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Abstract. Let p be a prime and let G be a finite group which is generated by
the set Gp of its p-elements. We show that if G is solvable and not a p-group, then
the minimal number σp(G) of proper subgroups of G whose union contains Gp is
equal to 1 less than the minimal number of proper subgroups of G whose union is
G. For p-solvable groups G, we always have σp(G) ≥ p + 1. We study the case of
alternating and symmetric groups G in detail.

1. Introduction

A celebrated but elementary result of Gustafson [20] asserts that a finite group G is
abelian if and only if the probability P (G) that two uniformly and randomly chosen
elements in G commute is larger than 5/8. The invariant P (G) is equal to k(G)/|G|
where k(G) is the number of conjugacy classes of the finite group G. Throughout
the paper let p be a prime. Burness, Guralnick, Moretó, Navarro [6, Theorem A]
proved the following deep theorem. A finite group G has an abelian normal Sylow
p-subgroup if and only if the probability that two randomly chosen p-elements in G
commute is larger than (p2 + p− 1)/p3. This result may be viewed as a local analog
of Gustafson’s theorem.

For a group G, let Gp denote the set of p-elements in G. In this paper G will
always denote a finite group, except in the last part of this section where we briefly
comment on infinite groups. As usual, Op(G) denotes the largest normal p-subgroup
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in G. The previously mentioned theorem [6, Theorem A] is derived from [6, Theorem
C] stating that whenever x is an element of Gp \Op(G) then |CG(x)p|/|Gp| ≤ 1/p.

Let S be a subset of G and let H1, . . . , Hn be subgroups of G. We say that
{H1, . . . , Hn} covers S or that {H1, . . . , Hn} is a covering for S if S ⊆ ∪n

i=1Hi. A
quick consequence of [6, Theorem C] is that if x1, . . . , xn are elements of Gp \Op(G),
for a finite group G and a prime p, such that {CG(x1), . . . , CG(xn)} covers Gp, then
n ≥ p+ 1.

The noncommuting graph is the graph whose vertex set is G \Z(G), where G is a
finite group and Z(G) is the center of G, with two vertices connected by an undirected
edge if and only if they do not commute. See Cameron’s article [7] for information
about this graph. For example, [7, Corollary 9.8] states that the noncommuting graph
is not only connected but has diameter at most 2. Assume that Op(G) is central in
G. Consider the induced graph of the noncommuting graph defined on the elements
of Gp \ Z(G). We claim that this graph also has diameter at most 2. Indeed, if x
and y are elements of Gp \ Op(G) then {CG(x), CG(y)} is not a cover for Gp by the
previous paragraph, so there must be an element z of Gp outside Op(G) such that z
is connected to both x and y.
The noncommuting graph implicitly appeared in a work of Pyber [31]. Let n be

the size of a largest complete subgraph of the noncommuting graph Γ of a finite
group G. Let cc(Γ) be the minimal number of empty subgraphs covering Γ. Clearly,
n ≤ cc(Γ) ≤ |G : Z(G)|. Answering a question of Neumann and solving a problem of
Erdős, Pyber [31] showed that there exists a constant c such that |G : Z(G)| ≤ cn.
Under the condition that Op(G) is central in a finite group G for a fixed prime p,
[6, Theorem C] implies that if n denotes the size of a largest complete subgraph in
the induced subgraph of Γ defined on the vertex set Gp \ Z(G) then n ≥ p + 1. In
particular, if A is a set of abelian subgroups of G covering Gp then |A| ≥ p+ 1.
Our aim in this paper is to study the minimal size of a covering of Gp by arbitrary

proper subgroups of G. We note that in [28] we study another variation of this
problem, namely whether a proper subset of the set of Sylow p-subgroups of a finite
group G covers Gp. The results in this paper do not depend on [28] and the techniques
used are completely different.

These problems can be seen as a local version of the widely studied problem of
covering a finite group by proper subgroups. It is an elementary fact that a group
cannot be expressed as the union of two proper subgroups. Let G be a noncyclic finite
group. Cohn [8] introduced the invariant σ(G) as the minimal size of a covering for G
which consists of proper subgroups of G. Tomkinson [34] proved that σ(G) is always
a prime power plus 1 for any (noncyclic and finite) solvable group G. More precisely,
he showed that if G is a finite solvable group and H/K is the smallest chief factor
of G having more than one complement in G, then σ(G) = |H/K| + 1. There is a
large literature on σ. The numbers σ(G) were computed (or bounds were given) for
various classes of nonsolvable groups G; for certain symmetric groups [27], [33], [18],
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for certain linear groups [5], [4], for sporadic groups [13], for Suzuki groups [25], or
for certain wreath products [24]. There are many positive integers n for which there
is no group G with σ(G) = n (see [34], [22], [23]).

Let G be a finite group generated by its p-elements or equivalently G with G =
Op′(G). Let σp(G) be the minimal size of a cover forGp consisting of proper subgroups
of G. If G is a cyclic p-group, then there is no such cover and we say that σp(G) = ∞.
It is well-known, and easy to see, that if G is a non-cyclic p-group then σ(G) = p+1.
It is also clear that in this case σp(G) = σ(G). Perhaps surprisingly, we prove that
σ(G) and σp(G) are also closely related when G is any solvable group generated by
its p-elements.

Our first result is the following.

Theorem A. Let G be a solvable group generated by its p-elements. If G is not a
p-group, then σp(G) = σ(G)− 1.

