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Abstract

Korner and Malvenuto asked whether one can find ( Ln72 J) linear orderings (i. e., permu-

tations) of the first n natural numbers such that any pair of them place two consecutive
integers somewhere in the same position. This led to the notion of graph-different per-
mutations. We extend this concept to directed graphs, focussing on orientations of the
semi-infinite path whose edges connect consecutive natural numbers. Our main result
shows that the maximum number of permutations satisfying all the pairwise conditions
associated with all of the various orientations of this path is exponentially smaller, for
any single orientation, than the maximum number of those permutations which satisfy the
corresponding pairwise relationship. This is in sharp contrast with a result of Gargano,
Korner, and Vaccaro concerning the analogous notion of Sperner capacity of families of
finite graphs. We improve the exponential lower bound for the original problem, and list
a number of open questions.



1 Introduction

Let N denote the set of natural numbers and let D be an arbitrary loopless directed graph
(digraph) with vertex set N. We will say that two permutations ¢ and 7 of the first n
natural numbers are D—different if there is an ¢ € [n] = {1,...,n} such that the ordered
couple of its images under these two permutations satisfies (o (i), 7(7)) € E(D). We write
N(G,n) for the largest cardinality of a set of pairwise D—different permutations of [n].
(This means that every couple is D—different in both orders.) Our main concern in this
paper will be the behaviour of N(D,n) in the special cases when D is an orientation of
the semi-infinite path L containing as edges the pairs of consecutive positive integers.

The above definitions naturally extend to digraphs the notion of graph-different per-
mutations investigated in [13, 14, 17] in the undirected case. In fact, if we identify
undirected graphs with their symmetrically directed equivalent, i.e., with digraphs having
two oppositely oriented edges in place of all of their undirected edges, then the undirected
notion becomes a special case of the directed one. This relationship is analogous to that
between the Shannon capacity of graphs [22] and its generalization to digraphs called
Sperner capacity (cf. [10, 16] for its origins and [1, 4, 6, 11, 12, 15, 19, 20| for some fur-
ther results about Sperner capacity). The close connection of Shannon capacity and the
notion of graph-different permutations for undirected graphs is explored on a quantitative
level in [17] and one could easily formulate a similar statement for the directed case.

The motivating example for introducing graph-different permutations was the puzzle
presented in [13] that asks for the value of N(L,n), i.e., the maximum size of a set of
permutations of the elements in [n] satisfying that if o and 7 are two distinct permutations
in this set, then there is some i € [n] for which |o(i)—7(i)| = 1, that is, {o(¢), 7(:)} € E(L).
The natural upper bound N(L,n) < (Ln72 J) was presented, and conjectured to be sharp,
n [13]. It is still an open problem to decide whether N(L,n) is always equal to this
upper bound. Indeed even the weaker conjecture that p(L) := limy, .o = log N(L,n) =1
remains open; later in the paper we show that p(L) > 0.8604. (The base of logarithms is
always taken to be 2.)

In this paper we will mainly focus on the various orientations of L. Our main result
exhibits an exponential gap betwen the maximum size of a set of permutations that are
pairwise L-different for any fixed orientation L of L and the maximum size of a set of
such permutations that are pairwise L-different simultaneously for all orientations L of
L. This is in sharp contrast with one of the main results about Sperner capacity proven
n [11].

2 Fixed orientations: a lower bound
Given an undirected graph G, an orientation of G is a digraph obtained from G by

replacing each edge zy with one directed edge, either from z to y or from y to x.
Let L be any fixed orientation of the semi-infinite path L, that is, the edge set of L



contains, for every ¢ € N, exactly one of the ordered pairs (i,7+ 1) and (i + 1, 7).
Let .
R(L) = limsup — log N (L, n)
n

n—oo

be the permutation capacity of L. Denoting by L the set of all orientations of L, we also
define
Ruin(L) = inf R(L) and Rumax(L) = sup R(L).
Lel Ler
It is clear from these definitions that Ry (L) < Rupax(L) < p(L) < 1. The last inequality
follows from noting (see [13]) that, for two L-different permutations, the set of positions
of odd (even) numbers must differ. (Here we use the notion of being L-different again in
the sense of our definitions, identifying L with the symmetrically directed equivalent of
its originally undirected version.)
Our first result is the following lower bound.

