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Abstract

Pinchasi and Radoičić [11] used the following observation to bound
the number of edges of a topological graph without a self-crossing cycle of
length 4: if we make a list of the neighbors for every vertex in such a graph
and order these lists cyclically according to the order of the emanating
edges, then the common elements in any two lists have reversed cyclic
order. Building on their work we give an estimate on the size of the lists
having this property. As a consequence we get that a topological graph
on n vertices not containing a self-crossing C4 has O(n3/2 log n) edges.
Our result also implies that n pseudo-circles in the plane can be cut into
O(n3/2 log n) pseudo-segments, which in turn implies bounds on point-
curve incidences and on the complexity of a level of an arrangement of
curves.

1 Introduction

In this paper we consider cyclically ordered sequences of distinct symbols from
a finite alphabet. We say that two such sequences are intersection reverse if
the common elements appear in reversed cyclic order in the two sequences. A
collection of cyclically ordered sequences s1, s2, . . . , sm will be referred to as
pairwise intersection reverse if the sequences si and sj are intersection reverse
for all 1 ≤ i < j ≤ m.

A topological graph is a graph without loops or multiple edges drawn in the
plane (vertices correspond to distinct points, edges correspond to Jordan curves
connecting the corresponding vertices). We assume no edge passes through a
vertex other than its endpoints and every two edges have a finite number of
common interior points and they properly cross at each of these points. For a
vertex v of a topological graph G let LG(v) be the list of its neighbors ordered
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cyclically counterclockwise according to the initial segment of the connecting
edge.

Pinchasi and Radoičić [11] noticed the following simple fact:

Fact 1. If the lists LG(u) and LG(v) are not intersection reverse for two distinct
vertices u and v of the topological graph G, then G contains a self-crossing cycle
of length 4. Moreover, u and v are opposite vertices of a cycle of length 4 in G
that has two edges crossing an odd number of times.

For the proof one only has to consider drawings of the complete bipartite
graph K2,3 (see details in [11]). Pinchasi and Radoičić used Fact 1 to bound the
number of edges of a topological graph not containing a self-crossing C4. They
showed that such a graph on n vertices has O(n8/5) edges. Following in their
footsteps, we use the same property to improve their bound to O(n3/2 log n).
This bound is tight apart from the logarithmic factor since there exist (abstract)
simple graphs on n vertices with Ω(n3/2) edges containing no C4-subgraph (see,
for example, [7]). Our main technical result is the following:

Theorem 1. Let A1, A2, . . . , Am be a collection of cyclically ordered lists, each
containing a d-element subset of a set of n symbols. If these lists are pairwise
intersection reverse, then

d = O

(√
n log n +

n√
m

)

.

We give the proof of this theorem in Section 2. In Section 3 we present its
consequences, among them the bound on the number of edges in any topological
graph that does not contain a self-crossing C4.

The most important consequence of Theorem 1 deals with collections of
pseudo-circles: simple closed Jordan curves, any two of which intersect at most
twice, with proper crossings at each intersection. The result readily generalizes
to unbounded open curves such as pseudo-parabolas, the graphs of continuous
real functions defined on the entire real line such that any two intersect at most
twice and they properly cross at these intersections.

Tamaki and Tokuyama [12] were the first to consider the problem of cutting
pseudo-parabolas into pseudo-segments, i.e., subdividing the original curves into
segments such that any two segments intersect at most once. Such a separation
turns out to be quite useful since pseudo-segments are much easier to work with
than pseudo-parabolas and pseudo-circles, as will be seen in Section 3.

Tamaki and Tokuyama [12] proved that n pseudo-parabolas can be cut into
O(n5/3) pseudo-segments. This was extended to x-monotone pseudo-circles by
Aronov and Sharir [3] and by Agarwal, et al. [2]. It was also improved for certain
collections of curves that admit a three-parameter algebraic parameterization

to n3/2 logαO(1)(n)(n), where α is the inverse Ackermann function.
Previously, the best bound on the number of cuts needed for arbitrary col-

lections of pseudo-parabolas and x-monotone pseudo-circles was O(n8/5) [2],
which uses the result of Pinchasi and Radoičić on topological graphs without a
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self-crossing C4. With our improvement of the latter result, we can prove that n
pseudo-parabolas can be cut into O(n3/2 log n) pseudo-segments. This substan-
tially improves the previous bounds for arbitrary collections and is still slightly
better than results on families with algebraic parameterization; we reduce a fac-
tor which grows slightly faster than polylogarithmically to a single logarithmic
factor. In doing so, we are able to simplify the results in [2, 11, 12], as well as
generalize them to the cases when the pseudo-parabolas and pseudo-circles are
not necessarily x-monotone.

In Section 3 we show the above result, as well as its applications to point-
curve incidences and the level complexities of curve arrangements. See [1, 2, 3,
4, 5, 12] for more details and applications.

