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Abstract

We study permutation groups in which all normal subgroups are tran-
sitive or semiregular. The motivation for such investigations comes from
universal algebra. This paper focuses on solvable groups.

1 Introduction

All groups in this paper are finite unless otherwise stated.
A transitive permutation group is primitive if its point-stabilizer is a maxi-

mal subgroup. Every proper normal subgroup of a primitive permutation group
is transitive. The O’Nan-Scott theorem describes finite primitive permutation
groups. Let V be a finite vector space and let H be a linear group acting faith-
fully and irreducibly on V . Then the semidirect product V H can be considered
as a primitive permutation group with point-stabilizer H (and regular normal
subgroup V ). Such primitive groups are said to be of affine type. All finite
solvable primitive permutation groups are of affine type.

A permutation group is called quasiprimitive if all of its non-trivial normal
subgroups are transitive. Every primitive permutation group is quasiprimitive.
Praeger [9] gave an O’Nan-Scott type theorem classifying (finite) quasiprimitive
permutation groups. All (finite) solvable quasiprimitive permutation groups are
primitive.

A (finite) permutation group is called innately transitive if it has a transi-
tive minimal normal subgroup. It is easy to see that all normal subgroups of
an innately transitive permutation group are transitive or semiregular. These
groups are known since 2002 when an O’Nan-Scott type classification theorem
for innately transitive permutation groups was given by Bamberg and Praeger
[1]. A solvable innately transitive permutation group is primitive.

In this paper we will investigate an even broader class of permutation groups,
the class of semiprimitive groups. We call a transitive permutation group (of
finite degree) semiprimitive if it is not regular and if all of its normal subgroups
are transitive or semiregular. Frobenius groups are semiprimitive (see Lemma
2.1). Most of the time we will restrict our consideration to the class of solvable
semiprimitive groups.

Our original motivation for the study of semiprimitive groups comes from
universal algebra. A permutation group G on a finite set A is collapsing if
there is exactly one clone on A with unary part G. (We refer the reader to
the Appendix at the end of this paper for a self-contained definition. Note that
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Kearnes and Szendrei [6] uses the slightly more general notion of a collapsing
pair of groups.)

Pálfy and Szendrei [8] proved that if G is a transitive permutation group on
a set A, there is a G-invariant equivalence relation θ different from the universal
relation on A and that G acts regularly on A/θ, then G cannot be collapsing. In
particular, a regular permutation group is never collapsing. In the same paper it
is also shown that a collapsing permutation group is necessarily transitive. Pálfy
and Szendrei [8] also proved that (finite) non-regular quasiprimitive permutation
groups are collapsing.

Later, Kearnes and Szendrei [6] gave a description of the normal subgroups
of a collapsing permutation group. Let G be a transitive permutation group on
the finite set A, and let H be a point stabilizer. For an arbitrary (G-) conjugate
S of H consider the equivalence relation on G whose blocks are the left cosets
gS (g ∈ G) of S. Let us denote this equivalence relation by αS . We say that a
normal subgroup N of G has property (*) if the constant function with value 1
is the only function f : G −→ N so that f(1) = 1 and f preserves all equivalence
relations αS for all conjugates S of H. Kearnes and Szendrei proved in [6] that,
with the notations above, a (finite) non-regular transitive permutation group
with no proper normal subgroup containing H is collapsing, if and only if, all
of its normal subgroups are transitive, semiregular, or have property (*).

By [9] and [1], solvable quasiprimitive and solvable innately transitive per-
mutation groups are primitive. However solvable collapsing permutation groups
are not necessarily primitive. In [6] Kearnes and Szendrei gave an infinite se-
quence of collapsing, solvable permutation groups with a non-transitive, non-
semiregular normal subgroup having property (*).

We will attempt to give some kind of a structural insight to the so called
semiprimitive groups, with a special attention to solvable semiprimitive groups.
We hope that researchers from both group theory and universal algebra will find
this work interesting.

2 General results on semiprimitive groups

Definition 2.1. A transitive permutation group G of finite degree is semiprimi-
tive if it is not regular and if every normal subgroup of G is transitive or semireg-
ular.

Primitive permutation groups have transitive normal subgroups, so non reg-
ular primitive groups are semiprimitive. More generally, non regular quasiprim-
itive groups are semiprimitive as well. The following important observation was
long known (see [4] for example).

Lemma 2.1. Frobenius groups are semiprimitive.

As it was probably known to Frobenius himself, this lemma can be derived
from standard facts about Frobenius groups as follows. Let G be a Frobenius
group with Frobenius kernel K. If ψ is a nonprincipal irreducible character of K,
then the induced character IndG

K(ψ) is an irreducible character of G. The kernel
of IndG

K(ψ) is contained in K since IndG
K(ψ) vanishes off K. Moreover, if χ is an

irreducible character of G whose kernel does not contain K, then χ = IndG
K(ψ)

for some nonprincipal irreducible character ψ of K. Finally, if χ is an irreducible
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character of G whose kernel contains K, then the restricted character ResG
K(χ)

is a multiple of the trivial character of K. Since every normal subgroup N of
G is the intersection of the kernels of some of the irreducible characters of G,
we conclude that N contains or is contained in (the regular permutation group)
K. This proves that G is semiprimitive.

But as we will see, there are plenty of semiprimitive groups that are not
quasiprimitive and not Frobenius. Another simple observation to continue with
is the following.

Lemma 2.2. A nilpotent group cannot be semiprimitive.