Theorem 1

Rin(L) > log ~ 0.694.
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An improved lower bound will also be given for Ry, (L) in Section 5; the above statement
is included here because it has a simpler proof, and the lower bound is already large
enough for our main conclusion in the next section.

To prove Theorem 1 we need some preparation. For an arbitrary digraph D on N
let I'p(n) be the digraph defined as follows. The vertex set of I'p(n) consists of all the
different permutations of the elements of [n]. An ordered pair (o,7) of permutations is
an edge of I'p(n) if there exists an ¢ € [n| for which (0(i),7(z)) € E(D). We denote by
I'p, (n) the similarly defined graph on the permutations of numbers j, j+1,...,j+n—1.

For an arbitrary digraph D, its symmetric clique number wy(D) is the maximum
number of vertices of D that form a symmetric clique, i.e., a subgraph in which every
ordered pair of distinct nodes forms an edge. In particular, it follows from the definitions
that N(D,n) = ws(I'p(n)). The transitive clique number wy,.(D) of a digraph D is the
largest number of vertices in D that form a transitive clique, i.e., a subgraph in which
the vertices could be labelled by numbers 1,2, ...,k so that each label appears only once
and all ordered pairs (u,v) form edges where u is labelled with a smaller number than
v. Clearly, ws(D) < wy (D) holds for every digraph D. For the clique number of an
undirected graph G we use the usual notation w(G).

We need the following technical lemma relating the value

te(n) == min{w, (T'z(n))}

Lel

to the permutation capacity of graphs in L.



Lemma 2 1
R(E) = ” logtc(n)

for any fixed orientation L of the semi-infinite path L and any natural number n.

Proof. Fixn € N and L € £. For every j € N, let L; denote the oriented n-vertex
path induced by L on the vertices (j — 1)n+1,(j — 1)n+2, ..., jn. It follows from the
definition of ¢ := tz(n) that, for every j, there exist ¢ permutations of the vertices of L,
which form a transitive clique in UL iymen (n), i.e., they can be labelled by 0; 1, ..., 0}, so
that for every k < £ there is an 1 <r < n for which we have (0;4(r), (1)) € E(L;). Fix
such a set of permutations M; together with the above type of labelling for every j < h,
where h is some appropriately large natural number. Now consider all permutations in
Shn that can be written in the form of 04,09, . . . 014, , Where 0ji; € M; for each j. There
are t" such permutations, and there is an edge from 01,0102,y - - - Ohy, £0 01,025, ... Onj,
in I'z(hn) whenever i, < ji for some index k. Therefore, the subset SX of all these
permutations for which the sum 2?21 i; is a fixed number K forms a symmetric clique in
I'z(hn). Since the above sum can take fewer than h - ¢ different values, this implies that

N(L,hn) = wy(Dz(hn)) > fl—ht Taking the (hn)-th root, the logarithm, and the limit in

h, we arrive at the stated inequality. O

Lemma 3 We have
tﬁ(”) Z Fn+17

where F, denotes the n-th element of the Fibonacci sequence defined by Fy = Fy =
1,F,.1=F,+ F,_1 forn>3.

Proof. We use induction on n. We obviously have t.(1) =1 = F; and t.(2) = 2 = F3.
Assuming the validity of the stated inequality for all n < k, we show it for n = k+ 1. Fix
an arbitrary orientation Lel. Fori=k—1andi= k, let M; be a set of permutations
of 1,...,7 forming a transitive clique of size Fj;; in I'z(7). Extend the permutations in
M, to permutations of [k + 1] by putting & in the last position and &k + 1 in the next to
last position thus obtaining the set

My 1(k+1Dk={c(1)...0k=1)(k+1k:0 € My_1}.
Similarly, define the set
Mi(E+1)={c(1)...0(k)(k+1):0 € M}.

The set Myy1 = (My_1(k+1)k) U (My(k+ 1)) then forms a transitive clique in I'z(k +1)
(depending on the orientation of the edge {k, (k+ 1)} we have the first or the second set
dominating the other) and has size Fj,_;+ F), = Fy,1. Since L was an arbitrary orientation
of L, this implies the statement. 1.