Finally in Section 4 we discuss a few related problems that are still open.
All logarithms in this paper are binary.

2 Intersection reverse sequences

In this section we prove our main technical result, Theorem 1. Much of the
proof follows the argument of Pinchasi and Radoičić [11]. We start with an
overview of their techniques and comment on similarities and differences with
the present proof.

Pinchasi and Radoičić break the cyclically ordered lists into linearly ordered
blocks. They consider pairs of blocks from separate lists and pairs of symbols
contained in both blocks. They distinguish between same pairs and different
pairs according to whether the two symbols appear in the same or in different
order. They observe that any pair of symbols that appears in many blocks
must produce almost as many same pairs as different pairs. On the other hand
the intersection reverse property forces two cyclically ordered lists—unless most
of their intersection is concentrated into a single pair of blocks—to contribute
many more different than same pairs. Exceptional pairs of cyclically ordered
lists are treated separately with techniques from extremal graph theory. They
optimize in their choice for the length of the blocks.

We follow almost the same path, but instead of optimizing for block length
we consider many block lengths (an exponential sequence) simultaneously. For
two intersection reverse lists, no block length yields significantly more same
pairs than different pairs. On the other hand, we will show that at least one of
the block lengths actually gives many more different pairs than same pairs. As
a consequence we do not have to bound “exceptional pairs” of lists separately.

Definition. We will use the term sequence to denote a linearly ordered list of
distinct symbols and the term cyclic sequence to denote a cyclically ordered list
of distinct symbols. Clearly, if one breaks up a cyclic sequence into blocks, then
the blocks are (linearly ordered) sequences. For a sequence or cyclic sequence
A we write A for the set of symbols in A. We define intersection reverse for
sequences just as for cyclic sequences: we say that the sequences A and B are
intersection reverse if they induce inverse linear orders on A∩B. If two sequences
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are not intersection reverse, we call them singular. Note that if two sequences
A and B have |A∩B| ≤ 1, then the sequences are trivially intersection reverse.
The same holds for cyclic sequences A and B if |A ∩ B| ≤ 2.

For a sequence B and symbols a 6= b we define

f(B, a, b) =







0 if a /∈ B or b /∈ B,
1 if a precedes b in B,

−1 if b precedes a in B.

For two sequences B and B′ we let

f(B, B′, a, b) = f(B, a, b)f(B′, a, b).

Notice that f(B, B′, a, b) = 1 for same pairs and f(B, B′, a, b) = −1 for differ-
ent pairs, and that

∑

f(B, B′, a, b) corresponds to the difference between the
number of same pairs and different pairs.

The next lemma is taken from [11]. We will use the notation
∑

a6=b (both
here and later in this section) to denote a sum taken over all ordered pairs of
distinct symbols a and b.

Lemma 2. Let the cyclic sequences A and A′ consist of the (linearly ordered)
blocks B1, . . . , Bk and B′

1, . . . , B
′
k′ , respectively. If A and A′ are intersection

reverse, then at most one of the pairs Bi, B′
j is singular. For this singular pair

we have
∑

a6=b

f(Bi, B
′
j , a, b) ≤ |Bi ∩ B′

j |.

For all of the other (intersection reverse) pairs Bi, B′
j we have

∑

a6=b

f(Bi, B
′
j, a, b) = |Bi ∩ B′

j | − |Bi ∩ B′
j |2.

Proof. Let Bi and B′
j be blocks with common symbols appearing in the order

a1, . . . , al in Bi. Due to the intersection reverse property of A and A′, they
appear in the order ax, ax−1, . . . , a1, al, al−1, . . . , ax+1 in B′

j for some 1 ≤ x ≤ l.
Note that Bi and B′

j are singular if and only if x < l, and it is easy to verify
that this can happen for at most a single pair of blocks. For a singular pair, we
have

∑

a6=b

f(Bi, B
′
j , a, b) = [2x(l − x)] − [x(x − 1) + (l − x)(l − x − 1)]

= l − (l − 2x)2 ≤ l.

For all intersection reverse pairs, however, all pairs of symbols a 6= b from the
intersection Bi ∩ B′

j contribute −1 to the sum.

For the rest of the section, assume that we have the collection of pairwise
intersection reverse cyclic sequences A1, . . . , Am from the theorem (recall that
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each consists of a d-element subset of a set of n symbols). Also, let pij =

|Ai ∩ Aj |, and p =
∑

i6=j pij . First we bound p based on the limited size of
the alphabet. For simplicity we assume dm > 2n (otherwise Theorem 1 is
immediate).

Lemma 3. p ≥ d2m2

2n and
∑

i6=j(p
ij)2 ≥ p2

m2 .