Proof. Suppose G is a nilpotent non-regular permutation group and H is a point
stabilizer in it. Since G is nilpotent, a maximal subgroup N that contains H
has to be normal in G. Now N is not semiregular because it contains H, and N
cannot be transitive either, because the only transitive subgroup of G containing
a point stabilizer is G itself.

Lemma 2.3. Let N be a semiregular normal subgroup in a semiprimitive group
G. Then the quotient group G/N is faithful and semiprimitive on the orbits of
N .

Proof. Let ψ be the homomorphism which maps each element of G to its action
on the orbits of N . Clearly, N ≤ ker(ψ). Since ker(ψ) is not transitive, it must
be semiregular on the same set of orbits as N . Therefore ker(ψ) = N , and this
means that G/N acts faithfully on the orbits of N .

Let M/N be a normal subgroup of G/N . By hypothesis, the normal sub-
group M in G is transitive or semiregular. If M is transitive, then M/N is also
transitive on the orbits of N . Now suppose that M is semiregular. In order to
prove that M/N is semiregular on the orbits of N , all we need to show is that
M ∩ Stab(∆) = N for each orbit ∆ of N . Indeed, if ∆ is an orbit of N and
α is an arbitrary element of ∆, then M ∩ Stab(∆) is transitive on ∆ (since it
contains N), and hence

M ∩ Stab(∆) = (M ∩ Stab(α)) ·N = {1} ·N = N.

This completes the proof.

A solvable primitive, quasiprimitive or a Frobenius permutation group G
has a unique regular normal subgroup K with the property that every normal
subgroup of G contains K or it is contained in K. This happens to be true for
solvable semiprimitive groups in general.

Theorem 2.1. A solvable semiprimitive group G has a unique regular normal
subgroup K with the property that every normal subgroup of G is contained in
K or contains K itself. In particular, G is a split extension of K by H where
H is a point-stabilizer of G.

Proof. Take the derived series

G > G′ = G(1) > G(2) > . . . > G(n) = {1}

of G where G(k+1) = [G(k), G(k)] for all k. Each subgroup in this series is a
normal subgroup of G, obviously the first is transitive and the last is not, so
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there is a maximal integer k such that G(k) is transitive but G(k+1) is not. Take
K = G(k). We claim that K is regular. For this it is sufficient to show that
K is semiregular. By Lemma 2.3, the quotient group G/G(k+1) is faithful and
semiprimitive on the orbits of G(k+1). In this permutation representation the
normal subgroup K/G(k+1) is transitive and Abelian, hence regular. Let α be
an arbitrary element of the original permuted set of G, and let ∆ be the orbit of
G(k+1) containing α. Suppose that g is an element of K fixing α. Then gG(k+1)

fixes ∆, and so gG(k+1) = G(k+1) by the regular property of K/G(k+1). This
means that g ∈ G(k+1). Since G(k+1) is semiregular, we conclude that g = 1.
This proves the claim.

Now it is clear that every subgroup containing K is transitive and every
subgroup contained in K is semiregular, but we still need to show that every
normal subgroup of G has one of these two properties. So let N be a normal
subgroup of G and assume that K is not contained in N . Then G1 = K ∩N is
a proper normal subgroup of K. Let G2/G1 be the derived subgroup of K/G1.
Now G2/G1 is characteristic in K/G1, so it is normal in G/G1, hence G2 is a
normal subgroup of G with the property that K/G2 is a non-trivial Abelian
group. Notice that G2 is semiregular.

Let Ω be the set of orbits of G2, and let ψ : G → SΩ be the permutation
representation of G on Ω. As before with G(k+1), we can again see that ker(ψ) =
G2, and K/G2 = ψ(K) is Abelian and transitive. In particular, ψ(K) is self-
centralizing in SΩ. On the other hand ψ(N) ∩ ψ(K) = 1, because ψ(N) =
NG2/G2, ψ(K) = K/G2, and NG2 ∩K = G2 (for if ng ∈ K with n ∈ N and
g ∈ G2, then n ∈ Kg−1 = K, so n ∈ N ∩K = G1 ≤ G2 and ng ∈ G2).

We saw that ψ(K) is the centralizer of itself in SΩ, but ψ(N) is another nor-
mal subgroup of ψ(G) that intersects trivially with ψ(K). Hence they centralize
each other and therefore we must have ψ(N) ≤ ψ(K), that is, NG2/G2 ≤ K/G2.
This implies that N ≤ K, as we wanted.

We note here that Theorem 2.1 can be generalized for all (not necessarily
finite) solvable transitive permutation groups in which all normal subgroups are
transitive or semiregular. The proof of the above theorem naturally carries over
to infinite permutation groups.

From now on let us call K the kernel of the solvable semiprimitive group
G. Unfortunately, a non-solvable semiprimitive group does not necessarily have
such a kernel. Take for example a non-solvable matrix group G = GLd(q) acting
on the non-zero vectors of a d dimensional vector space V over the field of q
elements. Then every normal subgroup of G either contains SLd(q) in which
case it is transitive, or is contained in the subgroup of scalar matrices, then
it is semiregular. But there is no regular normal subgroup in G. The above
motivates the following definition.

Definition 2.2. Let G be a permutation group with a unique regular normal
subgroup K with the property that every normal subgroup of G is contained in
K or contains K. We say that K is the kernel of G.