Wemention that a related invariant to σp(G) was studied by Fumagalli and Garonzi
in [17]. A covering of the set of prime power elements of a finite group G (for all prime
divisors of the order of G) is called a primary covering. The minimal size of a primary
covering consisting of proper subgroup of G is denoted by σ0(G). This invariant was
studied for solvable groups and symmetric groups. Our proof of Theorem A relies on
results from this paper.

Theorem A is not true for p-solvable groups. In fact, we show in Example 2.3
that for any ε > 0 there exist p-solvable groups G generated by p-elements such
that σp(G)/σ(G) < ε. Therefore, when G is not solvable σ(G) and σp(G) are two
completely different invariants.

Our second result is the following.

Theorem B. If p is a prime and G is a p-solvable group generated by its p-elements,
then σp(G) ≥ p+ 1.

Our proof of Theorem B relies on results of M. Hall [14] and G. Navarro [29] which
are just false for non-p-solvable groups. R. Guralnick found a proof of this result for
arbitrary finite groups using ideas related to [3]. This will appear elsewhere. This
implies our first consequence of [6, Theorem C]. The following result may be viewed
as the next step in studying σp(G) for non-p-solvable groups G.

Theorem C. Let p be a prime and let G be An or Sn. If G = An or (p,G) = (2, Sn),
then σp(G) → ∞ as n → ∞ (and p fixed). Otherwise G is not generated by its
p-elements and thus σp(G) is not defined.

We obtain a more detailed result than Theorem C with good lower bounds and
sometimes even identities for σp(G) when G is an alternating or symmetric group.
For example, we establish in Proposition 5.10 that σp(An) = p + 1, provided that
max{5, p + 1} ≤ n ≤ 2p− 1. Theorem 4.2 states that σp(PSL(2, q)) = q + 1 for any
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integer power q ≥ 4 of the prime p. In Corollary 5.14 we investigate the relationship
between σp(G) and σ(G) where G is an alternating or symmetric group.
In this paragraph let G be an infinite group. One may consider the coverings of

Gp by proper subgroups. A theorem of Neumann [30] states that if G is the union
of m proper subgroups where m is finite and small as possible, then the intersection
of these subgroups is a subgroup of finite index in G. This is the reason why one
may assume that G is finite when computing σ(G), the minimal number of proper
subgroups needed to cover G. It would be interesting to know if there is a local
analogue of Neumann’s theorem, namely that in determining σp(G) (under suitable
conditions) could one assume that G is finite.

2. The relationship with σ(G)

In this section we prove Theorem A. In the following lemma we argue as in the
proof of Lemma 1 of [12]. We include the proof for the reader’s convenience.

Lemma 2.1. Let G be a finite group and let N ⊴ G. Then:

(i) σp(G) ≤ σp(G/N).
(ii) If N ≤ Φ(G), then σp(G) = σp(G/N).
(iii) If M is a maximal subgroup of G such that σp(M) > σp(G), then M belongs

to every minimal covering of Gp.

Proof. Since any covering of (G/N)p lifts to a covering of Gp, part (i) is clear. Since
the minimal size of a covering of Gp by proper subgroups is the minimal size of a
covering of Gp by maximal subgroups, it follows that if N ≤ Φ(G) then σp(G) =
σp(G/N).

Finally, let M be a maximal subgroup of G such that σp(M) > σp(G). Let
H1, . . . , Hn be a covering of Gp, where n = σp(G). Then H1 ∩ M, . . . , Hn ∩ M
covers Mp. Since σp(M) > n, it follows that there exists i ≤ n such that M ≤ Hi,
whence M = Hi. The result follows. □

The following is Theorem A.

Theorem 2.2. Let G be a solvable group generated by p-elements which is not a
cyclic p-group. Then

σp(G) ≥ σ(G)− 1.

Moreover, σp(G) = σ(G)− 1 if and only if G is not a p-group.

Proof. If G is a p-group, then we clearly have σp(G) = σ(G), so we may assume that
G is not nilpotent.

Let N ⊴ G be such that σp(G) = σp(G/N) with |G/N | as small as possible. Note
that this implies that Φ(G/N) = 1, by Lemma 2.1(ii). Let K/N be a chief factor
of G, so that σp(G) = σp(G/N) < σp(G/K), Since K/N is a non-Frattini chief
factor, it has a complement M/N , for some M maximal subgroup of G. Therefore,
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M/N ∼= G/K, so σp(G/N) < σp(M/N). By Lemma 2.1(iii) this implies that M/N
belongs to every minimal covering of (G/N)p.
Let b be the number of complements of K/N in G/N , so that b ≤ σp(G). We claim

that there exists K/N with b > 1. If b = 1, then K/N has a unique complement
in G/N and hence G/N = K/N ×M/N . Since K/N is a chief factor, it is abelian.
Therefore, K/N is central in G/N and has prime order.

If the claim is false, then we have that any minimal normal subgroup of G/N is
central of prime order. Since Φ(G/N) = 1, F (G/N) is the direct product of the
minimal normal subgroups of G/N . It follows that F (G/N) is central in G/N , so
G/N = F (G/N) is a direct product of cyclic groups of prime order. Since G/N is
generated by p-elements, G/N is a non-cyclic elementary abelian p-group and hence
K/N possesses more than one complement, which is impossible.

Therefore, we have that b > 1 for some chief factor K/N . By [12, Lemma 2], this
implies that b ≥ |K/N |. On the other hand, by [34, Theorem 2.2],

σp(G) ≤ σ(G) ≤ 1 + |K/N | ≤ 1 + b ≤ 1 + σp(G),

and the inequality follows. It only remains to prove the statement on the equality.
By the above inequalities, σp(G) ∈ {σ(G), σ(G) − 1} and σp(G) = σ(G) − 1 if and
only if we have equality above except in the first inequality. This happens if and only
if σp(G) = b and σ(G) = b + 1. We claim that σp(G) = b and σ(G) = b + 1 if and
only if K/N is a p′-group.