Proof. Let da be the number of times the symbol a appears among the cyclic
sequences Ai. Then a contributes d2

a − da to p, so we have p =
∑

a d2
a −∑a da,

where the summation is over the n different symbols a. We also have
∑

a da =
dm as it is the sum of the sizes of the sequences Ai. Applying the inequality
between the quadratic and the arithmetic mean and using dm > 2n we obtain

p =
∑

a

d2
a −

∑

a

da ≥ 1

n

(

∑

a

da

)2

−
∑

a

da =
d2m2

n
− dm ≥ d2m2

2n
.

The second inequality in the lemma is also due to the inequality between the
quadratic and arithmetic means, as

∑

i6=j

(pij)2 ≥ 1

m2 − m





∑

i6=j

(pij)





2

>
p2

m2
.

We now split each Ai into two almost equal size consecutive blocks Ai
0 and

Ai
1. In general, for a 0–1 sequence s we split the block Ai

s of Ai into two almost
equal halves (differing in size by at most 1): Ai

s0 and Ai
s1. The cyclic order of Ai

linearly orders the elements in each of these blocks. Let k = ⌈log d⌉ < log n + 1.

Clearly, any 0–1 sequence s of length k satisfies |Ai
s| ≤ 1.

For 1 ≤ i ≤ m and 1 ≤ j ≤ m we let

Sij =

k
∑

l=1

wl

∑

a6=b
|s|=|t|=l

f(Ai
s, A

j
t , a, b),

where the outer summation is taken over lengths 1 ≤ l ≤ k and the inner
summation is taken over all pairs of symbols a 6= b and all 0–1 sequences s and
t of size |s| = |t| = l. We consider the pair (a, b) to be ordered, thereby double
counting each unordered pair. The weights wl in the formula are positive and
we set them later. Our goal is to contrast a lower bound on

∑

i6=j Sij (or rather
on the partial sum for fixed symbols a 6= b) with upper bounds on the individual
Sij . Again we consider the (i, j) pairs to be ordered, resulting in another double
counting.

The lower bound is straightforward:

Lemma 4.
∑

i6=j Sij ≥ −md2
∑k

l=1
wl

2l .

5



Proof. Notice that for fixed a, b, and l we get a perfect square when summing
over all i and j. In particular,

m
∑

i=1

m
∑

j=1

Sij =

k
∑

l=1

wl

∑

a6=b





m
∑

i=1

∑

|s|=l

f(Ai
s, a, b)





2

≥ 0

We can bound the Sii terms separately as they are merely a (weighted) counting

of the number of pairs contained in each block. Since |Ai
s| < d/2|s| + 1, we have

∑

i6=j

Sij =

m
∑

i=1

m
∑

j=1

Sij −
m
∑

i=1

Sii ≥ 0 −
m
∑

i=1

k
∑

l=1

2wl

∑

|s|=l

(|Ai
s|

2

)

≥− md2
k
∑

l=1

wl

2l
.

The upper bound, however, requires more effort.

Lemma 5. For i 6= j we have

Sij ≤ pij
k
∑

l=1

wl −
(pij)2

4
∑k

l=1
1

wl

.

Proof. We fix the indices i 6= j and consider the following quantities:

• rst = |Ai
s ∩ Aj

t | and

• Qst =
∑

a6=b f(Ai
s, A

j
t , a, b)

where s and t are 0–1 sequences of equal length.
For a fixed length 1 ≤ l ≤ k, the blocks Ai

s with |s| = l form a subdivision
of Ai, while the blocks Aj

t with |t| = l form a subdivision of Aj . By Lemma 2,
there is at most one singular pair (Ai

s, A
j
t ) for any fixed length |s| = |t| = l. For

these singular pairs we have
Qst ≤ rst,

while for the intersection reverse ones we have

Qst = rst − r2
st.

Recall that any pair of sequences of length at most 1 is intersection reverse, so
we do not find any singular pairs when |s| = |t| = k.

For a 0–1 sequence s of length |s| > 1 let s′ denote the sequence obtained
from s by deleting its last digit, hence the block Ai

s′ contains the smaller block

Ai
s. We call a pair (s, t) of equal length 0–1 sequences a leader pair if (Ai

s, A
j
t )

is intersection reverse and either |s| = |t| = 1 or the pair (Ai
s′ , A

j
t′) is singular.
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Since (Ai
s′ , A

j
t′) is singular for at most one pair (s′, t′) of a fixed length, it

follows that there can be at most 4 leader pairs (s, t) at the next bigger length.

Furthermore, any symbol a ∈ Ai ∩Aj appears in Ai
s ∩Aj

t for exactly one leader
pair (s, t): the longest intersection reverse pair of blocks containing them (recall
that we only consider pairs of blocks with equal length subscripts). Thus we
have

∑

(s,t)∈L rst = pij for the set L of leader pairs.