Lemma 2.4. Let G be a permutation group with kernel K and stabilizer sub-
group H. Then the set of transitive normal subgroups of G forms a lattice iso-
morphic to the lattice of normal subgroups in H. Moreover the set of semiregular
normal subgroups of G forms a lattice isomorphic to a sublattice of the lattice
of subgroups L so that H ≤ L ≤ G.
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Proof. The first statement follows from the fact that each transitive normal
subgroup of G has the form NK for some normal subgroup N of H. For the
second statement notice that the set of all subgroups of the form HN where N
is a semiregular normal subgroup of G forms a lattice isomorphic to the lattice
of subgroups L so that H ≤ L ≤ G.

In the next theorem, using character theory, we give a mild restriction on
the structure of the lattice of semiregular normal subgroups of a (finite) solvable
semiprimitive group.

Theorem 2.2. Let G be a permutation group with kernel K and stabilizer
subgroup H. Let k be the number of G-conjugacy classes in K. Then there exist
(not necessarily distinct) normal subgroups N1, . . . , Nk−1 of K such that every
semiregular normal subgroup of G can be expressed as the intersection of some
of the Ni’s.

Proof. Notice that G is a split extension of K by H. Consider the action by
conjugation of H on the set of irreducible characters of K. Let the number of
orbits of this action be k. Brauer’s permutation lemma tells us that k is equal
to the number of G-conjugacy classes of K. The trivial character 1K of K forms
an orbit on its own. Let us label the other orbits by the numbers 1 through
k−1 in any way we like. By Gallagher’s theorem, the irreducible constituents of
IndG

K(1K) (in G) can be considered to be the irreducible characters of G/K ∼=
H. Now let χ be any irreducible character of G. By Clifford’s theorem, ResG

K(χ)
is a positive integer multiple of the sum of the characters in some G-orbit of the
set of irreducible characters of K. The kernel of χ contains K if and only if this
G-orbit is {1K}. For each 1 ≤ i ≤ k − 1, let Ni be the kernel of the sum of the
characters in orbit i. By Clifford’s theorem, if χ is any irreducible character of
G with kernel ker(χ) not containing K, then ker(χ) contains a normal subgroup
Ni of K for some i. Since G is semiprimitive, we must also have ker(χ) = Ni.
We conclude that if N is a normal subgroup of G not containing K, then N can
be expressed as the intersection of some of the Ni normal subgroups of K.

The k in Theorem 2.2 is best possible in the sense that there exist infinitely
many transitive permutation groups G with kernel K so that there exist exactly
k distinct normal subgroups N1, . . . , Nk−1 of K so that every semiregular normal
subgroup of G can be expressed as the intersection of some of the Ni’s where
k is the number of G-conjugacy classes of K. Indeed, let K be an elementary
Abelian group of odd order and consider K as a vector space over the prime
field of order p. Let H be the cyclic group of order p − 1 consisting of all
non-zero scalar multiplications on K. Then the semidirect product G of H and
K is a Frobenius group with kernel K. The normal subgroups of G in K are
precisely the subspaces of K, and every subspace of K can be expressed as the
intersection of some of the k − 1 maximal subspaces of K.

As we see from Theorem 2.1, every solvable semiprimitive group is a semidi-
rect product of its kernel with a point-stabilizer. Thus it seems natural to look
for abstract group-theoretic conditions to decide whether a given action of a fi-
nite group on another one produces a semiprimitive semidirect product. There
is the following useful characterization of solvable semiprimitive groups.

Theorem 2.3. Let K be a finite solvable group and H another finite group
acting on it. Then the semidirect product G = H n K has a semiprimitive
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action on the right cosets of H if and only if H acts faithfully on every non-
trivial H-invariant quotient group of K.

Proof. To start with one direction, assume that M < K is a normal subgroup
in G = H nK, but the action of H is not faithful on K/M . Let us denote the
kernel of this action by B and consider the subgroup BM . This subgroup is
normalized by H, since B is contained in H as a normal subgroup and M is
normal in G. BM is also normalized by K, for if k ∈ K, b ∈ B and m ∈ M ,
then

(1, k) · (b,m) · (1, k−1) = (b, kb ·m · k−1)

and kb ·m · k−1 = (kb · k−1) · (k ·m · k−1), and here kb · k−1 ∈ M because of
the trivial action of B on K/M and k ·m · k−1 ∈ M because M is normal in
K. This shows that K normalizes BM . Before we saw that H normalizes BM
as well, hence BM is a normal subgroup in G = H nK. However, BM is not
semiregular, because B is a non-trivial subgroup of a point stabilizer, and BM
is not transitive either, for the set {Hm | m ∈ M} is an orbit of BM on the
right cosets of H. (HM ·BM = H · (BM) ·M = (HB) · (MM) = HM .) This
proves that if there is an H-invariant quotient of K, on which H does not act
faithfully, then G is not semiprimitive on the right cosets of H.

To prove the other direction, assume that H acts faithfully on every non-
trivial H-invariant quotient of K and let N be a normal subgroup of G, which
is not transitive on the right cosets of H. In particular, N does not contain K.
Take M1 = N ∩K which is then also normal in G, and a proper subgroup of
K. Further, let M/M1 be the derived subgroup of K/M1, so M is still normal
in G and a proper subgroup of K, and the quotient K/M is Abelian.

