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Abstra
t. We observe returns of a simple random walk on a �nite graph to

a �xed node, and would like to infer properties of the graph, in parti
ular

properties of the spe
trum of the transition matrix. This is not possible in

general, but at least the eigenvalues 
an be re
overed under fairly general


onditions, e.g. when the graph has a node-transitive automorphism group.

The main result is that by observing polynomially many returns, it is possible

to estimate the spe
tral gap of su
h a graph up to a 
onstant fa
tor.

1. Introdu
tion

A spelunker has an a

ident in the 
ave. His lamp goes out, he 
annot move, all

he 
an hear is a bat 
ying by every now and then on its random 
ight around the


ave. What 
an he learn about the shape of the 
ave?

In other words: What 
an we learn about the stru
ture of a �nite graph using

only information obtained by observing the returns of a random walk on the graph

to this node?

Let G = (V;E) be a 
onne
ted simple graph with n = jV j > 1 verti
es, and let

r 2 V be a �xed node. Let w

0

= r; w

1

; w

2

; : : : be the steps of a simple random walk

on G starting from r. Assume that we observe the return time sequen
e, the in�nite

sequen
e of (random) times 0 < T

1

< T

2

< : : : when the walk visits r. Alternatively

this 
an be des
ribed as a sequen
e a

1

; a

2

; a

3

; ::: of bits, where a

i

= 1 if the walk is

at r at time i, 0 otherwise. Note that T

2

�T

1

; T

3

�T

2

; : : : are independent samples

from the same distribution as T

1

, whi
h we 
all the return distribution of G to r.

We say that a parameter p(G; r) of the graph G and root r 
an be re
onstru
ted

(from the return time sequen
e), if for every two rooted graphs (G; r) and (G

0

; r

0

)

for whi
h the return time sequen
e has the same distribution, we have p(G; r) =

p(G

0

; r

0

).

Whi
h graph parameters 
an be re
onstru
ted from the return time sequen
e?

There is a trivial way to 
onstru
t di�erent graphs with the same return sequen
e:

take two isomorphi
 
opies and glue them together at the root. Sometimes it makes

sense to assume that we also know the degree d(r) of the root. In this 
ase, we 
an

re
onstru
t the number of edges through

jEj = d(r)E(T

1

)=2: (1)

If the graph is regular, then we 
an re
onstru
t the number of nodes:

n = jV j = E(T

1

): (2)

Another trivial example is to observe if all the numbers T

i

are even. This is so

if the graph is bipartite, and it happens with probability 0 otherwise.

A natural 
andidate for a re
onstru
tible quantity is the spe
trum of the transi-

tion matrix M of the random walk on G. Let �

1

= 1; �

2

; :::; �

n

be the eigenvalues

1
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of M , arranged in de
reasing order. Bipartiteness is equivalent to saying that

�

n

= �1.

We are going to show by a simple example that the spe
trum is not re
on-

stru
tible in general. On the other hand, we show that if � is an eigenvalue of G

whi
h has an eigenve
tor v 2 R

V

su
h that v

r

6= 0, then � is re
onstru
tible. We

note that the multipli
ity of � is not ne
essarily re
onstru
tible.

A spe
ial 
ase where the eigenve
tor 
ondition above is satis�ed for all eigenvalues

is when G is node-transitive. We don't know whether in this 
ase the multipli
ities

are re
onstru
tible.

Of parti
ular interest is the issue of eÆ
ient re
onstru
tion, by whi
h we mean

observing a polynomial (or expe
ted polynomial) number of returns. We 
onsider

this question in the 
ase of the spe
tral gap � = 1��

2

. Assuming the graph is node

transitive, we des
ribe a pro
edure to estimate � up to a 
onstant fa
tor, using just

polynomially many (in n) of the �rst values of the T

i

. We give an example of a

graph where the spe
tral gap 
annot be re
overed at all from observations made at

one parti
ular node.

This question was �rst mentioned, together with other related problems, in [2℄.

Another related work is that of Feige [3℄ whi
h presents a randomized spa
e-eÆ
ient

algorithm that determines whether a graph is 
onne
ted. His method uses return

times of random walks to estimate the size of 
onne
ted 
omponents.

