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Abstract

Fix two distinct parallel lines e and f . A 2-interval is the union of an interval on e and
an interval on f . We study the transversal number τ(H) of families of 2-intervals H. This
is the cardinality of the smallest set which intersects every 2-interval in H. A. Gyárfás and
J. Lehel [6] proved that τ(H) = O(ν(H)2) where ν(H) is the maximum number of disjoint
2-intervals in H. In the present paper we prove the tight bound τ(H) ≤ 2ν(H).

Our result has applications in the estimation of the transversal number of other types
of set systems.

The method we use is topological. We associate a simplicial complex K with our
system of 2-intervals and prove that a given subcomplex is contractible in K unless the
required transversal exists. Then we construct a cocycle of (another subcomplex of) K to
prove that the subcomplex is not contractible in K. We hope that this approach will be
applicable to a wider variety of combinatorial optimization problems.

1. Introduction

For any set system H we define the transversal number τ(H) of H to be the cardinality
of the smallest set intersecting every element of H. Such a set is said to be a transversal
of H or it said to cover H. The packing number ν(H) is the maximum number of disjoint
sets in H.

Every set system H trivially satisfies the inequality

ν(H) ≤ τ(H).

In general no inequality holds in the opposite direction. Gallai showed (see Hajnal and
Surányi [7]) that equality holds for finite sets H consisting of intervals of a line. Finding
other classes of set systems where τ = ν and more generally bounding the transversal
number in terms of the packing number for various set systems is a central problem of
combinatorial duality theory. Here we are mainly interested in families of d-intervals
(below) especially with d = 2. We allow infinite set systems, but when proving upper
bounds on τ we naturally assume that ν is finite.

Let us fix d non-intersecting straight lines. Take Ii to be a closed interval of the ith
line then I = ∪d

i=1Ii is said to be a d-interval. Ii is called the ith component of I.
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A. Gyárfás and J. Lehel [6] proved that the transversal number of a family of d-
intervals can be bounded in terms of its packing number. This is the same as stating the
existence of the following function f :

f(d, k) = max{τ(H)|ν(H) = k}

where the maximum ranges over families of d-intervals. The following bound is implicit in
[6].

Lemma 1.1. [6] For any fixed value d we have f(d, k) = O(kd!).

In this paper we give the exact value of f for the case d = 2:

Theorem 1.2. f(2, k) = 2k.

The lower bound f(d, k) ≥ dk is proved in [8]. This is not tight in general as [6]
observes that f(3, 1) = 4.

Although [8] largely improves upon Lemma 1.1, for d ≥ 3 the upper and lower bounds
on f(d, k) are still wide apart. Conjecture 6.3 would imply a linear upper bound for any
fixed d.

Theorem 1.2 yields tighter connection between the transversal number and the packing
number of set systems arising from geometrical objects, such as rectangles in the plane
(see [8]).

The proof technique of our results is topological in nature. Our main result (Theorem
3.1) infers from the non-existence of a transversal for a family of d-intervals that a certain
subcomplex of a complex is contractible in the larger complex. (See the definitions and the
precise formulation of the theorem below.) In some cases we can show that the subcomplex
(a triangulated sphere) is not homologous to 0 much less contractible in the larger complex.

2. Topological prerequisites

In this section we recall the definitions and results from topology we need. For a more
detailed introduction see Spanier [9]. For an excellent survey of topological methods in
combinatorics see Björner [2].

We do not use any deep results but mainly the terminology of the homology theory
of simplicial complexes. For simplicity, namely to avoid the introduction of directed faces
we use only chain groups over the two element group ZZ2.

A (finite simplicial) complex is a nonempty family K of subsets of a finite set V of
vertices with the descending property: S ⊂ T ∈ K implies S ∈ K. An element S of K is
called a face of the simplicial complex and the dimension of S is |S| − 1. Ki denotes the
set of the i-dimensional faces of K (0 ≤ i ∈ ZZ). A subcomplex of a complex is a subset
which is a complex.

For the geometric realization we identify each vertex v ∈ V with a standard basis
vector in IR|V |. The body A of a face A is a geometric simplex, the convex hull of the
vertices v ∈ A. The body of the complex K is K = ∪S∈KS. With this definition the body
of a complex contains the body of any subcomplex.