For any elements b ∈ H and l ∈ K with (b, l) ∈ N and for any k ∈ K we
have (1, k)(b, l)(1, k)−1(b, l)−1 ∈ M since [K, N ] ≤ K ∩N ≤ M . By calculating
this product, we get

(1, k)(b, l)(1, k)−1(b, l)−1 = (1, k)(b, l)(1, k−1)(b−1, (l−1)b−1
)

= (1, k · (lk−1l−1)b−1
)

so k · (lk−1l−1)b−1 ∈ M , kb · (lk−1l−1) ∈ M b = M . In other words, the cosets
Mkb and Mlkl−1 coincide. But Mlkl−1 = Mk as k, l ∈ K and K/M is Abelian.
Thus Mkb = Mk and this holds for any(b, l) ∈ N and k ∈ K. By our assumption
the action of H on K/M is faithful, so if there is a b ∈ H with Mkb = Mk
for all k ∈ K, it can only be b = 1. So it follows from the calculations above
that for any (b, l) ∈ N , necessarily b = 1. In other words, N ≤ K, thus N is
semiregular on the right cosets of H and this is what we wanted to show.

Corollary 2.1. If G = H n K is a solvable semiprimitive group on the right
cosets of H and N < K is a normal subgroup of G, then the quotient group
G/N is also semiprimitive on the right cosets of HN/N .

Proof. This is simply because every H-invariant quotient of K/N is also an
H-invariant quotient of K.

Corollary 2.2. A finite group K with a characteristic subgroup of index 2
cannot be the kernel of a solvable semiprimitive group. In particular, cyclic
groups of even order and groups of order 2m with m odd cannot appear as
kernels of solvable semiprimitive groups.
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Proof. If G = H nK and M is a characteristic subgroup of index 2 in K, then
M is normal in G and H can only have the trivial action on K/M .

Theorem 2.4. Suppose that G is a solvable semiprimitive group in which both
the kernel K and the point stabilizer H are commutative. Then H is necessarily
cyclic and G is a Frobenius group.

Proof. Choose a maximal H-invariant subgroup M in K. Then H acts irre-
ducibly and faithfully on K/M : irreducibly because of the maximality of M
and faithfully by Theorem 2.3. A finite Abelian group acting irreducibly and
faithfully on another Abelian group is necessarily cyclic (see for example Theo-
rem 3.2.3 in [5]), and here K/M is Abelian, so H is cyclic.

In order to verify that G is a Frobenius group, it is sufficient to show that
CK(h) = 1 for any non-trivial element h in H. But first let us notice that the
order of H must be relatively prime to the order of K. For if p is a prime
number dividing |K|, then K has a characteristic subgroup L with K/L being
an elementary Abelian p-group (since K is Abelian). Let M be a maximal
H-invariant subgroup of K containing L. Then again, H acts faithfully and
irreducibly on the vector space K/M , therefore H must be contained in a Singer
subgroup of K/M . In particular, |H| divides |K/M |−1, and so p does not divide
|H|.

Now choose an element 1 6= h ∈ H. We will show that CP (h) = 1 for all
Sylow subgroups P of K, this indeed implies CK(h) = 1. So fix a prime divisor
p of |K| and let P be the Sylow p-subgroup of K. Further, let Q be the direct
product of all the other Sylow subgroups of K, so that K = P ×Q. Since h is
a p′-element and P is an Abelian p-group, we have P = CP (h) × [P, 〈h〉] (see
Theorem 5.2.3 in [5]). Here, [P, 〈h〉] is an H-invariant subgroup of K, sice H
normalizes both P and 〈h〉. Moreover, H acts trivially on P/[P, 〈h〉] and thus
on K/(Q× [P, 〈h〉]) as well. Hence K/(Q× [P, 〈h〉]) is an H-invariant quotient
of K on which the action of H is not faithful, therefore K = Q× [P, 〈h〉]. This
means P = [P, 〈h〉] and hence CP (h) = 1 as wanted.

Corollary 2.3. If a point stabilizer of a solvable semiprimitive group is com-
mutative, then it is necessarily cyclic.

Proof. Suppose that the point-stabilizer H of a solvable semiprimitive group G
is Abelian. Denote the kernel of G by K. Then G/[K, K] is semiprimitive on
the set of orbits of [K, K] with a commutative kernel and a commutative point-
stabilizer. Hence by Theorem 2.4, H is cyclic and G/[K, K] is a Frobenius
group.

Lemma 2.5. If G is a solvable semiprimitive group and its kernel K is a cyclic
group of odd order, then G is necessarily a Frobenius group.

Proof. The point stabilizer of G is Abelian and hence cyclic. So G is indeed a
Frobenius group by the results above.

Theorem 2.5. Let G be a semiprimitive group with solvable kernel K, let H be
a point-stabilizer, and suppose that D is a subgroup of H so that D·CH(D) = H.
Then DK is also semiprimitive.
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Proof. By way of contradiction, suppose that DK is not semiprimitive, and then
the solvability of K implies that there is a D-invariant proper normal subgroup
L in K so that the action of D on K/L is not faithful. Denote the kernel of this
action by B. Then for all b ∈ B and k ∈ K we have that k−1kb ∈ L.

Now let b and c be any elements in B and CH(D), respectively. Then for
any k ∈ K,

(kc)−1(kc)b = (k−1)c(kb)c = (k−1kb)c ∈ Lc

and since kc can be any element in K, it follows that we have k−1kb ∈ Lc for
any k ∈ K. Thus if we take M =

⋂
c∈CH(D) Lc, then

k−1kb ∈ M

for any k ∈ K and b ∈ B.
However, M is an H-invariant normal subgroup of K. For if we take any

element h in H, by our assumption we can write h = dx for some d ∈ D and
x ∈ CH(D) and then

Mh =
⋂

c∈CH(D)

Lch =
⋂

c∈CH(D)

Lcdx =
⋂

c∈CH(D)

Ldcx =
⋂

c∈CH(D)

Lcx = M .