Let {Mi/N}bi=1 be all the complements of K/N . We know that all Mi/N appear
in every minimal covering of Gp. As a consequence, we have that σp(G) = b if and
only if {Mi/N}bi=1 covers (G/N)p, or equivalently, if and only if K/N is a p′-group.
Thus, the “if” part of the claim follows. It only remains to prove the “only if” part.

Assume that K/N is a p′-group. We know that σp(G) = b and hence we only
have to prove that σ(G) > b. Suppose that σ(G) = b. Then there exists a collection
{Hi/N}bi=1 of maximal groups which covers G/N . In particular, {Hi/N}bi=1 is a
minimal covering of (G/N)p and, by the conditions on the Mi/N , we have that
{Hi/N}bi=1 = {Mi/N}bi=1. Thus, we have that

G/N =
b⋃

i=1

Hi/N =
b⋃

i=1

Mi/N ⊆ G/N \ (K/N \ {1}) ̸= G/N,

which is a contradiction. Now, the result on the equality follows from the claim. □

Note that this result, together with [34, Theorem 2.2], allows us to give another
proof of Theorem B for solvable groups. We conclude this section showing that
Theorem A cannot be extended to p-solvable groups.

Example 2.3. Let p ̸∈ {2, 3, 5, 11} be a prime. Let k ≥ 1. Let Gk = M11 ≀ Cpk , so
that Gk is p-solvable. We claim that σp(Gk)/σ(Gk) → 0 when k → ∞.



6 ATTILA MARÓTI, JUAN MARTÍNEZ, AND ALEXANDER MORETÓ

By Corollary 1.2 of [24], we know that σ(Gk) = 1 + 11p
k
+ 12p

k
. On the other

hand, let H = M10 ≀ Cpk , so that |G : H| = 11p
k
. Since Sylow p-subgroups of Gk are

Gk-conjugate and H contains a Sylow p-subgroup of G, the 11p
k
Gk-conjugates of H

cover (Gk)p. Thus σp(Gk) ≤ 11p
k
. Therefore,

σp(Gk)

σ(Gk)
≤

(
11

12

)pk

→ 0,

when k → ∞, as wanted.

3. On the minimal size of a covering of Gp for p-solvable groups G

In this section, we prove Theorem B. We use some results on the number of Sylow
p-subgroups that are just false outside p-solvable groups. The first one is a theorem
of M. Hall. If p is a prime and G a finite group, we write νp(G) to denote the number
of Sylow p-subgroups of G.

Lemma 3.1. Let G be a p-solvable group. Let νp(G) = pa11 . . . patt be the factorization
of νp(G) as a product of prime powers. Then paii ≡ 1 (mod p).

Proof. This was proved by P. Hall [15] for solvable groups. The result for p-solvable
groups follows from the proof of Theorem 2.2 of [14]. □

The following result may have independent interest.

Theorem 3.2. Let p be a prime and G a p-solvable group. If H is a proper subgroup
of G such that |H|p = |G|p, then νp(H) < νp(G)/p.

Proof. By way of contradiction, suppose that νp(H) ≥ νp(G)/p. Since the number
of Sylow p-subgroups is 1 modulo p, we have that νp(H) > νp(G)/p. We claim that
νp(H) = νp(G)/p. By By [29], we know that νp(H) divides νp(G), so we may write

νp(H) = pa11 . . . patt and νp(G) = pb11 . . . pbtt , with aj ≤ bj for every j. Without loss
of generality, we may assume that a1 < b1. Since νp(G)/νp(H) < p, it follows that

pb1−a1
1 < p. By Lemma 3.1, pb11 − pa11 = pa11 (pb1−a1

1 − 1) is a multiple of p. Hence,
p < pb1−a1

1 , a contradiction. This proves the claim.
Therefore, H contains all the p-elements of G. Since G is generated by p-elements,

we conclude that H = G, a contradiction. □

This is false when G is not p-solvable, as G = A5 and H = A4 show for p = 3. We
will obtain a version of this result for non-p-solvable groups elsewhere.

Now, we complete the proof of Theorem B for p-solvable groups.

Theorem 3.3. If p is a prime and G is a finite p-solvable group generated by its
p-elements, then σp(G) ≥ p+ 1.
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Proof. Arguing by contradiction, suppose that there exist H1, . . . , Hp < G such that
Gp ⊆

⋃p
i=1 Hi. Let P be a Sylow p-subgroup of G. Hence

P =

p⋃
i=1

Hi ∩ P.

Since a p-group cannot be covered by less than p + 1 proper subgroups, we deduce
that there exists i such that P ⊆ Hi. Thus, every Sylow p-subgroup is contained in
some of the subgroups Hi. By the pigeonhole principle, we may assume that H = H1

contains a proportion of at least 1/p of the Sylow p-subgroups of G. This contradicts
Theorem 3.2. □

4. Some projective special linear groups

In this section let q = pn be a prime power for a prime p and a positive integer
n. Consider the projective special linear group G = PSL(2, pn). We will show that
σp(G) = q + 1, which is the number of Sylow p-subgroups of G.

Lemma 4.1. Let q ≥ 4. If S < G, then |Sp| ≤ |G|p = q.