The ith chaingroup Ci(K) = Ci(K, ZZ2) of a complex K is an Abelian group consisting
of all (formal) linear combinations

∑

S∈Ki ǫSS of the i-dimensional faces S of K where the
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coefficients ǫi ∈ {0, 1} are taken from the two element group ZZ2. These linear combinations
form a group under addition. The boundary operation ∂ is a homomorphism from Ci(K)
to Ci−1(K) and is defined by ∂(S) =

∑

v∈S S\{v} for any face S. An element in the chain
group is called a boundary element if it is in the image of ∂. It is easy to see that composing
the boundary operation from Ci−1(K) with the boundary operation from Ci(K) we get
∂ ◦ ∂ = 0.

A homomorphism φ : Ci(K) → ZZ2 is called a cocycle if φ(∂(S)) = 0 for all S ∈
Ci+1(K). Of course it is enough to require the above equality for faces S ∈ Ki+1 then it
follows for linear combinations.

Let X and Y be topological spaces. Two continuous maps g0, g1 : X → Y are called
homotopic if there exists a continuous map (homotopy) g : X × [0, 1] → Y such that the
restriction of g to K × {0} is g0 and restriction to K × {1} is g1. A map g : X → Y is
called contractible if it is homotopic to a constant map.

A subspace Y of a topological space X is said to be contractible in X if the inclusion
map ι : Y → X is contractible. A subcomplex L of the complex K is contractible if L is
contractible in K. A topological space or a complex is called contractible if it is contractible
in itself.

A triangulated i-sphere is a complex whose body is homeomorphic to the i-sphere, i. e.
to the set of unit norm vectors in IRi+1.

A subspace Y is said to be a retract of the topological space X if there is a continuous
map f : X → Y that is the identity on Y . A subcomplex L is said to be a retract of the
complex K if L is a retract of K.

We are ready now to formulate the simple results from topology we need. We start
with a few observations that are trivial from the definitions above.

Observation 2.1.

a. Homotopy is transitive.

b. Let g0, g1 : X → Y ⊂ IRn be continues maps such that the interval [g0(x), g1(x)] is
contained in Y for any point x ∈ X . Then g0 and g1 are homotopic.

c. A convex subset of IRn is contractible.

d. A continues map from a contractible space, or a restriction of it is contractible.

e. Being a retract is transitive.

f. Let Y be a retract of the topological space X and Z a subspace of Y . Z is contractible
in Y if and only if Z is contractible in X .

The following rather simple theorem connects the homotopy statements of section 3
to the homology statements of section 4. It can be found in any textbook e.g. [1, VIII §5.
Satz III, page 340]

Fact 2.2. Let the triangulated i-sphere L be subcomplex of K. If L is contractible in K
then

∑

S∈Li S is a boundary element of Ci(K).

The following theorem is the basis of our reasoning in section 5. It can be proven via
standard methods and in fact a number of very similar results can be found in any book
on the subject. To be self-contained we give a short proof here.
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Fact 2.3. Let K1 and K2 be complexes and suppose K1 ∩K2 is contractible. Then K1 is
a retract of K1 ∪ K2.

PROOF: We claim first that any continues function f : Ṡ → X from the boundary of the
geometrical simplex S can be extended to S if X is contractible. Indeed let h : X× [0, 1] →
X be a homotopy connecting the identity on X to a constant map and let P0 be an internal
point of S. The formula g(αP0+(1−α)Q) = h(f(Q), α) where α ∈ [0, 1] and Q ∈ Ṡ defines
a continuous extension g : S → X of f .

Next we claim that any continuous map L → X can be extended to K if L is a
subcomplex of K and X is contractible. This extension can be constructed by adding
faces to L one by one until K is reached and extending the map to the new face by the
claim above.

Finally we apply the last claim to extend the identity map of K1 ∩ K2 to a retraction
of K2 to K1 ∩ K2 and extend this identically on K1\K2.

3. Homotopy

A transversal of a system of d-intervals is said to be of type t = (t1, . . . , td) if it contains
ti points of the ith line for i = 1, . . . , d. We denote by |t| the cardinality of any transversal

of type t, i. e. |t| =
∑d

i=1 ti.