-

Proof of Theorem 1. Combining Lemma 2 with Lemma 3 gives R(L) >
lim sup,,_, % log F),+1; thus the well-known explicit form of the Fibonacci numbers implies
the statement. U



3 Robust capacity: an upper bound

One of the main results about Sperner capacity is a “bottleneck theorem” [11] concerning
digraph families; see also the discussion in the next section. In this section, we prove that
an analogous statement does not hold for the permutation capacity of the infinite family
of graphs formed by all orientations of the semi-infinite path L.

Let I'z(n) denote the following graph on the common vertex set of the graphs I'z(n)

with L € £. The edge set of T'z(n) is
Ec(n) = Nge BT r(n)).

We would like to understand the asymptotic behaviour of ws(I'z(n)). In other words, we
are interested in the size of the largest set of permutations of [n], any two elements o and
7 of which satisfy that, for any L € £, there is an i and a j such that (0(i), 7(i)) € E(L)
and (7(j), o(j)) € E(L).

First we observe that, if permutations 7 and ¢ are in the above relation, then there
must be a k and ¢ # j such that (o(i),7(2)) = (7(),0(j)) = (k,k + 1). Indeed, if no
such i, 7, k would exist, then for every k& € N at most one of the ordered pairs (k,k + 1)
and (k + 1,k) appears among the ordered pairs (o(i), 7(i)), and this means that L has

~

an orientation L for which we never have (7(i),0(i)) € E(L). This observation motivates
the following definition.

Definition 4 Let G be an undirected graph with vertex set N. We will say that the
permutations o and T of [n] are robustly G-different if there are two elements i € [n] and

J € [n] such that (o(i), 7(i)) = (7(j), 0(j)) and {o(i),7(1)} € E(G).
Let NN(G,n) be the mazximum cardinality of a set of pairwise robustly G—-different
permutations of [n]. We call

1
RR(G) = limsup - log NN(G,n)

n—oo

the robust permutation capacity of G.
We are interested in the value of RR(L). First we prove the following easy fact.
Proposition 5 For the semi-infinite path L we have
NN(L,n) > 2t2),

implying
RR(L) >

DO | =



Proof. Consider the set of permutations that can be obtained as a product of some or
all of the inversions (2k — 1, 2k), where k < n/2. It is straightforward to check that these
permutations are pairwise robustly L-different and their number is 2L3), which implies
the statement. O

We conjecture that the above lower bound is tight. Our main result in this section
is a weaker upper bound on RR(L) which is nevertheless smaller than the lower bound
proven on R, (L) in Theorem 1.

Theorem 6 -
RR(L) < log 5~ 0.651.

For an undirected graph G, let I;(n) be the robust analogue of the graph I'p(n) defined
for digraphs D: the vertex set of I'¢(n) is the set of permutations of [n], and two vertices
are adjacent in fg(n) if they are robustly G-different. It follows from the definitions that
NN(G,n) = w(Tg(n)). (The discussion preceding Definition 4 shows that wy(Iz(n)) =
w([',(n)). Note that T'z(n) is a digraph, while I';(n) is undirected.) Notice that T'g(n)
(just like T'p(n) for directed D) is a vertex-transitive graph, as for any two of its vertices
there is a permutation that can take one to the other.

We will use the standard notation a(F') for the independence number and x(F) for
the fractional chromatic number of a graph F. We will make use of the basic inequality
w(F) < x¢(F), for any graph F. We will also use the fact that, if F' is vertex-transitive,
then x¢(F) = |V(F)|/a(F). For these and other basic facts about the fractional chromatic
number, see [21].

Proof of Theorem 6. First we find a large independent set in the graph I',(n). Let
I,={c€S,:Vke|[n/2]] o *(2k) <o '(2k—1)and o' (2k) <o '(2k +1)}.

In other words, I, is the collection of all those permutations of [n] that place each even
number in an earlier position than either of its at most two neighboring odd numbers.
We show that the permutations in [, form an independent set in the graph r r(n).