Proof. It suffices to prove that |Sp| ≤ q for all maximal subgroups S of G. We may
also assume that p divides the order of S.
Assume first that p > 5. By Dickson’s classification of subgroups of PSL(2, q) (see

[16, p. 213-214] or [9, p. 285]), we have that S must be isomorphic to one of the
following.

(i) C(q−1)/d ⋊ Cn
p , where d = gcd(2, q − 1).

(ii) PSL(2, pf ) with f < n dividing n.
(iii) PGL(2, pf ) with 2f dividing n.

In Case (i) we have that |Sp| = |S|p = q and in Cases (ii) and (iii) we have that
|PGL(2, pf )p| = |PSL(2, pf )p| = p2f ≤ q.

Let p ∈ {2, 3, 5}. In this case S is either one of the groups mentioned above or
(under some conditions on q) S ∈ {A4, S4, A5}. The lemma follows trivially for q ≥ 9
and, for the case q ≤ 8, the result can be checked by a closer look at Dickson’s
list. Now, if q = 5n with n ≥ 2, then S can also be isomorphic to A5 and hence
|S5| = 25 ≤ q. Similarly, if p ∈ {2, 3}, then S can also be isomorphic to a member of
{A4, S4, A5} and simple calculations give the result. □

We borrow the following definition from [27, p. 99]. Let G be a finite group and
Π a subset of G. A set H = {H1, . . . , Hm} of m proper subgroups in G is said to be
definitely unbeatable on Π if Π ⊆ ∪m

i=1Hi, if Π ∩ Hi ∩ Hj = ∅ for all i ̸= j, and if
|S ∩Π| ≤ |Hi ∩Π| holds whenever 1 ≤ i ≤ m and when S ̸∈ H is a proper subgroup
of G. If H is definitely unbeatable on Π, then |H| = σ(Π) ≤ σ(G) where for a subset
Σ of G the minimal number of proper subgroups of G needed to cover Σ is denoted
by σ(Σ) (in particular, σp(G) is just σ(Σ) when Σ is the set of all p-elements in G).
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Theorem 4.2. If q = pn ≥ 4 where p is a prime and n is an integer, then

σp(PSL(2, q)) = q + 1.

Proof. Let G = PSL(2, q). Let F be the family of maximal subgroups of G of the form
C(q−1)/d ⋊Cn

p , where d = gcd(2, q − 1). We know that for every Sylow p-subgroup P
of G there exists a unique MP ∈ F containing P and that F = {MP |P ∈ Sylp(G)}.
Thus, |F| = q + 1 and hence it suffices to prove that F is definitely unbeatable
on Π := Gp \ {1}. Clearly, Π ⊆

⋃
P∈Sylp(G) P ⊆

⋃
P∈Sylp(G) MP . Let P and Q

be two different Sylow p-subgroups of G. Then P ∩ Q = 1 and so Π ∩ P ∩ Q ⊆
(P ∩ Q) \ {1} = ∅. Finally, Lemma 4.1 implies that if M ∈ F and S < G, then
|S ∩ Π| ≤ q − 1 = |M ∩ Π|. □

5. Symmetric and alternating groups

In this section we study symmetric and alternating groups. In particular, we prove
Theorem C.

Let p be a prime and let n be an integer at least max{5, p}. Let Sn and An be
the symmetric and alternating group of degree n respectively. Let G be An or Sn,
latter only if p = 2. There is a unique way to write n in the form

∑k
i=0 aip

i where k
and the ai are non-negative integers such that ak ̸= 0 and ai ≤ p− 1 for every i with
0 ≤ i ≤ k. Let j be min0≤i≤k{i | ai ̸= 0}.
For a positive integer m, let Pm be a Sylow p-subgroup of Sm. For a non-negative

integer a, let (Pm)
a denote the direct product of a copies of the group Pm. It is

well-known (see [11]) that Pn is conjugate in Sn to the group
∏k

i=1 (Ppi)
ai .

We state a useful lemma.

Lemma 5.1. Let X be a finite group and p a prime. Let x be a p-element in X with
CX(x) = ⟨x⟩. Let H be a maximal and non-normal subgroup of X such that x ∈ H,
xH = xX ∩H, and |X : H| is not divisible by p. Moreover, assume that whenever S
is a proper subgroup of X then |xX ∩ S| ≤ |xH |. Then σp(X) = |X : H|.

Proof. Let H be the set of all conjugates of H in X. Since NX(H) = H, we have
|H| = |X : H|. Since |X : H| is not divisible by p, the set H is a covering for Gp by
Sylow’s theorem. This gives σp(X) ≤ |X : H|.

We claim that H is definitely unbeatable on xX . Clearly, H covers xX . Since
xH = xX ∩ H and CX(x) = ⟨x⟩, every conjugate of H contains |H|/|⟨x⟩| elements
from xX . Since |H| = |X : H| and |xX | = |X|/|⟨x⟩|, we find that xX ∩H1 ∩H2 = ∅
for any pair of distinct subgroups H1 and H2 from H. The third condition of the
definition is also satisfied since |xX ∩S| ≤ |xH | for any proper subgroup S of X. This
gives σp(X) ≥ |H|, which proves the lemma. □

We will need the following theorem of Jones [21, Theorem 3].
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Theorem 5.2 (Jones [21]). A primitive permutation group H of finite degree n has
a cyclic regular subgroup if and only if one of the following holds.

(i) H = Sn for some n ≥ 2 or H = An for some odd n ≥ 3.
(ii) Cp ≤ H ≤ AGL(1, p) where n = p is prime.
(iii) PGL(d, q) ≤ H ≤ PΓL(d, q) where n = (qd − 1)/(q − 1) for some d ≥ 2.
(iv) H = PSL(2, 11), M11 or M23 where n = 11, 11 or 23 respectively.

