � up to a onstant fator, using just

polynomially many (in n) of the �rst values of the T

i

. We give an example of a

graph where the spetral gap annot be reovered at all from observations made at

one partiular node.

This question was �rst mentioned, together with other related problems, in [2℄.

Another related work is that of Feige [3℄ whih presents a randomized spae-eÆient

algorithm that determines whether a graph is onneted. His method uses return

times of random walks to estimate the size of onneted omponents.

2. Examples

Example 1. Consider the two trees in Figure 1. The distribution of the return time

to the root is the same in both trees (see later). The eigenvalues of the tree on the

left are

1;

p

3=2;

p

6=4; 0; 0; 0; 0; 0;�

p

6=4;�

p

3=2;�1;

while the eigenvalues of the tree on the right are

1;

p

3=2;

p

3=2;

p

6=4; 0; 0; 0;�

p

6=4;�

p

3=2;�

p

3=2;�1:

Note that the eigenvalues are the same, but their multipliities are di�erent.

Figure 1. Two trees with the same return times but di�erent spetra

Example 2. Let T be a tree in whih all internal nodes have degree d+1 and whih

has a \root" r suh that all leaves are at distane h from the root. We onstrut a

graph G by adding a d-regular graph on the leaves.
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For a �xed h and d, all graphs obtained this way are (d+1)-regular graphs, and

the distribution of the return time to the root is the same in all suh graphs. On

the other hand, graphs obtained this way an have very di�erent properties. If we

add an expander on the leaves, the graph G will be an expander. (Reall that G is

a -expander i� j�Sj > jSj for every non empty set of verties S with jSj < jGj=2.

For bakground on expanders and spetral gap see e.g. [4℄.) If we onnet \twin"

leaves to eah other, and also math up \ousins" to get d new edges at eah node,

then for h > 2 the root will be a utpoint. For expanders, the eigenvalue gap

�

1

� �

2

is bounded from below by a positive funtion of d, while for the graphs

with utpoints in the middle the eigenvalue gap tends to 0 as h!1.

3. Preparation: some algebra and generating funtions

3.1. Return probabilities and eigenvalues. Denote by P

k

(x; y) the probability

that a simple random walk on G starting at x 2 V will be at y 2 V at time k.

Clearly

P

k

(x; y) = e

T

x

M

k

e

y

: (3)

Here M is not symmetri, but we an onsider the symmetrized matrix N =

DMD

�1

, where D is a diagonal matrix with the positive numbers

p

d(i) in the

diagonal. The matrix N has the same eigenvalues as M , and so we have

P

k

(r; r) =

n

X

i=1

f

i

(r)

2

�

k

i

; (4)

where f

1

; f

2

; :::; f

n

is an orthonormal basis of eigenfuntions of N orresponding to

the eigenvalues �

1

; �

2

; :::; �

n

.

We note that if the graph is node-transitive, then the value P

k

(r; r) is the same

for all r, and hene by averaging (4) we get the simpler formula

P

k

(r; r) =

1

n

trae(M

k

) =

1

n

n

X

i=1

�

k

i

: (5)

At some point, it will be onvenient to onsider the lazy version of our hain,

i.e., the Markov hain with transition matrix M

0

= (1=2)(I +M) (before doing a

step, we ip a oin to deide if we want to move at all). The observer an easily

pretend that he or she is wathing the lazy version of the hain: after eah step,

he ips a oin in quik suession until he tosses a head, and advanes his wath

by the number of oinips. The distribution after k lazy steps is easy to ompute

from (3):

P

0

k

(x; y) = 2

�k

e

T

x

(I +M)

k

e

y

= 2

�k

k

X

j=0

�

k

j

�

e

T

x

M

j

e

y

= 2

�k

k

X

j=0

�

k

j

�

P

j

(x; y): (6)

The main advantage of the lazy hain is that its eigenvalues are nonnegative.