Let 0 and 7 be two arbitrary elements of I,,, and suppose that they form an edge in
[',(n). Then there is some edge {¢, ¢+ 1} of L for which there exists i and j such that
o(i) = 7(j) = ¢ and o(j) = 7(i) = ¢ + 1. We may assume without loss of generality
that ¢« < j. Then ¢ € I,, implies that ¢ is even, while 7 € I, implies that ¢ is odd. This
contradiction proves that I, is indeed an independent set in T r(n).

By the vertex-transitivity of I',(n), we have that

~ oy V@]t
wfan) = Tt < o

The size of the set I, is a well-investigated quantity. The permutations in the set I,, are
called alternating, and the problem of determining their number, called André’s problem,

5



was already considered in [2]. Some more recent references where the asymptotics of this
sequence appears are [25] (cf. the Note on page 455) and [3] (cf. page 3); see also [24] for
the vast literature on this sequence. The asymptotic behavior of the sequence is given by
L] ~ 202 ) [n1).

Substituting this value into the above bound on x ;(I'z(n)), and using that NN (L, n) =
w(T'(n)) < x4(T'L(n)), we obtain that

n+1

s
= log =
Og2

as stated. O

RR(L) < lim llog

n—oo N, 2n+2

The following is an immediate consequence of Theorems 1 and 6.

Corollary 7
RR(L) < Ruyin(L).

n

It is rather frustrating that, for Ry,(L) itself, we do not have any better upper bound
than the trivial value 1. A modest improvement on the best known upper bound in the
undirected case is that we at least know N(L,n) < (Ln% J) for some orientations of L.
Proposition 8 ]ff/ is an orientation of L that has at least two vertices of [n] which have
different parity and either both have zero outdegree or both have zero indegree, then

MEm < (o)

Proof. Assume L is as in the statement and let i = 2k and Jj = 20+ 1 be the two vertices
satisfying the conditions therein. We may assume without loss of generality that they
both have outdegree zero. Let M, be a set of pairwise L-different permutations. We may
assume that the identity permutation is in M,,. Now consider an arbitrary permutation o
of [n] that puts odd elements in the odd positions and even elements in the even positions,
except that there is an even number in position j and an odd number in position 7. Thus
the parity pattern of ¢ is different from that of the identity permutation. Hence, if
M, = (Ln%J)’ then one such permutation ¢ should appear in M,. However, since the
identity permutation (which is in M, ) has a sink at both of those places where it has an
element of different parity from o, there is no position with an arc in L from the element
in the identity permutation to the element of ¢ in the same position. This implies that
our L-different set of permutations cannot contain such a o, and therefore |M,| < (Ln’/’2 J)'
This proves the statement.

It should be clear that if there are many sources and sinks in both parity classes, then
the difference (LnT/LZ J) —N (E, n) can be made large. Unfortunately this is still not enough
to prove an exponential gap.



4 On bottlenecks

As stated in the Introduction, Corollary 7 is in sharp contrast with the main result about
Sperner capacity proven in [11]. For the sake of completeness, we state this result here.
This needs some definitions.

Definition 9 The nth co-normal power of a digraph D s the digraph D™ with vertez set
V(D™ =V(D)", i.e., the n-length sequences of vertices of D, and edge set

E(D") = {(z,y) : Ji (z;,y:) € E(D)}.

Definition 10 ([10]) The Sperner capacity of a digraph D is defined as

1
Y(D) = limsup " log ws(D™).

n—oo

If D ={Dx,...,Dy} is a family of digraphs on the same (finite) vertex set V', then the
Sperner capacity of this family is defined as

1
Z('D) = lim sup E log Ws(mDiEDDin)’

n—oo

where Np,ep D denotes the graph on vertex set V™ with edge set Np,epE(DY).

Csiszar and Korner [8] introduced a “within a fixed type” version of Shannon capacity,
which has a natural and straightforward extension for Sperner capacity. To introduce this
notion we need the concept of types.

Definition 11 The type of a sequence x € V" s the probability distribution P, on V'
defined by
Py(a) = {i:z; =a}
n

For a fized distribution P on'V and € > 0, we say that x € V" is (P, e)-typical if, for all
a €V, we have |Pg(a) — P(a)| < e.