For the rest of this section we fix an integer d ≥ 1 a type t = (t1, . . . , td) and a number
k ≥ 1. We search for a transversal of type t for families of d-intervals with packing number
at most k. The definition of the sets D, U and the complexes K0, L, L0 (below) depend
on our choice of d and t. The definition of K depends also on k.

Although we present the definitions and proofs in the general case the reader can first
consider the special case d = 2 and t = (k, k). This is the case used in the proof of our
main result, Theorem 1.2. In brackets we point out the possible simplifications in the
argument when only considering this case.

Let D = {1, . . . , d} and let U be the set of the functions e : D → ZZ satisfying
0 ≤ e(i) ≤ ti for i ∈ D. We call two elements e and e′ of U disjoint if e(i) 6= e′(i) for any
i ∈ D.

[In the special case consider the complete bipartite graph G whose color classes are
{v0, . . . , vk} and {v′

0, . . . , v
′
k}. A function e ∈ U can be identified with the edge from ve(1)

to v′
e(2), and thus U is the set of the edges of G.]

We define a complex K0 on the set of vertices U . A set S ⊂ U is a face of K0 if and
only if there is an i ∈ D and a 0 ≤ j ≤ ti such that for all e ∈ S e(i) 6= j.

Let the complex K consist of the sets S ⊂ U satisfying one of the following two
conditions

(i) S does not contain k + 1 pairwise disjoint elements of U or

(ii) S ∈ K0.

[In the special case subsets of U are bipartite graphs (subgraphs of G). K0 consists of
graphs with isolated vertices, while (i) covers graphs without perfect matchings. Therefore
(i) contains (ii) and K is the complex of bipartite graphs on twice k + 1 vertices without
perfect matchings.]
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Another complex on the same set of vertices U is L whose faces are those sets S =
{e0, . . . , em} ⊂ U that satisfy ej−1(i) ≤ ej(i) for all 1 ≤ j ≤ m and i ∈ D (the dimension
m is arbitrary).

Let L0 = L ∩ K0, this is a subcomplex of both K and L.
[In the special case L consists of the graphs which do not have intersecting edges when

drawn in the usual way. L0 consists of the graphs that in addition have an isolated vertex.]

Theorem 3.1. Let H be a family of d-intervals with ν(H) ≤ k. If there is no type t

transversal of H then L0 is contractible in K.

PROOF: Without loss of generality we may suppose that H covers only a part of a finite
interval (Ai, Bi) of the ith line (i ∈ D). (We need this assumption for compactness. In
case the infinite family H covers an unbounded part of the lines then take monotonous one
to one mappings of the lines to intervals and consider the equivalent but bounded family
H′ in the image.) Consider the sets

Zi = {(x1, . . . , xti
)|Ai ≤ x1 ≤ . . . ≤ xti

≤ Bi} ⊂ IRti (1)

for i ∈ D and let

Z =
d
×

i=1
Zi ⊂ IR|t|. (2)

When referring to a point x = (x11, . . . , x1t1 ; . . . ; xd1, . . . , xdtd
) ∈ Z we are going to use

the notation xi0 = Ai and xiti+1 = Bi for i ∈ D.
A point x = (x11, . . . , x1t1 ; . . . ; xd1, . . . , xdtd

) ∈ Z represents the set Sx consisting of
the points xij on the ith line for 1 ≤ j ≤ ti and i ∈ D. As this set would be of type t (or
smaller if some of the points coincide) it is not a transversal of H. Therefore there exists
a d-interval I ∈ H disjoint from Sx. Thus for every i ∈ D the ith component Ii of I is
disjoint from {xi1, . . . , xiti

} therefore Ii ⊂ (xij , xij+1) for some 0 ≤ j ≤ ti.
An equivalent formulation of the statement in the last paragraph is that the sets

He = {x = (x11, . . . , x1t1 ; . . . ; xd1, . . . , xdtd
) ∈ Z| 6 ∃I ∈ H∀i ∈ D Ii ⊂ (xie(i), xie(i)+1)}

do not have a common point for all e ∈ U , i. e. ∩e∈UHe = ∅.
Our goal is to collect enough topological observations about the sets He (e ∈ U)

to be able to finish the proof using these observations and not referring to the family of
d-intervals again. This last part of the proof is stated separately in Lemma 3.2.