Consider the case when n = p. Since n ≥ 5, we also have p ≥ 5 and thus G = An.
Assume first that n = p ̸∈ {11, 23} and n is not of the form (qd − 1)/(q− 1) where

q is a prime power and d ≥ 2 is an integer. Let H be a maximal subgroup of G
containing a p-cycle. According to Theorem 5.2, the group H is AGL(1, p) ∩G. We
have σp(G) = (n− 2)! by Lemma 5.1.
Assume that n = p ∈ {11, 23}. Observe that neither 11 nor 23 has the form

(qd − 1)/(q − 1) where q is a prime power and d ≥ 2 is an integer. Let H be a
maximal subgroup of G containing a p-cycle x. Then H = M11 if n = 11 or H = M23

if n = 23 by Theorem 5.2 and [1]. We have xH = xG ∩ H by [1]. It is clear that
|G : H| is not divisible by p and that CG(x) = ⟨x⟩. Thus σp(G) = |G|/|H| by Lemma
5.1.

Let n = p be of the form (qd − 1)/(q − 1) where q is a prime power and d ≥ 2
is an integer. Since there are (n − 1)!/2 conjugates of a given n-cycle x in G and
every proper subgroup of G contains at most |PΓL(d, q)|/2 conjugates of x for a
certain integer d ≥ 2 and a prime power q with n = (qd − 1)/(q − 1) by Theorem

5.2, we have σp(G) ≥ (n − 1)!/|PΓL(d, q)|. Now |PΓL(d, q)| < qd
2+1. Since qd−1 <

(qd − 1)/(q − 1) = n, we have q(d−1)2 < nlogn where the base of the logarithms is 2.

It follows that |PΓL(d, q)| < qd
2+1 < nlogn+4.

We will need the following estimates obtained from Stirling’s formula.

Lemma 5.3. For any positive integer m, we have (m/e)m < m! ≤ em(m/e)m.

We have σp(G) > nn−logn−5/en by Lemma 5.3.
We are left with the possibility that n ∈ {5, 7, 13}. Let n = 5. The only maximal

subgroup of G = A5 containing an element of order p = 5 is D10. The set of all
conjugates of D10 in G is definitely unbeatable on Gp \ {1}. We get σp(G) = p + 1
in this case. Let n = 7. There are two conjugacy classes of maximal subgroups of
G = A7 containing elements of order p = 7. Both consist of subgroups PSL(2, 7).
The group PSL(2, 7) contains two conjugacy classes of elements of order 7. We get
σp(G) = 15 by Lemma 5.1. Let n = 13. According to [1], there are three conjugacy
classes of maximal subgroups of G = A13 containing elements of order p = 13. These
are two classes consisting of groups PSL(3, 3) and one class consisting of groups
13 : 6. In any case, there are 12!/2 conjugates of a given p-cycle x in G and any
proper subgroup of G contains at most |PSL(3, 3)|/2 conjugates of x. This gives the
bound σp(G) ≥ 12!/|PSL(3, 3)| > 14.
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Let n = pk > p.
We continue with the following proposition.

Proposition 5.4. Let n = pk > p. If p is odd or (p,G) = (2, Sn), then

σp(G) =
n!

(n/p)!pp!
.

Proof. Let H = (Sn/p ≀Sp)∩G be a maximal imprimitive subgroup of G. This contains
a Sylow p-subgroup of G. Let H be the set of all conjugates of H in G. This is a
cover for Gp. Thus σp(G) ≤ |G : H| = n!/(n/p)!pp!.
All n-cycles in Sn are conjugate and there are two conjugacy classes of n-cycles

in An. It is easy to see that all n-cycles in Sa ≀ Sb are conjugate in Sa ≀ Sb for any
integers a > 1 and b > 1 with n = ab. There are two conjugacy classes of n-cycles in
(Sa ≀ Sb) ∩ An.
Let x be an n-cycle in G. All the conditions of Lemma 5.1 are satisfied (with

X = G) with the possible exception of the last. In order to prove the proposition,
it is therefore sufficient to show that whenever S is a proper subgroup of G then
|xG ∩ S| ≤ |xH |.
For the claim, we may assume that S is transitive. If S is imprimitive, then

the bound follows from the proof of [26, Lemma 2.1]. Let S be primitive. Then
S = PΓL(d, q) ∩ G where n = (qd − 1)/(q − 1) for some d ≥ 2 and prime power
q, by Theorem 5.2. We have |S| ≤ n1+logn by [26, Theorem 1.1]. Thus |xG ∩ S| ≤
(2d|S|)/n ≤ n1+logn by [21, Corollary 2]. On the other hand, Lemma 5.3 and the
fact that k ≥ 2 give (

√
n/e)

n
< |H|. If n ≥ 120, then n2+logn < (

√
n/e)

n
and so

|xG ∩ S| < |xH |. We may assume that n ≤ 119. Since n = pk ≥ 5 and k ≥ 2, the
possibilities for n are 8, 16, 32, 64, 9, 27, 81, 25, and 49. None of these integers have
the form (qd − 1)/(q − 1) (where d ≥ 2 and q is a prime power), except 8 and 32.
Let n ∈ {8, 32}. We have |xG ∩ S| ≤ (d|S|)/n by [21, Corollary 2]. The inequalities
(d|S|)/n ≤ |Sn/2 ≀ S2|/n = |H|/n = |xH | can be verified using Gap [19]. □

We continue to assume that p is odd (and G = An), or p = 2 and G = Sn. We
have σp(G) = n!/((n/p)!pp!) by Proposition 5.4. If p = 2, then this clearly tends to

infinity as n → ∞. Let p ≥ 3. An easy computation gives n!/((n/p)!pp!) ≥ pn−
√
n/en,

showing that σp(G) → ∞ as n → ∞. Chebyshev’s theorem (or Bertrand’s postulate)
implies that there is a prime divisor r of n!/((n/p)!pp!) such that r ≥ n/2. We
conclude that σp(G) ≥ n/2 = pk/2.