We use Qst = rst − r2
st for leader pairs (s, t) only. For all other pairs,

intersection reverse or singular, we use Qst ≤ rst:

Sij =
k
∑

l=1

wl

∑

|s|=|t|=l

Qst

≤
k
∑

l=1

wl

∑

|s|=|t|=l

rst −
∑

(s,t)∈L

w|s|r
2
st

=pij
k
∑

l=1

wl −
∑

(s,t)∈L

w|s|r
2
st

since
∑

|s|=|t|=l rst = pij for any fixed l. The Cauchy-Schwarz inequality gives





∑

(s,t)∈L

w|s|r
2
st









∑

(s,t)∈L

1

w|s|



 ≥





∑

(s,t)∈L

rst





2

= (pij)2.

Here
∑

(s,t)∈L(1/w|s|) ≤ 4
∑k

l=1(1/wl), so

∑

(s,t)∈L

w|s|r
2
st ≥

(pij)2

4
∑k

l=1
1
wl

and we conclude that

Sij ≤ pij
k
∑

l=1

wl −
(pij)2

4
∑k

l=1
1
wl

as claimed.

Comparing the two estimates in the previous lemmas gives the theorem.
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Proof of Theorem 1. Using Lemmas 4, 5, and 3 (respectively), we obtain

−md2
k
∑

l=1

wl

2l
≤
∑

i6=j

Sij

≤
∑

i6=j

pij
k
∑

l=1

wl −
∑

i6=j(p
ij)2

4
∑k

l=1
1
wl

≤p

k
∑

l=1

wl −
p2

4m2
∑k

l=1
1
wl

.

This inequality implies that either p ≤ 8m2(
∑k

l=1 wl)(
∑k

l=1(1/wl)) or p2 ≤
8d2m3(

∑k
l=1(wl/2l))(

∑k
l=1(1/wl)). By Lemma 3, we have that p ≥ d2m2/(2n),

so either

d ≤ 4
√

n

√

√

√

√

k
∑

l=1

wl

√

√

√

√

k
∑

l=1

1

wl

or

d ≤ 6n√
m

√

√

√

√

k
∑

l=1

wl

2l

√

√

√

√

k
∑

l=1

1

wl
.

We choose the weights wl now. Equal weights (wl = 1) yield d = O(
√

n log n +
n
√

log n/
√

m), but we can improve on this bound by choosing

wl =
1

1 + k
2l/2

.

In this case
∑k

l=1 wl ≤ k,
∑k

l=1(1/wl) ≤ 4k, and
∑k

l=1(wl/2l) ≤ 3/k. Thus
we either have d ≤ 8k

√
n or d ≤ 21n/

√
m and the statement of the theorem

follows.

3 Consequences

In this section we present several geometric applications of Theorem 1.

3.1 Self-crossing cycles of length 4

Any bound for the n = m case of Theorem 1 carries over to the number of
edges of a topological graph not containing a self-crossing C4 by [11]. Using the
following corollary, however, the proof is even simpler:

Corollary 6. Let us be given m cyclic sequences over an n-element set of
symbols. If the cyclic sequences are pairwise intersection reverse, then the sum
of their sizes is O (m

√
n log n + n

√
m).
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Proof. Let c be the hidden constant in the statement of Theorem 1 (our proof
gives c = 21) and define tk = c

√
n log n + 2kcn/

√
m for positive integers k

(setting t0 = 0). We define mk to be the number of cyclic sequences whose
lengths lie in the interval (tk, tk+1]. For k ≥ 1, if we prune each of the mk

sequences to be exactly length tk and apply the uniform result derived in the
previous section, we get that mk ≤ m/4k (note this is trivially true for k = 0 as
well). Thus we have that the sum of the lengths of the sequences is at most

∞
∑

k=0

mktk+1 = cm
√

n log n + c

(

∞
∑

k=0

2k+1mk

)

n√
m

= O(m
√

n log n + n
√

m)

Corollary 7. If an n-vertex topological graph does not contain a self-crossing
C4 it has O(n3/2 log n) edges. The same holds if every pair of edges in every C4

subgraph cross an even number of times.

Proof. The statements are direct consequences of Corollary 6 using Fact 1, since
the sum of the sizes of the lists of neighbors is the sum of the degrees, i.e., twice
the number of edges.

3.2 Cutting Number

Tamaki and Tokuyama [12] considered the cutting number of a collection of
curves. This is defined to be the least number of cuts needed to obtain a
collection of shorter curves, each pair of which intersects at most once. This
was in turn shown to be directly related to Corollary 7 in [2].

The restriction of the next corollary to so called x-monotone pseudo-circles
can be derived from Corollary 7 using the combination of techniques in the pa-
pers [2, 12]. Here we give a simple and direct argument that does not require
any additional monotonicity assumption on the pseudo-circles. Recall that this
result slightly improves the best previous bound for (x-monotone) pseudo-circles
with a three parameter algebraic representation as defined in [2] (such as ordi-
nary circles) and substantially improves the previous bounds for pseudo-circles
lacking such representation. For the definition of pseudo-circles see Section 1.