First we observe that as all components of the d-intervals in H are closed so are all
the sets He for e ∈ U .

Next we consider the boundary of Z. Zi is a ti dimensional simplex for each i ∈ D, its
(ti−1)-dimensional faces are characterized by having equality at one of the ti+1 inequalities

in its definition. Thus their product Z is a convex polytope, Z has
∑d

i=1(ti + 1) = |t|+ d
maximal dimensional faces, for any i ∈ D and 0 ≤ j ≤ ti we have a face

Xij = {x = (x11, . . . , x1t1 ; . . . ; xd1, . . . , xdtd
) ∈ Z | xij = xij+1}. (3)

For any x = (x11, . . . , x1t1 ; . . . ; xd1, . . . , xdtd
) ∈ Xij we have xij = xij+1 therefore the

ith component of no d-interval can be between xij and xij+1. Thus x ∈ He for all e ∈ U
with e(i) = j. Therefore He ⊃ Xie(i) for all e ∈ U and i ∈ D.
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Finally consider a fixed x ∈ Z. For any e ∈ U by definition x 6∈ He means the
existence of a special d-interval Ie ∈ H. It is easy to verify that if e and e′ are disjoint
elements of U then Ie and Ie′ are also disjoint. Thus from ν(H) ≤ k we have that x 6∈ He

cannot happen simultaneously for more than k pairwise disjoint elements e ∈ U . Thus if
S ⊂ U consists of k + 1 pairwise disjoint elements then ∪e∈SHe = Z.

An application of Lemma 3.2 (below) concludes the proof.

[In the special case of d = 2 and t = (k, k) a set S of k + 1 pairwise disjoint elements
of U is a perfect matching.]

The following lemma refers to the polytope Z as defined in (1) and (2) and its faces
Xij (i ∈ D, 0 ≤ j ≤ ti) as defined in (3).

Lemma 3.2. For e ∈ U let He be a closed subset of Z satisfying He ⊃ ∪i∈DXie(i).
Suppose we have ∪e∈SHe = Z for each set S consisting of k + 1 pairwise disjoint elements
of U . If ∩e∈UHe = ∅ then L0 is contractible in K.

PROOF: We identify the elements of U with the standard basis vectors of IR|U| as in
the definition of the body of a complex on U . Let g′ : Z → IR|U| be defined by g′(p) =
∑

e∈U ρ(p, He)e where ρ denotes the Euclidean distance. Here g′ is continuous and for
any p ∈ Z all coordinates of g′(p) are non-negative. As all the sets He are closed the
coefficient of e in g′(p) is zero if and only if p ∈ He. As ∩e∈UHe = ∅ the image of g′ does

not contain the origin. Thus we can define the normalized map g : Z → IR|U| by g(p) =
g′(p)/(

∑

e∈U ρ(p, He)). This map is also continuous and because of the normalization g(p)
is a convex combination of the points in U . Moreover we know that the coefficient of e in
this convex combination is zero if p ∈ He. Thus g(p) is in the convex hull of the points
e ∈ U for which p 6∈ He. This set of vertices form a face of the complex K as condition (i)
in the definition must be satisfied. This means that g(p) ∈ K so g maps Z to K.

In order to approximate g we study the geometry of Z. For e ∈ U let us denote by
Ve the vertex of Z that is not contained in Xie(i) for any i ∈ D. There is exactly one such
vertex for each e ∈ U , these vertices are different for different elements of U and all vertices
of Z are among {Ve|e ∈ U}. We define a mapping h : L → Z by h(

∑

αee) =
∑

αeVe. It is
easy to see (see e.g. [5, II, Lemma 8.9, page 68]) that h is a homeomorphism. (L is called
a triangulation of Z.)