Furthermore, for a lazy hain we have

�

2

+ � � �+ �

n

= trae(M)� 1 =

n

2

� 1;

and hene �

2

� 1=3 if n � 4.
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3.2. The generating funtion of return times. Let us introdue the generating

funtion

f(t) =

1

X

k=0

P

k

(r; r)t

k

=

n

X

i=1

f

i

(r)

2

1

1� t�

i

: (7)

There are several other useful expressions for f(t); for example, we get from (3)

that

f(t) = e

T

r

(I � tM)

�1

e

r

;

and expressing this in terms of determinants, we get

f(t) =

det(I

0

� tM

0

)

det(I � tM)

; (8)

where M

0

is the matrix obtained from M by deleting the row and olumn orre-

sponding to the root, and I

0

is the (n� 1)� (n� 1) identity matrix.

It will be onvenient to do a little algebrai manipulation. The reiproal of this

funtion is also an interesting generating funtion:

1

f(t)

= 1�

1

X

k=1

s

k

t

k

; (9)

where s

k

= P(T

1

= k) is the probability that the �rst return to the root ours at

the k-th step. This funtion has a root at t = 1, so it makes sense to divide by

1� t, to get the analyti funtion

1

(1� t)f(t)

=

1

X

k=0

z

k

t

k

; (10)

where

z

k

= 1�

X

j�k

s

k

=

X

j>k

s

k

is the probability that the random walk does not return to the root during the �rst

k steps.

4. Reonstruting nondegenerate eigenvalues

It is these formulas whih form the basis of learning about the spetrum of

G from the visiting times of the random walk at x, sine P

k

(r; r) is determined

by the distribution of return times, and an be easily estimated from the visiting

times (see setion 6). We all an eigenvalue of M nondegenerate if at least one

of the orresponding eigenfuntions f(x) satis�es f(r) 6= 0. One an see from (4)

that the non zero nondegenerate eigenvalues are determined by the distribution

of return times. Using

P

n

i=1

f

i

(r)

2

= 1 for the orthonormal basis f

i

we onlude

that whether zero is a nondegenerate eigenvalue of M is also determined. The

return time distribution determines f(t) and this an also be used to �nd the

nondegenerate eigenvalues: the poles of f(t) are exatly the reiproals of the non

zero, nondegenerate eigenvalues of M . Zero is a nondegenerate eigenvalue if and

only if lim

t!1

f(t) > 0. Then we get

Proposition 1. If two rooted graphs have the same return time distribution, then

they have the same nondegenerate eigenvalues.
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Let us remark that if G has a node-transitive automorphism group, then every

eigenvalue of M is nondegenerate. Indeed, every eigenvalue has an eigenvetor,

whih does not vanish at some node; by node-transitivity, it also has an eigenvetor

that does not vanish at the root.

Let us also remark that the multipliity of a nondegenerate eigenvalue is not

uniquely determined: 0 is a nondegenerate eigenvalue of both trees in Example

1, but it has di�erent multipliities in the two. Furthermore, degenerate eigen-

values are not determined by the return times: the seond largest eigenvalues of

the transition matries of the two (d+1)-regular graphs onstruted in Example 2

are di�erent. It follows from Proposition 1 that at least for the seond graph, the

seond largest eigenvalue is degenerate.

5. Trees

We want to put Example 1 in broader ontext. For trees, we an simplify the

generating funtion a bit: Sine trees are bipartite, we have z

2k

= z

2k+1

, and hene

it makes sense to divide by t+ 1 and then substitute x = t

2

. It will be onvenient

to sale by the degree of the root, and to work with the funtion

h

G

(x) = d(r)

1

X

k=0

z

2k

x

k

=

d(r)

(1� x)f(

p

x)

: (11)

It is easy to see that we did not lose any information here: we have h

G

1

(x) = h

G

2

(x)

for two trees G

1

and G

2

if and only if they have the same return time distribution

and their roots have the same degree.