, for alla €V.

Definition 12 (cf. [8]) The Sperner capacity within type P of a (finite) family D of
(finite) digraphs on the common vertex set V is

1
Y(D, P) = lim lim sup — log ws(Npep (D" (P, €))),

=0 pooe T

where D"(P, €) denotes the digraph induced by D™ on the (P, e)-typical sequences in V™.
We write X(D, P) for (D, P) if D = {D}.

The main result in [11] is the following statement.

7



Theorem 13 ([11]) For any two (finite) families of (finite) digraphs C and D on the
same common vertex set 'V, we have

S(CUD, P) = min{S(C, P),%(D, P)}.

Since the number of different types is only polynomial in n (cf. Lemma 2.2 in [9]),
this immediately implies its main corollary.

Corollary 14 ([11]) For any (finite) family of (finite) digraphs D on a common vertex
set, we have
¥(D) = maxmin (D, P).
P DeD

This theorem is sometimes referred to informally as the Bottleneck Theorem. This
result was the key in the solution of several extremal set theoretic problems, including
a longstanding open problem by Rényi on the maximum possible number of pairwise
so-called qualitatively 2-independent partitions of an n-element set, cf. [11]. It also has
non-trivial consequences in information theory, see [7, 11, 19, 23] for examples of the
latter.

Note that, if the family D consists of all possible orientations of the same undirected
graph G, then Theorem 13 states that, within any type P, the Sperner capacity of the
family D is the same as that of the most restrictive single digraph (called the bottleneck) in
the family. Note also that, for such a family D, if (x,y) is an edge of Np,epD;, then there
are coordinates ¢ and j and an edge {a,b} € E(G) such that (z;,y;) = (y;,x;) = (a,b).
This follows analogously to the similar statement for permutation capacities that we
described right before the introduction of robust capacity in Definition 4.

In view of the obvious analogy between Sperner capacity and the notions investigated
in this paper, one naturally asks whether a statement analogous to the consequence of
Theorem 13 described in the previous paragraph is true in the present context. Note
that when dealing with permutation capacities, we always have sequences “of the same
type” as every natural number appears now exactly once in each sequence. In fact, the
main role of types in the proof of Theorem 13 is that the elements of any such sequence
can be permuted so that we get an arbitrarily chosen other sequence of the same type.
This property also holds for our current sequences representing permutations. Therefore,
the methods of [11] can be used, but there are serious limitations due to the fact that,
in the present context, we are dealing with infinite families of digraphs. Corollary 7 of
the previous section indicates that these limitations are essential, as they lead to the
nonexistence of a bottleneck theorem here.

If we consider only finitely many orientations of L, then the methods of [11] seem
to work. By this we mean that defining, for every F C L, the quantity R(F) :=
lim sup,,_,, = logws(N;.zL'z(n)), which is the asymptotic exponent of the maximum size

of a set of permutations that are pairwise L-different simultanously for all LerF (so,
in particular, R(L) = RR(L)) we have R(F) > Rpin(L) whenever F is finite. This



statement is somewhat weaker than the more direct analogue of Corollary 14 stating that
R(F) = miny_, R(L), which is perhaps also true; however, it already shows that the main
reason for a different behavior in the present case is that the digraph family we consider

here has infinitely many elements.

5 Further lower bounds

In this section we improve upon the lower bound proven in Theorem 1, namely we prove
the following.

Theorem 15 Let v =~ 1.647 be the largest root of the polynomial x* — x®> — x — 3. Then
Ruin(L) > log~ ~ 0.7198.

We know by Lemma 2 that it is enough to give lower bounds on t,(n). Here and in the
sequel we will use the following notation. For k& < n positive integers, an n-length sequence
containing each of the numbers 1, ..., k exactly once, and with a % at the remaining n —k
positions, stands for a permutation of [n] in which the place of the first k£ natural numbers
is already fixed while the x’s can be substituted by k£ 4+ 1,...,n in an arbitrary manner
(provided that the resulting sequence is a permutation of the elements of [n]).