Corollary 8. An arrangement of n pseudo-circles can be cut at O(n3/2 log n)
points such that the resulting curves form a system of pseudo-segments.

Before proving this result we define a few useful concepts related to pseudo-
circles.

Definition. A simple closed Jordan curve (such as a pseudo-circle) cuts the
plane into two open regions. We call the bounded region the interior of the
pseudo-circle. Following [12] we define a lens to be the union of two segments
from distinct pseudo-circles if they form a closed curve. The two segments
constituting the lens are called the sides of the lens. A side of a lens is positive
if the interior of the corresponding pseudo-circle contains the other side of the
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lens. A lens is classified as a lens-face if both sides are positive, a moon-face if it
has a positive and a negative side, and an inverse-face if it contains two negative
sides. We will also consider each pseudo-circle itself to be a (degenerate) lens.
A collection of non-overlapping lenses is a set of lenses such that no segment
of any pseudo-circle is contained in more than one lens. The different types of
non-degenerate lenses are illustrated in Figure 1.

b
a c

Figure 1: Examples of (a) a lens-face, (b) a moon-face, and (c) an inverse-face.

Notice that non-overlapping lenses may cross each other. For a collection
C of pseudo-circles we let ν(C) denote the maximum size of a non-overlapping
family of lenses and τ(C) denote the minimum number of cuts that transforms
C into a collection of pseudo-segments. We do not allow for cuts at intersection
points of the curves. The following lemma first appeared in [12], however, our
proof takes a different approach. Apart from being shorter, it can also be easily
extended to collections of curves which are allowed to intersect more than twice.

Lemma 9. τ(C) = O(ν(C)).

Proof. We consider the lenses as a hypergraph: the vertices are the segments
of the pseudo-circles connecting adjacent intersection points, the edges are the
collections of these segments forming a lens. With this notation ν(C) is the
packing (or matching) number of this hypergraph, i.e., the maximum number
of pairwise disjoint edges. Similarly, τ(C) is the transversal (or piercing) num-
ber of the hypergraph, i.e., the minimum size of a collection of vertices that
intersects every edge. After the cuts, the resulting curves will form a system
of pseudo-segments if and only if we cut every lens at least once. We always
have τ(H) ≥ ν(H) for any hypergraph H , and much research has been focused
on the connection between the packing and the transversal numbers. Tamaki
and Tokuyama use a general result of Lovász [10] connecting these numbers to
deduce their bound. We use, instead, the more specific result τ = O(ν) for the
families of so called 2-intervals (a 2-interval is simply a union of two intervals
of the real line). This was proved by Tardos [13], and later Kaiser [8] proved
the tight bound τ ≤ 3ν. Our lenses are almost 2-intervals: they consist of two
intervals, but of pseudo-circles (not the real line). We start by cutting every
pseudo-circle at an arbitrary point. Now our pseudo-circles can be identified
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with disjoint intervals of the real line. With this identification, all lenses which
remain after the first set of cuts correspond to 2-intervals (a disjoint union of
the two sides of the lens). Using Kaiser’s result we have τ(C) ≤ 3ν(C) + n,
where n is the number of pseudo-circles. Clearly n ≤ ν(C) as the collection of
degenerate lenses is non-overlapping, so we have τ(C) ≤ 4ν(C) and this finishes
the proof.

Lemma 9 and the following lemma prove Corollary 8.

Lemma 10. A collection of non-overlapping lenses in an arrangement of n
pseudo-circles has O(n3/2 log n) lenses.

Proof. Given an arrangement C, let L be a set of non-overlapping lenses with
Llens, Lmoon, and Linv the sets of lens-faces, moon-faces, and inverse-faces in
L (respectively). It is enough to prove the bound separately for each of these
subsets, since the total number of degenerate lenses is only n.

For each c ∈ C, and each subset Lk (for k = lens, moon, inv) we make a list
Sk

c consisting of all pseudo-circles c′ ∈ C that form a lens in Lk together with
c. For the lenses in Lmoon, however, we include c′ in the list Smoon

c only if the
corresponding lens has its positive side in c and its negative side in c′ (otherwise
it will appear in Smoon

c′ ).
We then order each of the lists Sk

c according to the counterclockwise cyclic
order of these lenses around c. Since all of the lenses are non-overlapping, this
cyclic order is well defined.