For a rooted tree with a single edge, h

G

(x) = 1. If a rooted tree G is obtained

by gluing together the roots of two rooted trees G

1

and G

2

, then

h

G

(x) = h

G

1

(x) + h

G

2

(x): (12)

This is easily seen by onditioning on whih tree the random walk starts in. Fur-

thermore, if we attah a new leaf r

0

to the root r of a tree G and make this the

root to get a new rooted tree G

0

, then

h

G

0

(x) =

1 + h

G

(x)

1 + (1� x)h

G

(x)

: (13)

To see this, onsider a walk on G

0

starting at r

0

, and the probability z

0

2k

that it does

not return to r

0

in the �rst 2k steps (k � 1). The �rst step leads to r; the seond

step has to use a di�erent edge, whih has a probability of d(r)=(d(r) + 1). We an

view the walk now as a random walk on G until it returns to r. The probability

that this happens after 2j steps is z

2j�2

� z

2j

. If j � k then the walk will ertainly

not return to r

0

in the �rst 2k steps. If j < k, then we an think of the situation

as just having made a step from r

0

, and so the probability that we don't return to

r

0

in the next 2k � 2j � 1 steps is z

0

2k�2j

. Hene we get the equation

z

0

2k

=

d(r)

d(r) + 1

0

�

z

2k�2

+

k�1

X

j=1

(z

2j�2

� z

2j

)z

2k�2j

Multiplying by x

k

and summing over all k � 0, we get (13).

These formulas an be veri�ed from the de�nition of z

k

. They imply that h

G

is

a rational funtion with integral oeÆients. They also provide us with a fast way

to ompute h

G

, and through this, to verify that the two trees in Example 1 have
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the same return distribution. But we an get more, a way to generate many suh

pairs.

Suppose that we �nd a linear dependene between funtions h

G

for various trees

G. This an be written as

a

1

h

G

1

+ � � �+ a

k

h

G

k

= b

1

h

G

0

1

+ � � �+ b

m

h

G

0

m

with some positive integers a

1

; : : : ; a

k

; b

1

; : : : ; b

m

. Now if we glue together the roots

of a

1

opies of G

1

, : : : , a

k

opies of G

k

to get G, and the roots of b

1

opies of G

0

1

,

: : : , b

m

opies of G

0

m

to get G

0

, then by (12) we'll have

h

G

(x) = h

G

0

(x):

We an add a new root to both if we prefer to have an example rooted at a leaf.

Obviously, we only need to look for trees rooted at leaves. To �nd suh linear

dependenies, it is natural to �nd trees for whih h

G

(x) is \simple", namely the

ratio of two linear funtions, and then �nd three with a ommon denominator. A

general example is a tree G = G

a;b

of height 3, where the neighbor of the root has

degree a and has a � 1 neighbors of degree b. We an allow the degenerate ases

b = 1 (when G is a star rooted at a leaf) and a = 1 (when G is a single edge). It is

easy to ompute that

1

h

G

=

ab� (b� 1)x

ab� (ab� 1)x

:

So if we �x a k whih is not a prime, and onsider trees G = G

a;b

with ab = k,

they all have the same denominator k� (k�1)x, and so for any three of them their

funtions h

G

will be linearly dependent. The simplest hoie is k = 4, when we get

the trees G

1;4

(a single edge), G

2;2

(a path of length 3) and G

4;1

(a 4-star). Simple

omputation shows that

h

G

1;4

� 3h

G

2;2

+ 2h

G

4;1

= 0:

Gluing these together as desribed above, and adding a new root for good measure,

gives the two trees in Example 1.

Using (8) and (11), it is not hard to see that the roots of the numerator of h

G

(x)

are the squared reiproals of the nondegenerate non zero eigenvalues of G, exept

for the trivial nondegenerate eigenvalues �1. The multipliities, as we have seen,

are not neessarily determined by h

G

.

Remark. In the speial trees onstruted above, the squareroots of the root of the

denominator are exatly the degenerate eigenvalues of G. We don't know if this

is always so. An interesting open question seems to be whether the degenerate

eigenvalues are reonstrutible for trees.