We will also use the notation E(j) for the orientation of the semi-infinite path L

obtained from a given orientation Lof L by deleting its first j — 1 vertices, i.e., j will
be its “starting” vertex. Accordingly, just as before, the vertices of FE(j) (n) are the
permutations of the numbers j, 7 +1,...,7+n—1, while adjacency is defined analogously
as in ['z(n).

We prove the following lemma.

Lemma 16 We have
tﬁ (TL) Z 9n;

where g, 1s the sequence defined by: g, = F,y11 forn <5, and g, = gp—2 + gn—3 + 3Gn_4
forn > 6.

Proof. For n <5 the statement follows from Lemma 3. Let us fix an arbitrary orientation
L of L. For n > 6 we consider three cases according to how the first three edges of L are
oriented.

Case 1:

If both vertices 2 and 3 have equal outdegree and indegree (that is all of the first three
edges are oriented towards their larger, or all of them towards their smaller, endpoint),
then the following permutations form a transitive clique in I'z(n). (According to the
actual directions, the first sequence is the source or the sink in that transitive clique.)



132%* ..
21K,
3412%. ..
3421%. ..
4231%. ..

* K K X X

(Note that the elements of the fourth column have no role in forming this transitive
clique.)

Here the first sequence contains n — 3 *’s, the second n — 2, and the three others n —4. By
the induction hypothesis, there exists a transitive tournament of size g,,_4 in I’ L) (n—4):
take any such transitive tournament, and substitute each of its vertices into (the stars
of) a different copy of each of the last three sequences. Do the same with a transitive
clique of size g, 3 in T’ L (n — 3) for the first sequence and with a transitive clique of
size gp_o in I’ L (n — 2) for the second sequence. It is now easy to see that the resulting

Gn—2 + Gn—3 + 3gn—a permutations of [n] form a transitive tournament in I'z(n).

Case 2:

If one of the two vertices 2 and 3 has outdegree 0 while the other has outdegree 2 (that
is, the directions of the first three edges in L “alternate”), then the same sequences as
above form again a transitive tournament in I'z(n), except that their ordering is different.
In the scheme below, either all edges go “downwards” or all go “upwards”, depending on
the direction of the first edge of the path:

132%* ..
3412%. ..
3421%. ..
2%

4231%. ..

* K K X X

The argument is completed in the same way as in Case 1.

Case 3:

If we are neither in Case 1 or Case 2, then we may assume without loss of generality
that 2 has outdegree 0 and 3 has outdegree 1, i.e., that (1,2),(3,2),(4,3) € E(L): all
other cases not covered so far are equivalent to this one, so the following construction can

be modified accordingly. The following scheme gives a transitive tournament in I'z(n):

132%4%, . *
12347, *
12%34%. . *
1HR2*3*, L *
QUFFRE K

Once again the argument is completed in the same way as in Case 1.
This concludes the proof of the lemma. 0

10



Proof of Theorem 15. It is immediate from Lemma 16 that Ry, (L) >
lim sup,,_, % log g(n) where the right hand side is equal to v by virtue of the recursion
satisfied by the sequence g,. O

For the special orientations of L where all vertices except 1 have equal outdegree and
indegree (there are two such orientations that are equivalent for our purposes), we have a
slightly better lower bound. The oriented L in which all edges are oriented towards their
larger endpoint will be referred to as the “thrupath”. The following proposition for this
orientation is clearly valid also for its reverse.

Proposition 17 Let L, denote the thrupath. We have
R(L;) > log~' =~ 0.7413,
where v is the largest root of the polynomial x® — x — 3.

Proof. The proof goes along the same lines as the proof of Theorem 15 after realizing
that the following permutations form a transitive clique for the thrupath.