We continue to have n = pk > p. In order to prove Theorem C, we may assume
that p = 2 and G = An.
Let x be a permutation in G whose disjoint cycle decomposition consists of two

cycles each of length n/2. Since n is a power of 2, the subgroup CG(x) is a 2-group.
Let P be a Sylow 2-subgroup containing CG(x). The group P is contained in a
conjugate of (Sn/2 ≀S2)∩G in G which we denote by H. This is a maximal subgroup
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in G. All hypotheses of Lemma 5.1 are satisfied with the possible exception of the
last. Let S be a proper subgroup of G containing x. We claim that |xG ∩ S| ≤
|H|/n = |xH |, provided that k ≥ 4. The group S is transitive. If S is imprimitive,
then |xG ∩ S| = |S|/n ≤ |H|/n by the proof of [26, Lemma 2.1]. Let S be primitive.
Assume that S is a subgroup of Sm ≀ Sr, with m ≥ 5 and r ≥ 1, containing (Am)

r,
where the action of Sm is on ℓ-element subsets of {1, . . . ,m} and the wreath product
has the product action of degree n =

(
m
ℓ

)r
. Since n is a power of 2, the integer ℓ

must be 1 by Sylvester’s theorem (which is a generalization of Bertrand’s postulate),
stating that if m ≥ 2ℓ then at least one of the numbers m,m − 1, . . . ,m − ℓ + 1
has a prime divisor larger than ℓ, (and thus m is a power of 2). In any case, the
order of every 2-element in S must have order at most mr. On the other hand, x has
order mr/2. This forces r = 1, contradicting the fact that S is a proper subgroup
of G. It follows that |S| < n1+logn = 2k(k+1) by [26, Theorem 1.1]. This is at most

22
k−2 = 2n−2 ≤ ((n/2)!)2/n = |H|/n for k ≥ 5. If k = 4, then the inequality

|S| ≤ |H|/n may be checked directly. If k = 3, then σp(G) = 15 by [1] and a version
of Lemma 5.1. If k = 2, then σp(G) is not defined.

The previous argument together with Lemma 5.1 give the following.

Proposition 5.5. Let n = 2k > 4 and p = 2. If k ≥ 4, then σp(G) =
(

n
n/2

)
/2.

Otherwise, σp(G) = 15.

Clearly, σ2(G) ≥ 3 and σ2(G) → ∞, under the conditions of Proposition 5.5.
We proved (i) of Theorem C and (v) of Theorem C in the special case when n is a

power of p.
We now turn to the case when n ̸= pk. In this case p = 2 (and G ∈ {An, Sn}) or

G = An. Recall that pj is a smallest member in the p-adic expansion of n and pk is
a largest.

We start with an easy upper bound.

Lemma 5.6. If n ̸= pk, then σp(G) ≤
(
n
pj

)
.

Proof. A Sylow p-subgroup Pn of Sn is intransitive and its smallest orbit has size
pj by the definition of j. Thus Pn lies inside a maximal subgroup isomorphic to
Sn−pj × Spj . The set of all maximal subgroups of G conjugate to (Sn−pj × Spj) ∩ G
contains all Sylow p-subgroups of G. The result follows. □

For p odd, let x be an element in G with the property that its disjoint cycle
decomposition has ai cycles of length pi for every i with 0 ≤ i ≤ k. For (p,G) =
(2, Sn) and

∑
i=1 ai odd, let x be again an element in G with the property that its

disjoint cycle decomposition has ai cycles of length 2i for every i with 0 ≤ i ≤ k.
For (p,G) = (2, Sn) and

∑
i=1 ai even, let x be an element of G whose disjoint cycle

decomposition has ai cycles of length 2i for every i with 0 ≤ i ≤ k − 2, and ak−1 + 2
cycles of length 2k−1. For (p,G) = (2, An) and

∑
i=1 ai odd, let x be again an element
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of G whose disjoint cycle decomposition has ai cycles of length 2i for every i with
0 ≤ i ≤ k − 2, and ak−1 + 2 cycles of length 2k−1. For (p,G) = (2, An) and

∑
i=1 ai

even, let x be an element in G with the property that its disjoint cycle decomposition
has ai cycles of length 2i for every i with 0 ≤ i ≤ k. Let bi denote the number of
cycles of length pi in the disjoint cycle decomposition of x for every i with 0 ≤ i ≤ k.
Let Π be the set of all conjugates of x in G.

Lemma 5.7. Let G act on a set Ω of size n. Let S be a subgroup of G which leaves
a nonempty proper subset ∆ of Ω invariant. Assume that S is maximal subject to
this condition. Let x ∈ S. For each nonnegative integer r, let the disjoint cycle
decomposition of x on ∆ have cr cycles of lengths p

r. Then Π∩S is a conjugacy class
in S and |CG(x)| ≤

∏k
r=0

(
br
cr

)
|CS(x)|. Moreover, if each cr is 0 except cj which is 1,

then |CG(x)| = bj|CS(x)|.