The main observation is that, for fixed k ∈ {inv, lens, moon}, the lists Sk
c

must be pairwise intersection reverse. As in the proof of Fact 1, one can prove
this observation by considering the arrangements of 5 pseudo-circles forming
six non-overlapping lenses. Notice that there are only a finite number of com-
binatorially different arrangements of 5 pseudo-circles in the plane. Instead of
the simple but tedious case analysis we present three “counterexamples” where
three pseudo-circles appear in the same cyclic order in the lists Sa and Sb. Here
a and b are two of the pseudo-circles and we let Sa (respectively Sb) be the
cyclic list of all pseudo-circles that together with a (respectively with b) form a
lens in L (see Figure 2). Considering the lists Slens

a , Smoon
a and Sinv

a separately
resolves the problem. In the first example, for the lists Sa we had to consider
two lens-faces and a moon-face from L, while in the second example for Sa we
considered moon-faces and for Sb we considered lens-faces. For the third exam-
ple we considered only moon-faces in L, but the moon-faces considered for Sa

have their negative (rather than positive) side on a.
By Corollary 6, the sum of the length of the lists Sk

c is O(n3/2 log n) for each
k. Hence the sum of the lengths of all of the lists is O(n3/2 log n) as well—but
this sum is at least the size of L.

Corollary 8 naturally generalizes to collections of open Jordan curves includ-
ing, for example, pseudo-parabolas. We call a collection of simple closed and
open Jordan curves a generalized pseudo-circle collection if both ends of every
open curve are at infinity, any two curves have at most two points of intersection,
and the curves cross properly at each intersection.
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a

b

ba

a

b

Figure 2: Three “counterexamples” to the intersection reverse property of Sa

and Sb.

Corollary 11. A generalized pseudo-circle collection C of n curves can be cut
at O(n3/2 log n) points such that the resulting curve segments form a system of
pseudo-segments.

Proof. Given C, we turn the arrangement into a system of n pseudo-circles
and apply Corollary 8. Since there are a finite number of intersections, there
is a sufficiently large circle D which contains all of them, together with all
closed curves and all the segments of the open curves connecting two intersection
points.

We modify the open curves in C outside the circle D by closing them. We
can choose the arcs closing up the open curves in such a way that any two of
the curves intersect at most once outside D. Therefore any pair in the resulting
family C′ intersects at most 3 times in total. Furthermore, C′ consists of closed
curves with proper intersections, so any pair of them must cross an even number
of times. Thus C′ is, in fact, a collection of pseudo-circles and Corollary 8 finishes
the proof.

3.3 Levels

Corollary 8 also has many consequences in the study of levels in arrangements of
curves. Tamaki and Tokuyama [12] were first to show the usefulness of cutting
numbers in this area, and progress has been made by Chan [4, 5].

Definition. Let C be the set of points in the graphs of the real functions
f1, f2, . . . , fn. We assume that each fi is continuous and defined everywhere
on the real line, and that any pair of curves in C intersects a finite number of
times. We define the kth level of C to be the closure of the locus of points (x, y)
on the curves in C with |{i : fi(x) ≤ y}| = k. The kth level consists of portions
of the curves in C, delimited by intersections between these curves. We will call
the total number of curve segments in a level its complexity.
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Chan [5] derives an upper bound on the complexity of a given level of a collec-
tion of pseudo-parabolas by recursively estimating the number of intersections
that can appear within a range of levels. Our improved bound in Corollary 11
improves Chan’s analysis. We sketch the reasoning below.

Let C be a collection of n pseudo-parabolas and fix k. Let ti stand for
the number of intersections strictly between levels k − i and k + i. The main
inequality (Lemma 3.1) in [5] asserts that

ti ≤ 2i(ti+1 − ti) + O(ni + Λi),

where Λi is the number of lenses (formed by the curves in C) lying strictly
between levels k − i and k + i. Lemma 4.1 of the same paper bounds Λi:

Λi = O(i2ν(n/i)),

where ν(k) stands for the number of cuts needed to turn k pseudo-parabolas
into a collection of pseudo-segments. By our Corollary 11 we have ν(k) =
O(k3/2 log k).

Putting these three inequalities together gives the recurrence

ti ≤ 2i(ti+1 − ti) + O(i1/2n3/2 log n).

Using tn = O(n2) and solving the recurrence yields a bound on t2 and therefore
on the complexity of the kth level.

Corollary 12. Let C be a collection of n pseudo-parabolas. Then the maximum
complexity of any level of C is O(n3/2 log2 n).

The above corollary represents a substantial improvement over the previous
bound of O(n8/5) for an arbitrary collection of pseudo-parabolas in [5]. For a
collection possessing a three-parameter algebraic representation (as defined in
[2]) the improvement is marginal, replacing a term which grows slightly faster
than polylogarithmically with the term log2 n. These improvements carry over
to levels of arrangements of algebraic curves of degree higher than two by the
technique of bootstrapping, as developed in [5]. We do not state these slightly
improved bounds here.

3.4 Incidences and Faces

Aronov and Sharir [3] and Agarwal, Aronov and Sharir [1] used cutting numbers
in their analysis of the relations between curves and points in the plane.