6. Effetive reonstrution

In the previous setion, we assumed that the exat distribution of the return

time is known, whih is the same as saying that we an observe the random walk

forever. In this setion we are onerned with determining quantities after observing

a polynomial number of returns.

1

Are these the only trees for whih h

G

has rational numerator and denominator? Can one say

anything about quadrati? What about depth 4?
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6.1. Estimating return probabilities. We show that we an estimate P

k

(r; r)

from the observation of polynomially many return times. Fix k and observe the

returns T

1

; T

2

; : : : until the �rst T

i

1

with T

i

1

� k; all this period an experiment.

Call the experiment suessful if T

i

1

= k. The probability that an experiment

is suessful is P

k

(r; r). Note that observing the next k steps and then until the

�rst return (i.e., T

i

1

+1

; : : : ; T

i

2

with the smallest i

2

suh that T

i

2

� T

i

1

+ k) is an

independent experiment.

So we have a sequene of independent events with the same probability p =

P

k

(r; r), and we want to estimate p. By standard results, observing p"

�2

Æ

�1

of

them, the relative frequeny will be loser than " to p with probability 1� Æ.

The amount of time a partiular trial takes is a random variable, whose expeta-

tion is k plus the time it takes to get bak to r after k steps. This an be bounded

by the maximum hitting time between nodes, whih is O(n

3

). Summing up,

Proposition 2. In an expeted time of O((k + n

3

)"

2

Æ

�1

) we an ompute an esti-

mate of P

k

(r; r) whih is within an (additive) error of " with probability 1� Æ.

6.2. Reonstruting the eigenvalue gap. We restrit our attention to node-

transitive graphs, in whih ase we an use the trae formula (5). We an use (2)

to reonstrut the number of nodes n. Furthermore, we assume that the hain is

lazy, so that its eigenvalues are nonnegative, and their sum is n=2.

For a lazy hain, P

k

(r; r) tends to 1=n monotone dereasing. Furthermore, (5)

implies that setting

q

k

= P

k

(r; r) �

1

n

;

we have

nq

k+1

=

n

X

i=2

�

k+1

i

�

1

n� 1

 

n

X

i=2

�

i

! 

n

X

i=2

�

k

i

!

=

1

n� 1

(trae(M)� 1)nq

k

;

and hene

q

k+1

�

1

3

q

k

(14)

for n � 4 (whih we assume without loss of generality).

We an try to ompute reursively �

1

= 1 and

�

i

= lim

k!1

2

4

P

k

(r; r) �

i�1

X

j=1

�

k

j

n

3

5

1=k

:

This, however, does not seem to give an e�etive means of estimating �

i

in poly-

nomial time. But to estimate at least the eigenvalue gap � = 1��

2

we an use the

following fat.

Lemma 1. We have

�

1 +

lnn

ln q

k

�

(1� q

1=k

k

) � � � 1� q

1=k

k

: (15)

It is not hard to see that these bounds imply the weaker but more informative

bounds

ln(1=q

k

)

k � ln(1=q

k

)

� � �

ln(n=q

k

)

k

: (16)
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Proof. From (5),

P

k

(r; r) =

1

n

+

n

X

i=2

�

k

i

n

;

and hene

�

k

2

n

�

n

X

i=2

�

k

i

n

= q

k

� �

k

2

:

Thus

1� (nq

k

)

1=k

� � � 1� q

1=k

k

:

Using the elementary inequality

1� x

1� y

�

lnx

ln y

valid for 0 < x < y < 1, (15) follows.

Let  > 1. It follows that if we �nd an integer k > 0 suh that q

k

< 1=n



, then

1� q

1=k

k

is an estimate for the eigenvalue gap � whih is within a fator of 1 + 1=

to the true value. But of ourse we don't know q

k

exatly, only with an additive

error: by proposition 2, we an estimate q

k

in polynomial time with an additive

error less than (say) "=n



, with high probability. So to get valuable information,

we need to �nd a value of k for whih q

k

> "=n



.