2%%]

321°*

3*21

13*2

O

One of the most interesting open problems concerning Sperner capacity is whether
every graph has an orientation, the Sperner capacity of which achieves the Shannon
capacity of the underlying undirected graph which is simply the Sperner capacity of the
symmetrically directed equivalent. (This question is explored in [20], where a positive
answer was proven for a non-trivial special case. The same question is also treated in
12))

The analogous question for us here is whether the permutation capacity of the undi-
rected semi-infinite path L can be achieved as the permutation capacity of one of its
orientations. Needless to say, we do not know the answer, as our best upper bound on
R(L) for any orientation Lof Lis just the trivial value 1. From the other side, Proposi-
tion 17 gives the best lower bound we know on any single orientation of L. For L itself, the
best lower bound published so far is the one in [14] having value 1 log 10 &~ 0.83048. Next
we improve on this lower bound. (Unfortunately, the construction contained in Propo-
sition 18 below is not very aesthetic. We supply a slightly weaker, but more appealing,
construction in the remark following this proposition.)

Proposition 18 The maximum number of pairwise L-different permutations T'(n) satis-

fies
T(n)>5T(n—4)+9T(n—5) + 37 (n—6)

implying
p(L) > 0.8604.

11



Proof.

The value 0.8604 is an approximation of the logarithm of the largest root of the
characteristic equation of the recurrence relation above, so it is enough to prove the
validity of this recurrence relation.

This is done along similar lines to those in the proof of Theorem 15 by verifying that
the following permutations are pairwise L-different (colliding in the terminology of [13]).

5231 47%**
5*2314%*
54*231%*
514%23%*
5314%2%*
5324 1%**
5*3241%*
51%324%*
541*32%*
k941 kG
AFFOFH]*
43HHQ*H
AFK]G%*
AGFHRK] Q¥
623%4*15
643**125
6251*3*4
U

Remark 1 The following construction is perhaps somewhat nicer than the one in Propo-
sition 18. Consider the 14 cyclic permutations of the following two 7-length sequences:

1342%#*
35214%*

It is straightforward to check that these 14 permutations are pairwise colliding and
thus prove the validity of the recursive lower bound

T(n)>7T(n—4)+T(n—>5).

This implies p(L) > 0.8599. O

6 Finite graphs and digraphs

The paper [14] investigated the maximum number of pairwise G-different permutations
of [n] for finite graphs G with vertex set [m], m < n. It was observed that, for a fixed

12



finite graph (G, this number is constant if n is large enough. This eventual constant value
k(G) was introduced as a new graph invariant: it is straightforward to note that x(G)
does not depend on the actual labelling of the vertices of G by natural numbers. This
invariant seems to be quite difficult to determine even for relatively small graphs, and the
only infinite family of graphs for which we could determine the value of k(G) was that of
the stars K ,.

Interestingly, we can say just a little more in the case of digraphs. As for undirected
graphs, if D is a finite digraph, then the maximum number of pairwise D-different per-
mutations of [n] will also be a constant — which we denote k4(D) — for large enough n.
This immediately follows from the corresponding statement for undirected graphs, since
kq(D) is clearly bounded above by k(G), where G is the underlying undirected graph of
D. While the value of k(G) is not known in general for complete bipartite graphs G, the
directed parameter is, at least in the case of the most natural special orientation. The key
to this is the simple observation that the answer is just a reincarnation of a well-known
theorem of Bollobés.

We denote by ([:f]) the set of r-element subsets of n.

Theorem 19 ([5]) Suppose that Ay, ..., A, C ([z}) and By, ...,B C ([Z]) are such that,
for all i, A; N B; = 0, while, for alli # j, A;N B; # 0. Then

k< (p " q).
p
The bound in Theorem 19 is sharp: consider the sets in ([p ;q}) as the A;’s and let
Bi=[p+dq\ A

Corollary 20 Let I?p,q denote the oriented complete bipartite graph with all edges having
their heads in the q-element partition class. Then

()

Proof. Let the two partition classes of I?p,q be A and B and consider a set M of pairwise
[?p7q—different permutations of [n]. For a permutation o € M, associate A, := {i : (i) €
A} and B, := {i:0(i) € B}. It is easy to see that the system of set pairs {(A,, B,) }oem
satisfies the conditions in Theorem 19, and therefore we have M < (p ;q).