2. Examples

Example 1. Consider the two trees in Figure 1. The distribution of the return time

to the root is the same in both trees (see later). The eigenvalues of the tree on the

left are

1;

p

3=2;

p

6=4; 0; 0; 0; 0; 0;�

p

6=4;�

p

3=2;�1;

while the eigenvalues of the tree on the right are

1;

p

3=2;

p

3=2;

p

6=4; 0; 0; 0;�

p

6=4;�

p

3=2;�

p

3=2;�1:

Note that the eigenvalues are the same, but their multipli
ities are di�erent.

Figure 1. Two trees with the same return times but di�erent spe
tra

Example 2. Let T be a tree in whi
h all internal nodes have degree d+1 and whi
h

has a \root" r su
h that all leaves are at distan
e h from the root. We 
onstru
t a

graph G by adding a d-regular graph on the leaves.
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For a �xed h and d, all graphs obtained this way are (d+1)-regular graphs, and

the distribution of the return time to the root is the same in all su
h graphs. On

the other hand, graphs obtained this way 
an have very di�erent properties. If we

add an expander on the leaves, the graph G will be an expander. (Re
all that G is

a 
-expander i� j�Sj > 
jSj for every non empty set of verti
es S with jSj < jGj=2.

For ba
kground on expanders and spe
tral gap see e.g. [4℄.) If we 
onne
t \twin"

leaves to ea
h other, and also mat
h up \
ousins" to get d new edges at ea
h node,

then for h > 2 the root will be a 
utpoint. For expanders, the eigenvalue gap

�

1

� �

2

is bounded from below by a positive fun
tion of d, while for the graphs

with 
utpoints in the middle the eigenvalue gap tends to 0 as h!1.

3. Preparation: some algebra and generating fun
tions

3.1. Return probabilities and eigenvalues. Denote by P

k

(x; y) the probability

that a simple random walk on G starting at x 2 V will be at y 2 V at time k.

Clearly

P

k

(x; y) = e

T

x

M

k

e

y

: (3)

Here M is not symmetri
, but we 
an 
onsider the symmetrized matrix N =

DMD

�1

, where D is a diagonal matrix with the positive numbers

p

d(i) in the

diagonal. The matrix N has the same eigenvalues as M , and so we have

P

k

(r; r) =

n

X

i=1

f

i

(r)

2

�

k

i

; (4)

where f

1

; f

2

; :::; f

n

is an orthonormal basis of eigenfun
tions of N 
orresponding to

the eigenvalues �

1

; �

2

; :::; �

n

.

We note that if the graph is node-transitive, then the value P

k

(r; r) is the same

for all r, and hen
e by averaging (4) we get the simpler formula

P

k

(r; r) =

1

n

tra
e(M

k

) =

1

n

n

X

i=1

�

k

i

: (5)

At some point, it will be 
onvenient to 
onsider the lazy version of our 
hain,

i.e., the Markov 
hain with transition matrix M

0

= (1=2)(I +M) (before doing a

step, we 
ip a 
oin to de
ide if we want to move at all). The observer 
an easily

pretend that he or she is wat
hing the lazy version of the 
hain: after ea
h step,

he 
ips a 
oin in qui
k su

ession until he tosses a head, and advan
es his wat
h

by the number of 
oin
ips. The distribution after k lazy steps is easy to 
ompute

from (3):

P

0

k

(x; y) = 2

�k

e

T

x

(I +M)

k

e

y

= 2

�k

k

X

j=0

�

k

j

�

e

T

x

M

j

e

y

= 2

�k

k

X

j=0

�

k

j

�

P

j

(x; y): (6)

The main advantage of the lazy 
hain is that its eigenvalues are nonnegative.