(As c centralizes D, L is D-invariant, and cx runs through the elements of
CH(D) as does c.) Moreover, M is not only an H-invariant normal subgroup
of K, but the action of H on K/M is not faithful: we have shown above that
B is contained in the kernel of this action. Therefore the group G = HK is not
semiprimitive (by Theorem 2.3), and this contradiction implies that DK must
be semiprimitive.

Two immediate corollaries are the following.

Theorem 2.6. Let G be a semiprimitive group with solvable kernel K, let H
be a point-stabilizer, and assume that C is a non-trivial central subgroup of H.
Then CK is also semiprimitive. In particular, the center of H must be cyclic.

Proof. Put D = C and apply Theorem 2.5.

Theorem 2.7. Let G be a semiprimitive group with solvable kernel K, let H be
a point-stabilizer, and suppose that H has a direct decomposition H = A × B.
Then AK and BK are also semiprimitive.

Proof. Put D = A and apply Theorem 2.5.

Theorem 2.8. Let G be a solvable transitive group with a regular normal
subgroup K. Then G is semiprimitive if and only if G/Φ(K) is faithful and
semiprimitive on the set of orbits of the Frattini subgroup Φ(K) of K.

Proof. Since K is regular, Φ(K) is semiregular. Hence one direction of the the-
orem follows from Lemma 2.3. Suppose that G/Φ(K) is faithful and semiprim-
itive on the set of orbits of Φ(K). Let N be a normal subgroup of G. We must
show that N is transitive or semiregular. The group NΦ(K)/Φ(K) is normal in
the solvable semiprimitive group G/Φ(K). Hence, by Theorem 2.1, the group
NΦ(K) contains K or it is contained in K. In the latter case we conclude that
N is semiregular. So suppose that K ≤ NΦ(K). Since Φ(K) ≤ K, this implies
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that K ≤ (N ∩K)Φ(K). We claim that K ≤ N . This would mean that N is
transitive. By way of contradiction, suppose that there exist a maximal sub-
group L of K containing K∩N . Then K ≤ (K∩N)Φ(K) ≤ L is a contradiction.
Hence N is indeed transitive. This completes the proof of the theorem.

Let p be an odd prime and let E be a p-group with |E| = p1+2d (d ≥ 1),
Z(E) = [E,E] = Φ(E) has order p, and E has exponent p. Then S = Sp2d(p)
acts on E as a group of automorphisms. Indeed, let S0 = CSp2d(p), the group
which preserves up to scalar multiples the alternating form preserved by S. So
S0/S is cyclic of order p− 1, S0 acts as a group of automorphisms on E and S
is the normal subgroup which centralizes Z(E). A corollary to Theorem 2.8 is
the following.

Corollary 2.4. Let E and S0 be as above. Let G be a finite transitive group
with a point-stabilizer H and a regular normal subgroup isomorphic to E. Then
G is a semiprimitive group with kernel E, if and only if, H ≤ S0 and HE/Φ(E)
is faithful and semiprimitive on the set of orbits of the Frattini subgroup Φ(E)
of E.

Theorem 2.9. Let G be a solvable transitive group with a regular normal sub-
group K. Suppose that K = K1 × . . . × Kt where |Ki| and |Kj | are relatively
prime integers for all 1 ≤ i < j ≤ t. Then G is semiprimitive, if and only if,
for all 1 ≤ i ≤ t the factor group G/Φ(Ki)K ′

i is faithful and semiprimitive on
the sets of orbits of Φ(Ki)K ′

i where Φ(Ki) denotes the Frattini subgroup of Ki

and K ′
i denotes the direct product of all the Kj’s where j is different from i.

Proof. Let us use the notations of the theorem. Since K is regular, Φ(Ki)K ′
i

is semiregular for all i, and hence one direction of the theorem follows from
Lemma 2.3. For the other direction, suppose that for all 1 ≤ i ≤ t, the factor
group G/Φ(Ki)K ′

i is faithful and semiprimitive on the set of orbits of Φ(Ki)K ′
i.

By the previous theorem and by our hypotheses on the orders of the Ki’s, this
assumption is equivalent to the assumption that for all 1 ≤ i ≤ t, the factor
group G/K ′

i is faithful and semiprimitive on the set of orbits of K ′
i. Let N be

a normal subgroup in G. We must show that N is semiregular or transitive. If
for some i the normal subgroup NK ′

i/K ′
i in G/K ′

i is semiregular with respect
to its relevant action, then NK ′

i and hence N is also semiregular on the original
set of points on which G acts transitively. Hence we may (and do) assume that
for all i the factor group NK ′

i/K ′
i acts faithfully and transitively on the orbits

of K ′
i. By Theorem 2.1, this implies that K ≤ NK ′

i for all i. Since K ′
i ≤ K for

all i, this is equivalent to K ≤ (N ∩K)K ′
i for all i. By our hypotheses on K

and the orders of the Ki’s, we see that Ki ≤ N ∩K and hence Ki ≤ N for all
i. This implies that K ≤ N which means that N is transitive. Since N was an
arbitrary normal subgroup of G, we conclude that G is semiprimitive.

Corollary 2.5. Let G be a semiprimitive group with a nilpotent kernel K and
a nilpotent point-stabilizer H. Then |K| and |H| are relatively prime.