To prove that this upper bound is attainable, we assume without loss of generality
that the vertices in A are labelled by 1,...,p and those in B by p+1,...,p+q. Take all
possible p-element subsets of [p + ¢] and, for each such subset S, take any permutation
that puts the elements of A in the positions in S, and the elements of B in the positions
of [p+¢|\ S. Tt is easy to see that these (p ;rq) permutations are pairwise I?p7q—different.
O
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Remark 2 The undirected invariant x(K),,) has a very similar “translation” to a prob-
lem in extremal set theory. Namely, it is the maximum possible m for which set pairs
{(A;, By) : |Ai] = p, |Bi| = q}™, can be given with the property that, for all i, A;NB; = 0,
while for all 4 # j, A;NB; #0 or A;N B; # (. This problem was considered by Tuza
in [26], where it is solved in the case when p or ¢ is equal to 1. The result in [14] for
k(K1) translates to this solution. As far as we know, the problem is unsolved for all
other pairs of values p and gq. O

It is observed in [14] that, if G is a finite graph with vertex disjoint subgraphs Gy, . .. G
then x(G) > [];_, K(G;). The proof of this result carries over immediately to the digraph
parameter kq.

In particular, if the graph G is the disjoint union of components Gy, ..., G, then we
have k(G) > [[;_; k(G;). In the undirected case, we know of no examples where we have
strict inequality. For digraphs, however, the inequality can be strict. For example, let
Dy be the digraph on {1,2,3} with directed edges (1,2) and (2,3): it is easy to check
that k4(D1) = 2. Now let Dy be a copy of the same digraph on vertex set {4,5,6}, with
directed edges (4,5) and (5,6). The following is a collection of eight (D; U Ds)-different
permutations:

32%1456%* . ..

32%154%6* ...

231%456%* . ..

231%54%6* ...

*321%465% . ..

*3214*56% . ..

3*¥12*465* ...

3*¥124*56% ... *

Here, the graph D; U Ds is to be regarded as being a graph on [n], for n > 8 and the
x’s represent the natural numbers 7,...,n, in arbitrary order.

Thus we have k4(D; U Do) > 8 > 4 = k4(D1)ka(D2).

Returning to the undirected case, it seems even to be difficult to find k(tK>), where
t K5 is the union of ¢ disjoint edges: it is conjectured that the lower bound x(tK3) > 3! is
tight in this case, and an upper bound of 4" was given in [14].

Even checking that x(2K3) = 9 takes some work: we give a brief sketch of an argument.
Let {1,2} and {3,4} be the two edges of 2K, and let C' be a set of (2K5)-different
permutations. First, assume that there are three permutations in C' with, say, a 1 in the
first position. By a case analysis involving how many different positions are occupied by
the 2’s in these three permutations, it can be shown that |[C| < 9. On the other hand,
if there is no instance of three permutations in C' with the same element in the same
position, then any element of C'is adjacent to at most 8 others in C' — two via each of the
four positions where 1,2,3,4 occur — and so again |C| < 9. It is possible to use this result
to improve the upper bound r(tKs5) < 4° slightly, but not by an exponential factor.

O S R o S
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Let tK, be the disjoint union of ¢ directed edges. It seems likely that /{d(tfg) =
/id(f(_;)t = 2! but again there seems to be no immediate proof.

At the other extreme, the problem of finding x4 for oriented complete graphs, e.g.,
those of transitive tournaments, is as open as for their undirected counterparts, i.e., the
determination of the values k(K,), cf. [14]. We do not know even whether #(K,) :=
lim,, .., NN(K,) is superexponential in r.

7 Open problems

We conclude by collecting some of the open problems, some already mentioned, that are
related to the topic of the present paper.

Problem 1: What is the value of RR(L)? In particular, is it equal to 37

Problem 2: Is Ryax(L) > Ruin(L), i.e., are there two different orientations L; and Lo of
the semi-infinite path L for which R(L,) # R(L2)? Is Ruyax(L), or even Ryin(L), equal to
17

If Ryax(L) = 1, then that immediately solves the next problem. However, in case of a
negative answer, the problem is still interesting.

Problem 3: Is Ryax(L) equal to p(L)?

We repeat the asymptotic version of the conjecture by Korner and Malvenuto.
Problem 4: Is p(L) equal to 17

Finally, we put here again the problems mentioned at the end of the previous section.
Problem 5: Is kq(tK>) equal to 27

Problem 6: Is #(K,) superexponential in 77
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