Let Z0 = ∪ijXij be the boundary of Z. The inverse image of Xij in L consists of the
bodies of the faces S ∈ L that contain no vertices e ∈ U with e(i) = j. Thus the inverse
image of Z0 is the body of the complex L0, as L0 consists of those faces of L for which
such i and j exist. Therefore L0 is homeomorphic to Z0, the boundary of the convex |t|
dimensional polytope Z, thus L0 is a triangulated (|t| − 1)-sphere.

We claim that the identity inclusion ι : L0 → K is homotopic to g0 ◦ h0 where g0

is the restriction of g to Z0, and h0 is the restriction of h to L0. By Observation 2.1.b
it is enough to prove that the interval [ι(p), g0(h0(p))] is contained in K for all p ∈ L0.
Here h(p) ∈ Z0. Thus h(p) ∈ Xij for some i ∈ D and 0 ≤ j ≤ ti. Then p is in the
body of a face S of L0 containing no vertex e ∈ U with e(i) = j. Using the condition
in the lemma we have h(p) ∈ He for all these vertices e and thus g(h(p)) ∈ Sij where
Sij = {e ∈ U |e(i) 6= j}. Here Sij is a face of (K0 and) K containing S therefore both
ι(p) = p and g0(h0(p)) = g(h(p)) are in the body of the same face Sij ∈ K so the interval
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connecting them is also contained in Sij ⊂ K.

Being homeomorphic to the convex polytope Z, L is contractible (Observation 2.1.c).
Thus g◦h is contractible and so is its restriction g0◦h0 (Observation 2.1.d). Since homotopy
is transitive (Observation 2.1.a) ι is also contractible. By definition this means that L0 is
contractible in K as claimed.

Notice that type (ii) faces in the definition of the complex K were needed to allow
for the homotopy between g0 ◦ h0 and ι at the end of the proof above. We close this
section with observing that using these faces of K we can relax somewhat the conditions
of Theorem 3.1.

[In the special case d = 2 and t = (k, k) Theorem 3.3 is not stronger than Theorem
3.1.]

Theorem 3.3. Let H be a family of d-intervals. Suppose there is no subset H1 ⊂ H
satisfying the following two properties:

— Hi = ∪I∈H1
Ii is the union of more than ti connected components (intervals) for each

i ∈ D (here Ii is the ith component of the d-interval I) and

— there is a subset H2 ⊂ H1 of more than k d-intervals such that the ith components of
them are all in separate connected components of Hi for all i ∈ D.

If there is no type t transversal of H then L0 is contractible in K.

PROOF: The proof of Theorem 3.1 goes through in this case with hardly any modification.
We need to replace the ∪e∈SHe = Z condition for sets S consisting of k+1 pairwise disjoint
elements of U in Lemma 3.2 with the same condition for sets S ⊂ U with S 6∈ K.

4. Homology

Our goal is to prove that L0 is not contractible in K for some values of d, t and k.
Theorem 3.1 yields f(d, k) ≤ |t| in each of these cases.

Let z = z(d, t, k) =
∑

S∈L
|t|−1

0

S ∈ C|t|−1(K).

In a previous draft of this paper we finished the proof of our main result (Theorem
1.2) by considering the d = 2, t = (k, k) case and constructing a cocycle of K not vanishing
on z. This proved that z is not a boundary element of C|t|−1(K) and by Fact 2.2 that L0

is not contractible in K. (Note that L0 is a triangulated |t| − 1 sphere as it was pointed
out in the proof of Lemma 3.2.) This approach made the concept of a retract and Fact
2.3 unnecessary to use. We illustrate this direct method in the proof of Proposition 4.1,
a simple special case related to 3-intervals. But we prove our main result differently. The
first step is to prove that L0 is not contractible in K0 (Theorem 4.4). This is true for every
set of the parameters. We finish the proof by showing that in the special case d = 2 and
t = (k, k) K0 is a retract of K (Theorem 5.1). We find this approach more intuitive and
hope that it will be simpler to extend for higher values of d. We remark that K0 is also a
retract of K in the case handled by Proposition 4.1.

We note that even for fixed d and k, an upper bound on f(d, k) covers an infinite
number of cases (families of d-intervals). We have just reduced the proof to showing that
z is not a boundary element, a finite problem since C|t|−1(K) is a finite group.