Proof. Let K = K1× . . .×Kt where Ki is a pi-group for distinct prime numbers
pi for 1 ≤ i ≤ t. Similarly, let H = H1 × . . . ×Hu where Hj is a qj-group for
distinct prime numbers qj for 1 ≤ j ≤ u. By repeated use of Theorem 2.7, the
groups HjK are semiprimitive for all 1 ≤ j ≤ u. Similarly, by Theorem 2.9
(and the idea of its proof), the group HjKi is semiprimitive on the set of orbits
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of the complement of Ki in K for all 1 ≤ j ≤ u and all 1 ≤ i ≤ t. By Lemma
2.2, the groups HjKi cannot be nilpotent, and so qj 6= pi for all 1 ≤ j ≤ u and
all 1 ≤ i ≤ t. Hence |H| and |K| are indeed relatively prime integers.

Some of the observations we had before may suggest that semi-primitive
groups regarding their structures may be close to Frobenius groups. But there
is a significant difference as well. It is known that the kernel of a solvable
(quasi)primitive group is elementary Abelian and (by Thompson’s theorem)
the kernel of a Frobenius group is always nilpotent. However, the kernel of
a solvable semiprimitive group does not need to be nilpotent. For example,
take the symmetric group S4 with its action on the cosets of a subgroup H
generated by a single transposition. This action is semiprimitive and the kernel
is the alternating group A4, which is not nilpotent.

This example inspired Pyber to point on the following fact.

Theorem 2.10. A transitive group G with a simple one-point stabilizer is
semiprimitive if and only if the set-theoretic union of all point stabilizers gen-
erate G.

Proof. Let G be such a group, with a simple point stabilizer H and suppose
that N is a normal subgroup in G, which is not semiregular. It means that
for some g ∈ G, the intersection Hg ∩N is non-trivial. But this intersection is
normal in Hg, so it must be equal to Hg and now it follows that N contains
all the point-stabilizers, therefore N = G. In the other direction, if the point
stabilizers do not generate G, then they generate a normal subgroup that is
not semiregular and not transitive either (for any transitive group containing a
point stabilizer would be G itself).

For our last theorem, which is a consequence of Theorem 2.10, let us mod-
ify Definition 2.1 to include infinite permutation groups as well. A transitive
permutation group G is semiprimitive if it is not regular and if every normal
subgroup of G is transitive or semiregular.

Theorem 2.11. Let (W,S) be a Coxeter system such that any two involutions
of the generating set S are conjugate within the Coxeter group W . Then any
quotient group of W may be viewed as a semiprimitive group with a point sta-
bilizer conjugate to a cyclic group generated by some element of S.

Note that the hypothesis saying that S is a subset of a conjugacy class of W
can not be omitted from the theorem. Indeed, a dihedral 2-group is a Coxeter
group with not all involutions conjugate, but it is never semiprimitive.

For example, the group D4 = 23 : S4 can be viewed as a semiprimitive
permutation group on 96 points. This group is solvable, and its kernel is not
nilpotent.

3 Classifications for certain degrees

Now we can classify the solvable semiprimitive groups of certain degrees. From
Corollary 2.2 it follows that there is no solvable semiprimitive group of degree
2m with m odd. If the degree is a prime number, then any transitive group is
also primitive, so semiprimitive or regular. If the degree is a square of a prime
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p, then by Theorem 2.1, the kernel K of a solvable semiprimitive group has
order p2. Given that the action of the point-stabilizer H is faithful on every
non-trivial H-invariant quotient of K (see Theorem 2.3), one of the following
three cases holds.

• p is odd, K is cyclic and G is a Frobenius group;

• K ∼= Cp × Cp and H acts irreducibly on K, in which case G is primitive;

• K ∼= Cp × Cp and H is reducible on K, in which case H is cyclic, say
H = 〈h〉, |H| divides p − 1 and there are elements x, y in K such that
h−1xh = xa and h−1yh = yb for some integers a and b, having the same
multiplicative order modulo p. Such an example is always a Frobenius
group.

Next we will analyze the situation when the degree is a product of two
different odd prime numbers.

Lemma 3.1. Let G be a solvable semiprimitive group of degree pq where p and
q are different prime numbers. Then the degree is odd, the kernel K of G is a
cyclic group of order pq and G is a Frobenius group.

Proof. As we mentioned earlier, there is no solvable semiprimitive group of
degree 2m with m odd. So we may assume that p and q are both odd. If
K is cyclic, then the statement follows from Lemma 2.5. Let us assume that
K ∼= CpnCq, in particular p divides q−1. Let M be the cyclic normal subgroup
of order q in K, then M is also characteristic in K, so M is normal in G. It
follows that the centralizer of M in G, CG(M) is also normal in G, but it cannot
contain K, as K does not centralize M . Therefore CG(M) < K, which means
that CG(M) = M . Now G/M = NG(M)/CG(M) is isomorphic to a subgroup
of Aut(M) which is a cyclic group of order q − 1, so G/M is cyclic. On the
other hand, by Lemma 2.3, G/M is a semiprimitive group on the orbits of M ,
but this is now a contradiction, since we know from Lemma 2.2 that a cyclic
group cannot be semiprimitive. This completes the proof.

It was proved by Suprunenko [10] that there is no Frobenius group with
kernel isomorphic to a non-Abelian group of order p3 and of exponent p2 (for
any prime number p). Almost the same holds for solvable semiprimitive groups
as well, but here there are two exceptions.

Theorem 3.1. Let G be a solvable semiprimitive group with kernel K isomor-
phic to non-Abelian group of order p3 and exponent p2. Then K ∼= Q (the
quaternion group) and G ∼= GL2(3) or SL2(3).