Definition. Let C be a set of curves and P a set of points in the plane. We define
I(C,P) to be the number of incidences between C and P , that is the number of
pairs (c, p) ∈ C×P such that curve c contains point p. We also define K(C,P) to
be the sum of the complexities of the faces in the arrangement C which contain
at least one point in P (assuming now that they are not on the curves). Here a
face is a connected component of the complement of the union of the curves in
C, and the complexity of a face is defined to be the number of curve segments
that comprise its boundary.
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The results in [2] relate the values of I(C,P) and K(C,P) to the cutting
numbers τ(C) discussed above. The following bounds were shown:

Lemma 13. If C is a collection of n curves and P is a set of m points, then

I(C,P) = O(m2/3n2/3 + m + τ(C)),

K(C,P) = O(m2/3n2/3 + m + τ(C) log2 n).

Thus, by Corollary 11, we have

Corollary 14. If C is a collection of n generalized pseudo-circles and P is a
set of m points, then

1. I(C,P) = O(m2/3n2/3 + m + n3/2 log n)

2. K(C,P) = O(m2/3n2/3 + m + n3/2 log3 n)

For curves that admit a three parameter algebraic representation (see [2])
Chan [5] is able to improve the incidence and complexity bounds in Corollary 14
by applying them separately to smaller subsets of the points and curves. Our
results also improve these better bounds, but only marginally, and therefore we
do not state them here.

4 Open problems

The results in this paper raise a number of interesting questions. Corollary 7
is tight except possibly for the logarithmic factor as graphs with n vertices and
Ω(n3/2) edges are known which do not contain any C4 (see, for example, [7]).
This also implies that the special cases of Theorem 1 and Corollary 6 when
n = m are almost tight. Nevertheless, it would be interesting to know if the
logarithmic factor is needed.

Problem 1. Is the logarithmic factor needed in Corollary 7?

Note that the statement of Corollary 7 is in regard to topological graphs
in general. One may get a different answer for the restricted set of geometric
graphs, that is, graphs with straight line segments as edges.

The geometric consequences use Theorem 1 in the special case when n = m,
but it is interesting to give bounds in the asymmetric cases as well. We define
R(n, m) to be the maximum total length of m pairwise intersection reverse
cyclic sequences over an alphabet of size n. With this notation Corollary 6
gives R(n, m) = O(m

√
n log n + n

√
m). We collect here a few simple lower and

upper bounds for R(n, m).
A trivial consequence of the property that a collection of cyclic sequences

are pairwise intersection reverse is that no three symbols appear together in
three cyclic sequences. By the Kővári–Sós–Turán Theorem [9], we have that
R(n, m) = O(nm2/3 + m) and R(n, m) = O(n2/3m + n). The first bound
supersedes the bound in Corollary 6 if m ≥ n3/2. The second bound supersedes
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the bound in Corollary 6 if m < n2/3. So for these extremely large or small
values of m Corollary 6 is not tight.

The simplest constructions of intersection reverse cyclic sequences are con-
structions for collections of subsets intersecting each other in at most two ele-
ments. No matter how we order these subsets the resulting collection of cyclic
sequences is pairwise intersection reverse. A simple construction for such sub-
sets is any collection of circles in a finite plane. Taking all points of the plane
and a subset of the circles gives R(n, m) = Ω(m

√
n) for m ≤ n3/2. Taking all

circles and a subset of the points gives R(n, m) = Ω(nm2/3) for m ≥ n3/2. A
collection of singleton sets gives the trivial bound R(n, m) ≥ m, which is better
than the previous bounds for m > n3. Pairwise disjoint sets provide the other
trivial R(n, m) ≥ n bound, which is better than the other bounds for m ≤ √

n.
The solid lines in the logarithmic scale diagram in Figure 3 shows the lower

and upper bounds mentioned above. These bounds determine R(n, m) up to a
constant factor for m ≥ n3/2 and m ≤ n1/3 and up to a logarithmic factor for
n ≤ m ≤ n3/2. In any construction proving better lower bounds than the ones
above, a typical pair of cyclic sequences will need to intersect in many elements,
so the cyclic order becomes essential in such a construction. We present such a
construction below, proving R(n, m) = Ω(n5/6m1/2) for n1/3 < m < n2/3. This
bound is represented in Figure 3 by the dashed line. The area of “uncertainty”
is shaded. Even with this construction, the upper and lower bounds for R(n, m)
are far apart for n1/3 < m < n.