Furthermore, for a lazy 
hain we have

�

2

+ � � �+ �

n

= tra
e(M)� 1 =

n

2

� 1;

and hen
e �

2

� 1=3 if n � 4.
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3.2. The generating fun
tion of return times. Let us introdu
e the generating

fun
tion

f(t) =

1

X

k=0

P

k

(r; r)t

k

=

n

X

i=1

f

i

(r)

2

1

1� t�

i

: (7)

There are several other useful expressions for f(t); for example, we get from (3)

that

f(t) = e

T

r

(I � tM)

�1

e

r

;

and expressing this in terms of determinants, we get

f(t) =

det(I

0

� tM

0

)

det(I � tM)

; (8)

where M

0

is the matrix obtained from M by deleting the row and 
olumn 
orre-

sponding to the root, and I

0

is the (n� 1)� (n� 1) identity matrix.

It will be 
onvenient to do a little algebrai
 manipulation. The re
ipro
al of this

fun
tion is also an interesting generating fun
tion:

1

f(t)

= 1�

1

X

k=1

s

k

t

k

; (9)

where s

k

= P(T

1

= k) is the probability that the �rst return to the root o

urs at

the k-th step. This fun
tion has a root at t = 1, so it makes sense to divide by

1� t, to get the analyti
 fun
tion

1

(1� t)f(t)

=

1

X

k=0

z

k

t

k

; (10)

where

z

k

= 1�

X

j�k

s

k

=

X

j>k

s

k

is the probability that the random walk does not return to the root during the �rst

k steps.

4. Re
onstru
ting nondegenerate eigenvalues

It is these formulas whi
h form the basis of learning about the spe
trum of

G from the visiting times of the random walk at x, sin
e P

k

(r; r) is determined

by the distribution of return times, and 
an be easily estimated from the visiting

times (see se
tion 6). We 
all an eigenvalue of M nondegenerate if at least one

of the 
orresponding eigenfun
tions f(x) satis�es f(r) 6= 0. One 
an see from (4)

that the non zero nondegenerate eigenvalues are determined by the distribution

of return times. Using

P

n

i=1

f

i

(r)

2

= 1 for the orthonormal basis f

i

we 
on
lude

that whether zero is a nondegenerate eigenvalue of M is also determined. The

return time distribution determines f(t) and this 
an also be used to �nd the

nondegenerate eigenvalues: the poles of f(t) are exa
tly the re
ipro
als of the non

zero, nondegenerate eigenvalues of M . Zero is a nondegenerate eigenvalue if and

only if lim

t!1

f(t) > 0. Then we get

Proposition 1. If two rooted graphs have the same return time distribution, then

they have the same nondegenerate eigenvalues.
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Let us remark that if G has a node-transitive automorphism group, then every

eigenvalue of M is nondegenerate. Indeed, every eigenvalue has an eigenve
tor,

whi
h does not vanish at some node; by node-transitivity, it also has an eigenve
tor

that does not vanish at the root.

Let us also remark that the multipli
ity of a nondegenerate eigenvalue is not

uniquely determined: 0 is a nondegenerate eigenvalue of both trees in Example

1, but it has di�erent multipli
ities in the two. Furthermore, degenerate eigen-

values are not determined by the return times: the se
ond largest eigenvalues of

the transition matri
es of the two (d+1)-regular graphs 
onstru
ted in Example 2

are di�erent. It follows from Proposition 1 that at least for the se
ond graph, the

se
ond largest eigenvalue is degenerate.

5. Trees

We want to put Example 1 in broader 
ontext. For trees, we 
an simplify the

generating fun
tion a bit: Sin
e trees are bipartite, we have z

2k

= z

2k+1

, and hen
e

it makes sense to divide by t+ 1 and then substitute x = t

2

. It will be 
onvenient

to s
ale by the degree of the root, and to work with the fun
tion

h

G

(x) = d(r)

1

X

k=0

z

2k

x

k

=

d(r)

(1� x)f(

p

x)

: (11)

It is easy to see that we did not lose any information here: we have h

G

1

(x) = h

G

2

(x)

for two trees G

1

and G

2

if and only if they have the same return time distribution

and their roots have the same degree.