7



Proposition 4.1. Let d = 3, t = (1, 1, 2), and k = 1. Then there exists a cocycle
φ : C3(K) → ZZ2 with φ(z) 6= 0.

PROOF: We define φ by listing the six faces S ∈ K3 with φ(S) = 1. On the rest of the
3-dimensional faces of K φ vanishes. Then φ extends to linear combinations and it is easy
to check that φ is a cocycle and φ(z) = 1. The list consists of Si and S′

i for i = 0, 1, 2.
Here Si = {e000, e001, e002, e01i} and S′

i = (Si ∪ {e10i})\{e00i} where e ∈ U was denoted
by ee(1)e(2)e(3).

The following corollary was implicit in [6]. It was also showed there that f(3, 1) = 4.

Corollary 4.2. [6] Every pairwise intersecting family of 3-intervals has a transversal of
type (1, 1, 2). Thus f(3, 1) ≤ 4.

PROOF: Fact 2.2, Theorem 3.1, and Proposition 4.1 yield the proof.

With our method we can prove the same conclusion from a somewhat weaker assump-
tion.

Corollary 4.3. Suppose a family H of 3-intervals does not contain 3-intervals I1, I2, and
I3 such that I1 and I2 are disjoint, the first component of the three 3-intervals are pairwise
disjoint, and both the second and the third components of I3 is disjoint from either I1 or
I2. Then H has a transversal of type (1, 1, 2).

PROOF: Fact 2.2, Theorem 3.3, and Proposition 4.1 yield the proof.

The next observation holds for any set of the parameters d and t.

Theorem 4.4. L0 is not contractible in K0.

PROOF: By Fact 2.2 it is enough to show that z is not a boundary element of C|t|−1(K0).
We prove this by constructing a cocycle φ of K0 not vanishing on z.

Let us say that a vertex e ∈ U is of type (i, j) with i ∈ D and 1 ≤ j ≤ ti if e(i) = j
and e(i′) = 0 for 1 ≤ i′ < i. If we say that the constant 0 function e0 ∈ U is of type (d, 0)
we get a partitioning of U into these types.

We define φ on faces S ∈ K
|t|−1
0 then it extends to linear combinations. We take

φ(S) = 1 if S contains a vertex of each type except for the type (1, t1). We take φ(S) = 0
otherwise.

To prove that φ is a cocycle of K0 take a face S ∈ K
|t|
0 . It is easy to see that φ vanishes

on each face in the sum ∂(S) unless S contains a vertex of each type except possibly the
type (1, t1). If S contains a vertex of each other type but no vertex of type (1, t1) then it
has to contain two vertices of one type and φ does not vanish on exactly two faces of the
sum ∂(S) thus φ(∂(S)) = 0. This finishes the proof since no face S ∈ K0 contains a vertex
of each type. Indeed if S ∈ K0 then there is a i ∈ D and 0 ≤ j ≤ ti such that e(i) 6= j
holds for all vertex e ∈ S. Thus if j 6= 0 S contains no vertex of type (i, j) and if j = 0 S
does not contain the only vertex of type (d, 0).

It is left to prove that φ(z) 6= 0. For this we need to find the faces S ∈ L
|t|−1
0 for which

φ(S) = 1. Such a face contains a vertex of each type except for the type (1, t1). Downward
induction on i shows that the vertex of type (i, j) must be eij defined by eij(i

′) = 0 if
1 ≤ i′ < i, eij(i) = j, and eij(i

′) = ti′ if i < i′ ≤ d. Thus this face is unique and therefore
φ(z) = 1.

8



Let us remark here that an easy application of the Nerve Theorem (see Borsuk [4]
and Björner, Korte and Lovász [3]) shows that K0 is in fact homotopy equivalent to the
(|t| − 1)-sphere, so z is essentially the unique cycle in K0 not homologous to 0.

5. Retracts

Proposition 5.1. If d = 2 and t = (k, k) then K0 is a retract of K.

PROOF: This is the special case considered in brackets throughout section 3. As it was
pointed out there U can be considered the edge set of a complete bipartite graph G with
color classes V and W both consisting of k + 1 vertices. The complex K consists of the
subgraphs of G (considered as edge sets) that contain no perfect matching. K0 is the
complex of subgraphs with isolated vertices.