Construction. The construction is based on a construction of Gy. Elekes [6]
of a set of axis-aligned parabolas and a set of points with a large number of
incidences. For integers b ≥ a ≥ 1 consider the subset P = {(i, j) : |i| ≤
a, |j| ≤ 3a2b} of the integer grid and consider the collection C of parabolas (and
lines) given by y = ux2 + vx + w with integers u, v, and w satisfying |u| ≤ b,
|v| ≤ ab and |w| ≤ a2b. We have m = |P | = (2a + 1)(6a2b + 1) = Θ(a3b)
and n = |C| = (2b + 1)(2ab + 1)(2a2b + 1) = Θ(a3b3). Clearly, each curve in C
contains a point in P for each possible x coordinate, a total of 2a + 1 points.
For each p ∈ P we define the linearly ordered list Bp of all the curves in C
passing through p. We order the list Bp according to the slopes of the curves
at p (breaking ties arbitrarily). As a result we get m linearly ordered lists of
subsets of the set of n symbols. Since axis-aligned parabolas form a collection
of pseudo-parabolas – any pair intersects at most twice (and tangent parabolas
have no further points in common) – it is easy to verify that these lists are
intersection reverse. Their total length is the number of incidences between P
and C, which is Θ(a4b3) = Θ(n5/6m1/2).

Problem 2. Is it possible to find n2/3 pairwise intersection reverse cyclic se-
quences over an alphabet of size n such that their total lengths sum to signifi-
cantly more than n7/6?

Note that for m = n2/3 both constructions give cyclic sequences with total
size Θ(n7/6). One of the constructions is based on finite geometry, the other
on Euclidean geometry. It seems to be hard to combine these constructions
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for a better result. The upper bound (provided both by Corollary 6 and the
Kővári–Sós–Turán Theorem [9]) is O(n4/3).

As Figure 3 shows, it is unclear as to whether the n
√

m term in Corollary 6
gives a tight bound for R(n, m) in any range. We claim that its appearance is
meaningful, however. The total length of the sequences needs to be above this
threshold in order for a typical pair of symbols to appear together in many cyclic
sequences – a property which is necessary in our estimate that not many more
different than same pairs exist. If a typical pair of symbols appears together
in only two cyclic sequences, it is possible that they only contribute different
pairs. This happens in the above construction as well; since we construct linearly
ordered (rather than cyclic) sequences that are pairwise intersection reverse, no
“same pair” ever appears.

One can ask the same extremal question about linearly ordered sequences.
Let Q(n, m) stand for the maximum total length of m pairwise intersection re-
verse sequences over an n element alphabet. In this case two symbols cannot
appear together in three sequences. The Kővári–Sós–Turán Theorem [9] there-
fore gives the bounds Q(n, m) = O(mn2/3 + n) and Q(m, n) = O(n

√
m + m).

For m ≤ n/ log2 n or m ≥ n3 we get the same upper bounds that we did for
R(n, m). The upper bound for intermediate values of m is shown by the dotted
line in Figure 3. One gets simple construction of intersection reverse sequences
by considering set systems with pairwise intersection limited to singletons. Just
as we noted in the case of cyclic sequences, this property ensures that the se-
quences are pairwise intersection reverse independent of the linear order chosen.
The standard construction for such set systems is the set of lines in a finite plane,
yielding Q(n, m) = Ω(n

√
m) for m ≥ n and Q(n, m) = Ω(m

√
n) for m ≤ n. The

bounds Q(n, m) ≥ n and Q(n, m) ≥ m are trivial (just as before). These bounds
determine Q(n, m) up to a constant factor for m ≤ n1/3 and m ≥ n. Notice
that the construction using parabolas in the plane yield pairwise intersection
reverse linearly ordered sequences and so we have Q(n, m) = Ω(n5/6m1/2) for
n1/3 ≤ m ≤ n2/3. Surprisingly, the “area of uncertainty” for Q(n, m) is exactly
the same parallelogram as it is for R(n, m). Only when n < m < n3 do the
bounds for Q(n, m) and R(n, m) diverge. We do not know if allowing for cyclic
sequences can yield longer intersection reverse collections when m < n.

Problem 3. Does R(n, m) = O(Q(n, m)) hold for m < n?

As far as pseudo-circles are concerned, our result is conjectured to be far
from optimal. The best known construction is a set of n pseudo-circles that
needs Ω(n4/3) cuts before it becomes a collection of pseudo-segments.

Problem 4. What is the tight bound for the number of non-overlapping lenses
in an arrangement of n pseudo-circles?

As noted in Section 3, the results in this paper generalize previous results
in the respect that the curves no longer need to be x-monotone. However,
there are certain extensions that can no longer be achieved. Chan [4] proved an
intersection-sensitive bound, that is, a bound which is stated as a function of
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Figure 3: Bounds and area of uncertainty for R(n, m) and Q(n, m).

the total number of intersections. Previous papers [2, 4] are able to give such
bounds for collections of x-monotone curves, but the methods break down when
x-monotonicity is dropped.

Problem 5. Find an intersection-sensitive extension to Corollary 11.
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