For a rooted tree with a single edge, h

G

(x) = 1. If a rooted tree G is obtained

by gluing together the roots of two rooted trees G

1

and G

2

, then

h

G

(x) = h

G

1

(x) + h

G

2

(x): (12)

This is easily seen by 
onditioning on whi
h tree the random walk starts in. Fur-

thermore, if we atta
h a new leaf r

0

to the root r of a tree G and make this the

root to get a new rooted tree G

0

, then

h

G

0

(x) =

1 + h

G

(x)

1 + (1� x)h

G

(x)

: (13)

To see this, 
onsider a walk on G

0

starting at r

0

, and the probability z

0

2k

that it does

not return to r

0

in the �rst 2k steps (k � 1). The �rst step leads to r; the se
ond

step has to use a di�erent edge, whi
h has a probability of d(r)=(d(r) + 1). We 
an

view the walk now as a random walk on G until it returns to r. The probability

that this happens after 2j steps is z

2j�2

� z

2j

. If j � k then the walk will 
ertainly

not return to r

0

in the �rst 2k steps. If j < k, then we 
an think of the situation

as just having made a step from r

0

, and so the probability that we don't return to

r

0

in the next 2k � 2j � 1 steps is z

0

2k�2j

. Hen
e we get the equation

z

0

2k

=

d(r)

d(r) + 1

0

�

z

2k�2

+

k�1

X

j=1

(z

2j�2

� z

2j

)z

2k�2j

Multiplying by x

k

and summing over all k � 0, we get (13).

These formulas 
an be veri�ed from the de�nition of z

k

. They imply that h

G

is

a rational fun
tion with integral 
oeÆ
ients. They also provide us with a fast way

to 
ompute h

G

, and through this, to verify that the two trees in Example 1 have
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the same return distribution. But we 
an get more, a way to generate many su
h

pairs.

Suppose that we �nd a linear dependen
e between fun
tions h

G

for various trees

G. This 
an be written as

a

1

h

G

1

+ � � �+ a

k

h

G

k

= b

1

h

G

0

1

+ � � �+ b

m

h

G

0

m

with some positive integers a

1

; : : : ; a

k

; b

1

; : : : ; b

m

. Now if we glue together the roots

of a

1


opies of G

1

, : : : , a

k


opies of G

k

to get G, and the roots of b

1


opies of G

0

1

,

: : : , b

m


opies of G

0

m

to get G

0

, then by (12) we'll have

h

G

(x) = h

G

0

(x):

We 
an add a new root to both if we prefer to have an example rooted at a leaf.

Obviously, we only need to look for trees rooted at leaves. To �nd su
h linear

dependen
ies, it is natural to �nd trees for whi
h h

G

(x) is \simple", namely the

ratio of two linear fun
tions, and then �nd three with a 
ommon denominator. A

general example is a tree G = G

a;b

of height 3, where the neighbor of the root has

degree a and has a � 1 neighbors of degree b. We 
an allow the degenerate 
ases

b = 1 (when G is a star rooted at a leaf) and a = 1 (when G is a single edge). It is

easy to 
ompute that

1

h

G

=

ab� (b� 1)x

ab� (ab� 1)x

:

So if we �x a k whi
h is not a prime, and 
onsider trees G = G

a;b

with ab = k,

they all have the same denominator k� (k�1)x, and so for any three of them their

fun
tions h

G

will be linearly dependent. The simplest 
hoi
e is k = 4, when we get

the trees G

1;4

(a single edge), G

2;2

(a path of length 3) and G

4;1

(a 4-star). Simple


omputation shows that

h

G

1;4

� 3h

G

2;2

+ 2h

G

4;1

= 0:

Gluing these together as des
ribed above, and adding a new root for good measure,

gives the two trees in Example 1.

Using (8) and (11), it is not hard to see that the roots of the numerator of h

G

(x)

are the squared re
ipro
als of the nondegenerate non zero eigenvalues of G, ex
ept

for the trivial nondegenerate eigenvalues �1. The multipli
ities, as we have seen,

are not ne
essarily determined by h

G

.

Remark. In the spe
ial trees 
onstru
ted above, the squareroots of the root of the

denominator are exa
tly the degenerate eigenvalues of G. We don't know if this

is always so. An interesting open question seems to be whether the degenerate

eigenvalues are re
onstru
tible for trees.

6. Effe
tive re
onstru
tion

In the previous se
tion, we assumed that the exa
t distribution of the return

time is known, whi
h is the same as saying that we 
an observe the random walk

forever. In this se
tion we are 
on
erned with determining quantities after observing

a polynomial number of returns.