Let us consider all the pairs (A, B) with A ⊂ V , B ⊂ W and |A| + |B| > k + 1. Note
that neither A nor B is empty. Arrange these pairs in a sequence (A1, B1), . . . , (An, Bn)
such that for i = 1, . . . , n− 1 we have |Ai|+ |Bi| ≥ |Ai+1| + |Bi+1| and in case of equality
here we have |Ai| ≤ |Ai+1|.

Let us consider the complex K ′
i consisting of the graphs having no edge connecting

Ai to Bi (i = 1, . . . , n). We define Ki by recursion for i = 1, . . . , n, let Ki = Ki−1 ∪ K ′
i.

As the complexes K ′
i contain exactly the graphs violating the Hall-criterion for perfect

matching their union Kn coincides with K.
Fix an index 1 ≤ i ≤ n. We claim that Ki−1 is a retract of Ki. If Ai = V then

every vertex of the nonempty set Bi is isolated in each face of K ′
i thus K ′

i ⊂ K0 ⊂ Ki−1,
therefore Ki = Ki−1. The same equality holds if Bi = W thus we may suppose that there
exist vertices v ∈ V \Ai and w ∈ W\Bi. Let us call e the edge of U connecting v to w. To
prove the claim by Fact 2.3 we need to show that K∗ = K ′

i∩Ki−1 is contractible. We claim
that the identity map on K∗ and the constant map to e are homotopic by Observation
2.1.b therefore K∗ is contractible. To see that for every point p ∈ K

∗
the interval [p, e] is

also contained in K
∗

it is enough to show that for every face S ∈ K∗ we have S∪{e} ∈ K∗.
Take therefore a face S ∈ K∗. As S ∪ {e} ∈ K ′

i trivially holds it is enough to show
S ∪ {e} ∈ Ki−1. As S ∈ Ki−1 we have S ∈ K0 or S ∈ K ′

j for some 1 ≤ j < i.
Suppose first that S ∈ K0. Then S has an isolated vertex. If this is neither v nor w

then S ∪ {e} ∈ K0 ⊂ Ki−1. Thus by symmetry we may suppose that v is isolated in S.
The pair (Ai∪{v}, Bi) = (Aj , Bj) must precede (Ai, Bi) since |Aj|+ |Bj | = |Ai|+ |Bi|+1,
so 1 ≤ j < i. Thus S ∪ {e} ∈ K ′

j ⊂ Ki−1.
Suppose now that S ∈ K ′

j for some 1 ≤ j < i. If v 6∈ Aj or w 6∈ Bj then S ∪ {e} ∈
Kj ⊂ Ki−1. Otherwise consider the pairs (A, B) = (Ai ∪ Aj , Bi ∩ Bj) and (A′, B′) =
(Ai ∩ Aj, Bi ∪ Bj). As |A| + |B| + |A′| + |B′| = |Ai| + |Bi| + |Aj| + |Bj| ≥ 2(|Ai| + |Bi|)
either one of the pairs is on the list and precedes (Ai, Bi) or both are on the list and
|A|+ |B| = |A′|+ |B′| = |Ai|+ |Bi|. In this last case |A| > |A′| ensures by our tie-braking
rule that (A, B) precedes (Ai, Bi). So one of the two pairs is (Al, Bl) with 1 ≤ l < i and
S ∪ {e} ∈ Kl ⊂ Ki−1.

We finish the proof of this theorem by using the transitivity (Observation 2.1.e) to
infer that K0 is a retract of Kn = K.

Just as Proposition 4.1 yields Corollary 4.2 the above theorem yields this:
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Corollary 5.2. Any family H of 2-intervals has a transversal of type (ν(H), ν(H)). Thus
τ(H) ≤ 2ν(H).

PROOF: Observation 2.1.f, Theorem 4.4, Theorem 3.1, and Theorem 5.1 yield the proof.

PROOF OF THEOREM 1.2: We have just proved the upper bound f(2, k) ≤ 2k.