Proof. Let y be an element of Π contained in S. This induces a permutation y1 on
∆ and a permutation y2 on Ω \∆ such that y = y1y2 = y2y1, the set of points moved
by y1 is ∆, and the set of points moved by y2 is Ω \∆.

Let p be odd. Since the p-adic decomposition of any positive integer is unique,
the sets ∆ and Ω \ ∆ determine the sets of cycle lengths of the permutations y1
and y2. This conclusion is also true when p = 2 by the construction of x (with the
fact that x has at most three cycles of length 2k−1). It follows that all elements in
Π ∩ (Sym(∆) × Sym(Ω \ ∆)) are conjugate in Sym(∆) × Sym(Ω \ ∆) independent
from p being odd or even. We find that all elements in Π ∩ S are conjugate in S
unless possibly if p = 2 and |∆| ∈ {2, n − 2}. This claim can also be checked when
p = 2 and |∆| ∈ {2, n− 2} using the assumption that n ≥ 5.
The group CG(x) has a normal subgroup C which is a direct product of cyclic

groups such that C and ⟨x⟩ have the same orbits on Ω, and CG(x)/C is embedded in
a direct product of symmetric groups. This subgroup C lies inside S and therefore
in CS(x). For each nonnegative integer r with br ≥ 1, the group CG(x) acts as Sbr

on the set of br cycles of the disjoint cycle decomposition of x of lengths pr (using

the assumption that n ≥ 5). It follows that CS(x) has index at most
∏k

r=0

(
br
cr

)
in

CG(x). If all cr are 0 except cj which is 1, then the index of CS(x) in CG(x) is equal
to bj. □

Let H be an intransitive maximal subgroup of G conjugate to (Sn−pj × Spj) ∩G.

Lemma 5.8. If S is as in Lemma 5.7, then |Π ∩ S| ≤ |Π ∩H|.

Proof. Let S and ∆ be as in Lemma 5.7. Let the size of ∆ be denoted by a.
Assume first that x acts as a cycle of length a = pr on ∆ for some r > j. The

group S is conjugate to (Sn−pr × Spr) ∩G. We have |CG(x)| ≤ br|CS(x)| by Lemma
5.7. It also follows by Lemma 5.7 that |Π ∩ S| = |S|/|CS(x)| ≤ br|S|/|CG(x)| and
|Π ∩H| = |H|/|CH(x)| = bj|H|/|CG(x)|. We claim that |Π ∩ S| ≤ |Π ∩H|, that is,
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br|S| ≤ bj|H|. This latter inequality is equivalent to the inequality

(5.1) br((p
j + 1) · · · pr) ≤ bj((n− pr + 1) · · · (n− pj)),

which is true since both sides of (5.1) have the same number of factors, pj + i ≤
n− pr + i for every i with 1 ≤ i ≤ pr − pj, and brp

r ≤ n− pj.
We may assume that the disjoint cycle decomposition of x on ∆ consists of at least

two cycles. Let a longest cycle have length pm.
Assume that m ≤ k − 1. In this case a =

∑k
r=0 crp

r where the cr are all non-
negative and at most p − 1, we have cr = 0 for each r at least m + 1, and cm ≥ 1.
In order to prove the lemma in this case, it is sufficient to establish the following
statement by Lemma 5.7 and the argument in the previous claim. For this, put
a1 = a and a2 = a1− pm. Let S1 and S2 be subgroups conjugate to (Sa1 ×Sn−a1)∩G
and (Sa2 × Sn−a2) ∩G in G respectively. After rearranging, it would be sufficient to
prove the inequality (

bm
cm

)
(n− a1)!a1! ≤

(
bm

cm − 1

)
(n− a2)!a2!.

This inequality is equivalent to

(5.2)

(
bm
cm

)
(a2 + 1) · · · a1 ≤

(
bm

cm − 1

)
(n− a1 + 1) · · · (n− a2).

There are the same number of factors on both sides of the inequality (5.2). From the
second to the last pairs of factors these are increasing as in the proof above. Take
the last pair of factors together with the first ones. It would be sufficient to establish
the inequality

(
bm
cm

)
a1 ≤

(
bm

cm−1

)
(n− a2), that is, the inequality

(bm − cm + 1)a1 ≤ cm(n− a2).

This in turn is equivalent to (bm + 1)a1 ≤ cm(n + pm). Since n ≥ pk + bmp
m and

a1 ≤ (cm + 1)pm, it would be sufficient to establish the inequality

(bm + 1)(cm + 1)pm ≤ cm(p
k + (bm + 1)pm).

But (bm + 1)pm ≤ pm+1 ≤ cmp
k, since m ≤ k − 1.

We may thus assume that m = k, that is, the longest cycle in the disjoint cycle
decomposition of x on ∆ has length pk. In particular, we may assume that bk ≥ 2
(otherwise we may replace ∆ by Ω \∆ if necessary). After rearranging (5.2), we get

(5.3) (bk − ck + 1)(a2 + 1) · · · a1 ≤ ck(n− a1 + 1) · · · (n− a2),

where a1 and a2 are defined as before. After substituting a2 = a1 − pk in (5.3) and
using the inequalities bk − ck + 1 < p and ck ≥ 1, we see that in order to prove the
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inequality (5.3), it is sufficient to establish the inequality

(5.4) p− 1 ≤
pk∏
i=1

n− a1 + i

a1 − pk + i
.