1

Are these the only trees for whi
h h

G

has rational numerator and denominator? Can one say

anything about quadrati
? What about depth 4?
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6.1. Estimating return probabilities. We show that we 
an estimate P

k

(r; r)

from the observation of polynomially many return times. Fix k and observe the

returns T

1

; T

2

; : : : until the �rst T

i

1

with T

i

1

� k; 
all this period an experiment.

Call the experiment su

essful if T

i

1

= k. The probability that an experiment

is su

essful is P

k

(r; r). Note that observing the next k steps and then until the

�rst return (i.e., T

i

1

+1

; : : : ; T

i

2

with the smallest i

2

su
h that T

i

2

� T

i

1

+ k) is an

independent experiment.

So we have a sequen
e of independent events with the same probability p =

P

k

(r; r), and we want to estimate p. By standard results, observing p"

�2

Æ

�1

of

them, the relative frequen
y will be 
loser than " to p with probability 1� Æ.

The amount of time a parti
ular trial takes is a random variable, whose expe
ta-

tion is k plus the time it takes to get ba
k to r after k steps. This 
an be bounded

by the maximum hitting time between nodes, whi
h is O(n

3

). Summing up,

Proposition 2. In an expe
ted time of O((k + n

3

)"

2

Æ

�1

) we 
an 
ompute an esti-

mate of P

k

(r; r) whi
h is within an (additive) error of " with probability 1� Æ.

6.2. Re
onstru
ting the eigenvalue gap. We restri
t our attention to node-

transitive graphs, in whi
h 
ase we 
an use the tra
e formula (5). We 
an use (2)

to re
onstru
t the number of nodes n. Furthermore, we assume that the 
hain is

lazy, so that its eigenvalues are nonnegative, and their sum is n=2.

For a lazy 
hain, P

k

(r; r) tends to 1=n monotone de
reasing. Furthermore, (5)

implies that setting

q

k

= P

k

(r; r) �

1

n

;

we have

nq

k+1

=

n

X

i=2

�

k+1

i

�

1

n� 1

 

n

X

i=2

�

i

! 

n

X

i=2

�

k

i

!

=

1

n� 1

(tra
e(M)� 1)nq

k

;

and hen
e

q

k+1

�

1

3

q

k

(14)

for n � 4 (whi
h we assume without loss of generality).

We 
an try to 
ompute re
ursively �

1

= 1 and

�

i

= lim

k!1

2

4

P

k

(r; r) �

i�1

X

j=1

�

k

j

n

3

5

1=k

:

This, however, does not seem to give an e�e
tive means of estimating �

i

in poly-

nomial time. But to estimate at least the eigenvalue gap � = 1��

2

we 
an use the

following fa
t.

Lemma 1. We have

�

1 +

lnn

ln q

k

�

(1� q

1=k

k

) � � � 1� q

1=k

k

: (15)

It is not hard to see that these bounds imply the weaker but more informative

bounds

ln(1=q

k

)

k � ln(1=q

k

)

� � �

ln(n=q

k

)

k

: (16)
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Proof. From (5),

P

k

(r; r) =

1

n

+

n

X

i=2

�

k

i

n

;

and hen
e

�

k

2

n

�

n

X

i=2

�

k

i

n

= q

k

� �

k

2

:

Thus

1� (nq

k

)

1=k

� � � 1� q

1=k

k

:

Using the elementary inequality

1� x

1� y

�

lnx

ln y

valid for 0 < x < y < 1, (15) follows.

Let 
 > 1. It follows that if we �nd an integer k > 0 su
h that q

k

< 1=n




, then

1� q

1=k

k

is an estimate for the eigenvalue gap � whi
h is within a fa
tor of 1 + 1=


to the true value. But of 
ourse we don't know q

k

exa
tly, only with an additive

error: by proposition 2, we 
an estimate q

k

in polynomial time with an additive

error less than (say) "=n




, with high probability. So to get valuable information,

we need to �nd a value of k for whi
h q

k

> "=n




.

