Program of the Third School in Potential Theory

A Harmadik Potenciálelmélet Nyári Iskola programja

Nap/Day Időtart. Kezdés Vége Előadó / Speaker Cím /Title
Mo 90 9:00 10:30 Révész Szilárd Harmonic functions
Mo 90 10:45 12:15 Szabó Sándor Classical potential theory
Mo 45  16:00 16:45 Toókos Ferenc Introduction to weighted potential theory on the plane I
Mo 45 17:00 17:45 Nagy Béla Introduction to weighted potential theory on the plane II
Tue 45 9:00 9:45 Major Péter Classical capacity and potential in physics and their connection to certain natural probabilistic notions I
Tue 45 10:00 10:45 David Benko On the logarithmic energy of a signed measure
Tue 90 11:00 12:30 Petz Dénes Logarithmic energy, random matrices and free probability
Tue 45  16:00 16:45 Toókos Ferenc Wiener's Theorem
Tue 45  17:00 17:45 Réffy Júlia On random matrices and Brown measure
Tue 90 18:00 19:30 Prause István Newton space and Sobolev spaces over a metric space
We 90 9:00 10:30 Major Péter Classical capacity and potential in physics and their connection to certain natural probabilitstic notions II-III
We 90 10:45 12:15 Norm Levenberg Introduction to pluripotential theory I
We 90 16:00 17:30 Prause István Newton space and Sobolev spaces over a metric space
We 90 17:45 19:15 Farkas Bálint Transfinite diameter, Chebyshev constant and capacity on the plane
Th 60 9:00 10:00 Miroslaw Baran Polynomial inequalities and geometry in Banach spaces
Th 90 10:15 11:45 Gustavo Munoz Bernstein-Markov inequalities in normed spaces
Th 45 16:00 16:45 Totik Vilmos Recovering a measure from its potential
Th 105 17:00 18:45 Nagy Béla Transfinite diameter, Chebyshev constant and capacity in topological spaces
Fri 90 9:00 10:30 Norm Levenberg Introduction to pluripotential theory II
Fri 45 11:00 11:45 Miroslaw Baran Markov inequalities in Lp
Fri 90 14:00 15:30 Francsics Gábor On hypoelliptic differential equations