It is well known that the eigenvalue gap of a graph with n nodes is at least 1=n

2

,

so we get that for k � K

0

= (+ 1)n

2

lnn,

q

k

� n

�

1�

1

n

2

�

k

< ne

�k=n

2

<

1

n



:

Applying Proposition 2, we an ompute an approximation Q

k

of q

k

that is

within an additive error of "=(8n



) with probability Æ=(log

2

K

0

). By binary searh,

we an �nd a k in the interval [0;K

0

℄ for whih Q

k

� 1=n



but Q

k�1

> 1=n



.

Proposition 3. For the value of k omputed above, 1�Q

1=k

k

is within a fator of

1� " of � with probability at least 1� Æ.

Proof. With large probability, we have

jq

m

�Q

m

j <

"

8n



for all m for whih we ompute Q

m

, in partiular for m = k� 1 and m = k. Using

(14),

q

k

�

1

3

q

k�1

�

1

3

�

Q

k�1

�

"

8n



�

�

1

4n



;

and also

Q

k

� q

k

�

"

8n



� (1�

"

2

)q

k

: (17)

Similarly,

Q

k

� (1 +

"

2

)q

k

: (18)

We laim that

1�

"

2

�

1�Q

1=k

k

1� q

1=k

k

� 1 +

"

2

: (19)
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To show the upper bound, we may assume that Q

k

� q

k

. Then using (18),

1�Q

1=k

k

1� q

1=k

k

�

lnQ

k

ln q

k

�

ln((1�

"

2

)q

k

)

ln q

k

= 1 +

ln(1�

"

2

)

ln q

k

< 1� ln(1�

"

2

) � 1 +

"

2

:

The lower bound in (19) follows similarly. Hene by Lemma 1,

� � 1� q

1=k

k

� (1� ")(1�Q

1=k

k

);

and

� � 1�

�

q

k

n

�

1=k

�

�

1 +

lnn

ln(1=q

k

)

�

(1� q

1=k

k

)

�

�

1 +

1



�

�

1 +

"

2

�

(1�Q

1=k

k

) � (1 + ")(1�Q

1=k

k

):

7. Conluding remarks

1. We an estimate for every node-transitive graph, by similar means, the value

1 � max(�

2

; j�

n

j), whih governs the mixing time of the hain. The trik is to

onsider the matrix M

2

instead of M , i.e., observe the hain only every other step.

A little are is in order, sine this new hain may not be onneted; but by node-

transitivity, its eigenvalue gap is the eigenvalue gap of the omponent ontaining

the observation node.

2. The seond moment of the �rst return time also has some more diret meaning.

LetH(�; r) denote the expeted number of steps before a random walk starting from

the stationary distribution hits the root r. Then it is not hard to show using that

the walk is lose to stationary at a far away time that

H(�; r) =

E(T

2

1

)

2E(T

1

)

�

1

2

:

It is not lear whether any of the higher moments have any diret ombinatorial

signi�ane.

3. Here are a ouple of related problems.

Problem: Let G be a onneted graph of size n. We label the verties randomly

by m(n) olors and observed the olors as they are visited by a simple random walk

random walk: after eah step, the walker tells you \now I'm at red", \now at blue",

and so on. How many olors are needed in order to reover the shape of G a.s. from

this sequene of olors?

Problem: Consider an n-node onneted graph. Take n partiles labeled 1; :::; n.

In a on�guration, there is one partile at eah node. The interhange proess

introdued in [1℄ is the following ontinuous time Markov hain on on�gurations:

For eah edge (i; j) at rate 1 the partiles at i and j interhanged. Assume you

observed the restrition of the interhange proess to a �xed node, what graph

properties an be reovered? Obviously you get more information than in the ase

disussed in the paper, whih orresponds to notiing only one of the partiles. But

is it really possible to use this information to disover more about the graph?
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