It is well known that the eigenvalue gap of a graph with n nodes is at least 1=n

2

,

so we get that for k � K

0

= (
+ 1)n

2

lnn,

q

k

� n

�

1�

1

n

2

�

k

< ne

�k=n

2

<

1

n




:

Applying Proposition 2, we 
an 
ompute an approximation Q

k

of q

k

that is

within an additive error of "=(8n




) with probability Æ=(log

2

K

0

). By binary sear
h,

we 
an �nd a k in the interval [0;K

0

℄ for whi
h Q

k

� 1=n




but Q

k�1

> 1=n




.

Proposition 3. For the value of k 
omputed above, 1�Q

1=k

k

is within a fa
tor of

1� " of � with probability at least 1� Æ.

Proof. With large probability, we have

jq

m

�Q

m

j <

"

8n




for all m for whi
h we 
ompute Q

m

, in parti
ular for m = k� 1 and m = k. Using

(14),

q

k

�

1

3

q

k�1

�

1

3

�

Q

k�1

�

"

8n




�

�

1

4n




;

and also

Q

k

� q

k

�

"

8n




� (1�

"

2

)q

k

: (17)

Similarly,

Q

k

� (1 +

"

2

)q

k

: (18)

We 
laim that

1�

"

2

�

1�Q

1=k

k

1� q

1=k

k

� 1 +

"

2

: (19)
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To show the upper bound, we may assume that Q

k

� q

k

. Then using (18),

1�Q

1=k

k

1� q

1=k

k

�

lnQ

k

ln q

k

�

ln((1�

"

2

)q

k

)

ln q

k

= 1 +

ln(1�

"

2

)

ln q

k

< 1� ln(1�

"

2

) � 1 +

"

2

:

The lower bound in (19) follows similarly. Hen
e by Lemma 1,

� � 1� q

1=k

k

� (1� ")(1�Q

1=k

k

);

and

� � 1�

�

q

k

n

�

1=k

�

�

1 +

lnn

ln(1=q

k

)

�

(1� q

1=k

k

)

�

�

1 +

1




�

�

1 +

"

2

�

(1�Q

1=k

k

) � (1 + ")(1�Q

1=k

k

):

7. Con
luding remarks

1. We 
an estimate for every node-transitive graph, by similar means, the value

1 � max(�

2

; j�

n

j), whi
h governs the mixing time of the 
hain. The tri
k is to


onsider the matrix M

2

instead of M , i.e., observe the 
hain only every other step.

A little 
are is in order, sin
e this new 
hain may not be 
onne
ted; but by node-

transitivity, its eigenvalue gap is the eigenvalue gap of the 
omponent 
ontaining

the observation node.

2. The se
ond moment of the �rst return time also has some more dire
t meaning.

LetH(�; r) denote the expe
ted number of steps before a random walk starting from

the stationary distribution hits the root r. Then it is not hard to show using that

the walk is 
lose to stationary at a far away time that

H(�; r) =

E(T

2

1

)

2E(T

1

)

�

1

2

:

It is not 
lear whether any of the higher moments have any dire
t 
ombinatorial

signi�
an
e.

3. Here are a 
ouple of related problems.

Problem: Let G be a 
onne
ted graph of size n. We label the verti
es randomly

by m(n) 
olors and observed the 
olors as they are visited by a simple random walk

random walk: after ea
h step, the walker tells you \now I'm at red", \now at blue",

and so on. How many 
olors are needed in order to re
over the shape of G a.s. from

this sequen
e of 
olors?

Problem: Consider an n-node 
onne
ted graph. Take n parti
les labeled 1; :::; n.

In a 
on�guration, there is one parti
le at ea
h node. The inter
hange pro
ess

introdu
ed in [1℄ is the following 
ontinuous time Markov 
hain on 
on�gurations:

For ea
h edge (i; j) at rate 1 the parti
les at i and j inter
hanged. Assume you

observed the restri
tion of the inter
hange pro
ess to a �xed node, what graph

properties 
an be re
overed? Obviously you get more information than in the 
ase

dis
ussed in the paper, whi
h 
orresponds to noti
ing only one of the parti
les. But

is it really possible to use this information to dis
over more about the graph?
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