Proof. Suppose G = H n K is a solvable semiprimitive group with H being
a point-stabilizer and the kernel K is a non-Abelian group of order p3 and
exponent p2 for some prime number p. It means that either K is isomorphic to
the quaternion group of order 8 or

K ∼= Cp n Cp2 ∼= 〈x, y | xp = yp2
= 1 , x−1yx = yp+1〉

for some prime number p. By way of contradiction assume the latter case.
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First we notice that H is isomorphic to a subgroup of Cp−1. This is true
because K has a characteristic subgroup L of order p2 (if p = 2 then let L
be the cyclic subgroup of order 4, and if p is odd then let L = Ω1(K), the
subgroup of the elements of order p together with the unit element), and thus L
is normal in G, so G/L acts faithfully as a semiprimitive group on the p orbits
of L. This implies that the point-stabilizer of this action, which is isomorphic
to (G/L)/(K/L) ∼= G/K ∼= H, is a subgroup in Cp−1. Now if p = 2 then H has
to be trivial and G = K, contrary to our definition, that a regular permutation
group is not semiprimitive.

Assume that p is odd, K ∼= Cp n Cp2 , and next we will show that there is
a decomposition K = T n S with T ∼= Cp, S ∼= Cp2 such that H normalizes
S and centralizes T . To see this, first notice that since gcd(|H|, |L|) = 1 and
L is a vector space of dimension 2 over the field of p elements, H must have
a semisimple action on L. Therefore there is a subgroup T of order p in L
which gives an H-module decomposition L = T × C(K). (Here C(K) denotes
the center of K.) Furthermore, the action of H on K/C(K) ∼= Cp × Cp is also
semisimple, so there is also an H-module decomposition K/C(K) = L/C(K)×
S/C(K) for some group S of order p2 containing the center of K. Since L
contains all the elements of order p in K, S must be a cyclic group of order p2.
Now S does not contain T , since the only subgroup of order p in S is C(K).
So we have a decomposition K = T n S such that H normalizes both T and S.
But we also want to show that H actually centralizes T . In order to do this,
choose elements x and y from T and S, respectively such that T = 〈x〉, S = 〈y〉
and x−1yx = yp+1. This is possible as T acts non-trivially on S. Further, let
H = 〈h〉. Now h−1xh = xm and h−1yh = yn with some positive integers m and
n that are not divisible by p. Then

h−1(yx)h = ynxm = xmyn(p+1)m

= xmyn(mp+1) ,

but also, since yx = xyp+1 we have

h−1(yx)h = h−1(xyp+1)h = xmyn(p+1) .

It follows that n(mp + 1) ≡ n(p + 1) modulo p2, and since n is not divisible
by p, this implies m ≡ 1 modulo p. In other words, h centralizes x, so H also
centralizes T .

Now HS is a subgroup of G, because H normalizes S. Furthermore, T
normalizes HS because S is normal in K, T < K, and as we just saw, T
centralizes H. Hence SH is a normal subgroup of G. However SH is not
contained in K and does not contain K either, a contradiction.

From now on, we only need to deal with the case when K is isomorphic
to the quaternion group of order 8. Since C(K) is normal in G, H must act
faithfully on the quotient K/C(K) ∼= C2 × C2, that is, H is isomorphic to a
subgroup of GL2(2) ∼= S3. H cannot be a group of order 2 (in that case G would
be nilpotent, and nilpotent groups cannot be semiprimitive), so either H ∼= S3

or H ∼= C3. One can easily check that up to isomorphism, there is only one
possible action of S3 (resp. C3) on the quaternion group, and the semidirect
product of this action appears in GL2(3) (resp. SL2(3)), hence G = H nK is
isomorphic to GL2(3) or SL2(3).

It is known that there are Frobenius groups with their kernel a non-Abelian
group of order p3 and exponent p. As we know, these are also semiprimitive.
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However, beside these there are more semiprimitive groups with this property.
For example, let p be any odd prime, let

K = 〈x, y, z | xp = yp = zp = [x, z] = [y, z] = 1 , [x, y] = z〉

and let H be the cyclic group generated by the single automorphism h of K that
takes x, y and z to xa, yb and zab, respectively, where a and b are positive inte-
gers, less than p. Such an automorphism exists, because xa, yb and zab satisfy
the same relations as x, y, and z. Moreover, the order of such an automorphism
divides p − 1. Now if we choose a and b so that they are multiplicative roots
modulo p, but their product is not (for instance, if b is the mod p inverse of a),
then a certain non-trivial power of h centralizes C(K) = 〈z〉. So G = H nK
is not a Frobenius group in this case, but it is semiprimitive on the cosets of
H. For if 1 6= L 6= K is an H-invariant normal subgroup of K then L contains
C(K) and K/L can be considered as a vector space of characteristic p, on which
H acts as the whole group of scalar multiplications. Hence H acts faithfully
on each non-trivial H-invariant quotient of K. This shows that there are more
semiprimitive groups then Frobenius groups of degree p3 for any odd prime p.

Theorem 3.2. Let G be a solvable semiprimitive group with an elementary
Abelian kernel K of order p3. If p 6= 3, then G is a primitive permutation group
or G is a Frobenius group.

Proof. Let G and K be as in the statement of the lemma. Let H be a point
stabilizer of G.

If H is Abelian, then G is a Frobenius group by Theorem 2.4. If there is no
H-invariant normal subgroup in K, then G is a primitive permutation group.
Let L be a proper H-invariant normal subgroup in K. If |L| = p2, then G/L
is a solvable semiprimitive group with kernel of order p, the group H is cyclic,
and so G is a Frobenius group by Theorem 2.4.