The lower bound f(2, k) ≥ 2k follows from the general observation f(d, k) ≥ dk
found in [8]. Another way to derive the bound is to use the construction of three pairwise
intersecting 2-intervals with empty intersection in [6]. It shows f(2, 1) ≥ 2. Taking k far
away isomorphic copies of these three 2-intervals one gets the desired bound.

6. Further results and open problems

The following is an easy consequence of Corollary 5.2:

Corollary 6.1. Let k1 ≥ k2 > 0 be integers. Suppose the family H of 2-intervals has the
following property: if k1 + 1 elements of H have disjoint first components then at most k2

of them have disjoint second components. Then H has a transversal of type (k1, k2).

PROOF: Find a set T of k1 − k2 pairwise disjoint intervals on the second line that are
disjoint from all 2-intervals in H. Let H′ consist of the 2-intervals I1 ∪ I2 where I1 is the
first component of a 2-interval in H and I2 ∈ T . Apply Corollary 5.2 to H ∪H′.

The condition on H can be relaxed a little here too, but then the proof has to use the
topological proof techniques of this paper rather then Corollary 5.2:

Proposition 6.2. Let k1 ≥ k2 > 0 be integers and suppose the family H of 2-intervals
has the following property: if k1 + 1 elements of the family have pairwise disjoint first
components then the union of their second components is the union of at most k2 intervals.
Then H has a transversal of type (k1, k2).

PROOF: We construct K, K0 and L0 as in Section 3 for d = 2 t = (k1, k2) and k = k2.
By Theorem 3.3 and Theorem 4.4 it is enough to show that K0 is a retract of K. It is easy
show this by direct analogy to the proof of proposition 5.1.

We believe that Theorem 3.1 can be used to bound f(d, k) for higher values of d too.
Let us state here the following conjecture:

Conjecture 6.3. For any fixed d there is a function t(k) = O(k) such that when K0 and
K are defined for d, k, and t = (t(k), . . . , t(k)) then K0 is a retract of K.

This conjecture would imply f(d, k) ≤ dt(k) = O(k) for any fixed d. The best current
bound is f(d, k) = Od(k

d−1)in [8]. (The proof uses Theorem 1.2 to improve the earlier
f(d, k) = Od(k

d) bound.)

Finally we show how to apply Theorem 1.2 to prove linear dependence between τ and
ν for another model of 2-intervals.

Let us fix a single line. We call the union of d intervals of the line a homogeneous
d-interval.
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Theorem 6.4. For any family H of homogeneous d-intervals we have τ(H) ≤ f(d, 2d(d−
1)ν(H)).

PROOF: We put the components of the homogeneous d-intervals to d parallel lines by
perpendicular translation to get d-intervals. Let H′ be the set of the d-intervals so obtained
from the elements of H.

We claim that ν(H′) ≤ 2d(d − 1)ν(H). Using the trivial observation τ(H) ≤ τ(H′)
this proves the statement of our theorem.

To prove the bound on ν(H′) take a maximum set S′ of pairwise disjoint d-intervals
from H′. Let S be the set of the corresponding homogeneous d-intervals from H. Let
us consider the graph G whose vertices are the intervals constituting the homogeneous
d-intervals in S; two vertices are adjacent if the corresponding intervals intersect. The
graph G is d-partite as all edges connect intervals that are moved to distinct parallel lines.
Therefore it is the union of

(

d
2

)

bipartite subgraphs. It is easy to see that none of these
subgraphs contain a cycle. Therefore the average degree of any subgraph of G is less than
2(d − 1). Consider now the graph G′ whose vertices are the homogeneous d-intervals of
S; two vertices are adjacent if the corresponding elements of S intersect. As G′ can be
obtained from G by identifying d-tuples of vertices the average degree of any subgraph
of G′ is less than 2d(d − 1). Thus the greedy strategy finds an independent set of size
⌈|S|/(2d(d−1))⌉ in G′. As this is a set of disjoint elements of H the bound on |S| = ν(H′)
is proved.

Corollary 6.5. For any family H of homogeneous 2-intervals we have τ(H) ≤ 8ν(H).

PROOF: Theorem 1.2 and Theorem 6.4 yield the result.
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graphen, Annales Univ. Sci. Budapest, 1 (1958) 113–121
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