We may (and do) assume that every proper H-invariant normal subgroup K
has order p. We can (and will) also assume that there is a unique H-invariant
normal subgroup L in K of order p. (Otherwise G would be Frobenius.) Then
G/L is semiprimitive with kernel K/L ∼= Cp × Cp and point-stabilizer H con-
sidered as an irreducible subgroup of GL(2, p).

If the order of H is relatively prime to p, then, by Maschke’s theorem, H is
completely reducible on K, and hence there is an H-invariant normal subgroup
of order p2 in K and this contradicts our assumptions. So we may (and do)
assume that H contains a subgroup of order p. The stabilizer H cannot contain
exactly one subgroup of order p, since in this case H would be reducible on K/L
from Dickson’s list of subgroups of GL(2, p). Hence we may (and do) assume
that H is a solvable irreducible subgroup of GL(2, p) containing at least two
subgroups of order p. By Dickson’s list, this can only happen when p = 2 and
H = S3 or if p = 3 and H ∼= A4, SL(2, 3), or GL(2, 3).

Suppose that p = 2 and H = S3. Then H ′ is completely reducible on K
since |H ′| = 3, and hence there exists an H ′-invariant normal subgroup M in
K such that |M | = p2 and L ∩ M = {1}. The group H acts by conjugation
on the set of all subgroups of order p2 in K. The orbit containing M has two
elements: M and say N . But then M ∩N is an H-invariant subgroup of K of
order p and different from L. This is a contradiction.
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Theorem 3.3. Let G be a solvable semiprimitive group with kernel K. If K
is Abelian of order a product of at most 3 primes and K is not an elementary
Abelian group of order 27, then G is primitive or G is a Frobenius group.

Proof. All cases were considered in this section except when |K| = p2q or |K| =
pqr where p, q, r are distinct primes. In both remaining cases there exists
a characteristic subgroup L of G contained in K so that (K : L) = q. By
Lemma 2.3, this implies that the point-stabilizer of G must be cyclic. Hence,
by Theorem 2.4, G is a Frobenius group.

4 Appendix on collapsing monoids

This section contains the self-contained definition of a collapsing permutation
group and some background material from universal algebra. We refer to the
Appendix only in the middle of the Introduction and it is not used in the proofs.
This section was written only for the interested reader who is not familiar with
the basic concepts of universal algebra related to this work.

Let A be a set. For a non-negative integer n let O(n)
A denote the set of all

n-ary operations on A. If n ≥ 1 and 1 ≤ i ≤ n, then the n-ary operation
pi : An −→ A such that (a1, . . . , an) 7−→ ai is called the i-th projection. If
n = 1, then this projection is denoted by idA. Put OA = ∪n≥0O(n)

A . A subset C
of OA is said to be closed under superposition if for all non-negative integers n

and k, whenever f ∈ C ∩O(n)
A and f1, . . . , fn ∈ C ∩O(k)

A , then f(f1, . . . , fn) ∈ C.
A subset C of OA is called a clone if it contains all projections and is closed
under superposition. The unary operations in a clone C form a transformation
monoid. This monoid is called the unary part of the clone and it is denoted by
C(1). Let T (A) be the symmetric monoid on the set A, and let M be an arbitrary
submonoid of T (A). We call [M ] = ∩M⊆CC the clone generated by the monoid
M . The stabilizer Stab(M) of M is defined to be the clone consisting of all n-ary
operations f(x1, . . . , xn) (for all n ≥ 0) such that for all elements m1, . . . , mn of
M the operation f(m1(x), . . . , mn(x)) is in M . Clearly, [M ](1) = Stab(M)(1) =
M . In general, if C is a clone with unary part M , then [M ] ⊆ C ⊆ Stab(M). In
other words, clones with unary part M form an interval I(M) in the lattice of
all clones on A. Every clone on A is a member of I(M) for some monoid M .

Let A be a finite set with at least three elements. In this case there are
uncountably many clones on A and only finitely many submonoids of T (A).
Hence {I(M)}MjT (A) partitions the lattice of clones into finitely many disjoint
intervals. The problem of classifying those transformation monoids M for which
I(M) is finite was posed by Szendrei in [11]. The full transformation monoid
M = T (A) (see [2]) and the symmetric group M = SA are examples where I(M)
is finite: |I(T (A))| = |A| + 1 and |I(SA)| = 1. A large family of monoids M
with I(M) finite was provided by Pálfy in [7]: if M consists of all constants and
some permutations, then |I(M)| ≤ 2; moreover, |I(M)| = 1 unless M coincides
with the monoid of all unary polynomial operations of a finite vector space over
a finite field.

The above results motivate the following definition (see [8]). If the interval
I(M) has only one element, the clone [M ], then the transformation monoid M
is called collapsing, and in the special case when M is a permutation group,
then M is called a collapsing permutation group.
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Dormán [3] gives examples of collapsing monoids. These monoids form large
intervals in the submonoid lattice of the full transformation semigroups. Some
of these intervals have cardinalities at least 22cn

where n = |A|. (If A is a finite
set with n ≥ 2 elements, then the full transformation semigroup T (A) has at
least 22cn

and at most 2nn

subsemigroups for some positive constant c (see [3]).)
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We thank Ágnes Szendrei and Miklós Dormán for valuable conversations
on universal algebra. We also thank Kamilla Kátai-Urbán for some computer
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