The inequality (5.4) would follow from the statement

(p− 1)1/p
k

(a1 − pk + i) ≤ n− a1 + i

for every i such that 1 ≤ i ≤ pk. Since i ≤ pk and (p− 1)1/p
k − 1 ≥ 0, this statement

would follow from the inequality

(5.5) (1 + (p− 1)1/p
k

) · a1 ≤ n+ pk.

We may assume that a1 ≤ n/2. After replacing a1 by n/2 in (5.5) and rearranging,
we get

(5.6) ((p− 1)1/p
k − 1) · n

2
≤ pk.

Since n ≤ pk+1, inequality (5.6) would follow from the inequality p − 1 ≤ (1 + 2
p
)p

k
.

But this is true for every integer k ≥ 2 and prime p.
We may finally assume that m = k = 1. We have n = b1p + b0 and a = c1p + c0.

Assume first that b0 ≥ 1. From the beginning of this proof and Lemma 5.7, it is
sufficient to establish the inequality(

b0
c0

)(
b1
c1

)
a!(n− a)! ≤ b0(n− 1)!,

which, after a rearrangement, is

(5.7)

(
b0
c0

)(
b1
c1

)
· 2 · 3 · . . . · a ≤ b0 · (n− a+ 1) · (n− a+ 2) · . . . · (n− 1).

Since both b0 and b1 are at most p−1, we have
(
b0
c0

)(
b1
c1

)
≤ 22p−2. In order to establish

(5.7), it would be sufficient to see

22p−2 ≤ b0 · 2a−2 · n− 1

a
,

assuming that a ≤ n/2. This inequality is true if c1 ≥ 2. We may thus assume that
c1 = 1 and a ≤ n/2. From the first half of the proof of this lemma we may also
assume that c0 ≥ 1. In this case a = p + c0 and n = b1p + b0. Assume first that
b0 ≥ 2. In order to establish (5.7), it would be sufficient to see

2b0 · b1 ≤ b0 · 2a−2 ·
(n− 1

a

)
.

This follows from noting that 2b0 ≤ 2a−2 and that b1a ≤ b0(n − 1). Let b0 = 1. In
this case (5.7) follows from b1 ≤ p− 1 ≤ 2p−1 ≤ b0 · 2a−2 · ((n− 1)/a).
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We are left with the case when m = k = 1 and b0 = 0, that is, when n = b1p and
a = c1p. Let us assume that 2 ≤ c1 ≤ b1/2, that is, 2p ≤ a ≤ n/2. We would like to
establish the inequality (

b1
c1

)
a!(n− a)! ≤ b1p!(n− p)!,

which becomes

(5.8)

(
b1
c1

)
·(p+1)·(p+2)·. . .·(c1p) ≤ b1·((b1−c1)p+1)·((b1−c1)p+2)·. . .·((b1−1)p).

There are (c1 − 1)p+ 1 factors on both sides of (5.8). If c1 ≥ 3, then(
b1
c1

)
≤ 2b1 ≤ b1 · (3/2)(c1−1)p

and so (5.8) follows. We may now assume that c1 = 2. In this case (5.8) becomes

(b1− 1) · (p+1) · (p+2) · . . . · (2p) ≤ 2 · ((b1− 2)p+1) · ((b1− 2)p+2) · . . . · ((b1− 1)p).

But this follows from the inequality b1 − 1 ≤ p− 2 ≤ 2 · (3/2)p. □

We continue to assume that H is an intransitive maximal subgroup of G conjugate
to (Sn−pj × Spj) ∩G.

Proposition 5.9. If |Π ∩ S| ≤ |Π ∩ H| for any proper transitive subgroup S of G
and n ̸= pk, then

1

bj

(
n

pj

)
≤ σp(G) ≤

(
n

pj

)
.

Proof. Let n ̸= pk. The upper bound follows from Lemma 5.6. We have |Π ∩ S| ≤
|Π∩H| for any intransitive subgroup S of G by Lemma 5.8. If |Π∩S| ≤ |Π∩H| for
any proper subgroup S of G, then σp(G) ≥ |Π|/|Π ∩H|. On the other hand,

|Π|
|Π ∩H|

=
|CH(x)|
|CG(x)|

|G|
|H|

=
1

bj

(
n

pj

)
by Lemma 5.7 and its proof. □

Let S be a maximal imprimitive subgroup of G. This has the form S = (Sa ≀Sb)∩G
where a and b are integers at least 2 such that n = ab. Assume that b < p. In this
case Π∩S = Π∩(Sa)

b∩G. Since (Sa)
b∩G is intransitive, we see that |Π∩S| ≤ |Π∩H|

from Lemma 5.8.
Let n ≤ 2p− 1. Since n ≥ 5, the prime p must be odd and G = An.
We will prove the following.

Proposition 5.10. If p+ 1 ≤ n ≤ 2p− 1 (and n ≥ 5), then σp(G) = p+ 1.
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Proof. Note that G = An. Clearly, Gp is a union of p + 1 point-stabilizers H in G.
Thus σp(G) ≤ p+1. The statement now follows from Guralnick’s proof for a general
version of Theorem B (holding for all finite groups). Since this argument will appear
elsewhere, we proceed to prove the inequality σp(G) ≥ p+ 1 in a different way.
As before, let H be an intransitive maximal subgroup of G conjugate to (Sn−1 ×

S1)∩G, and let Π be the conjugacy class in G of x. Observe that if S is an intransitive
subgroup of G intersecting Π non-trivially, then there is a conjugate Hg of H in G
with g ∈ G such that Π ∩ S ⊆ Π ∩ H. This means that in finding a covering H
of Gp, consisting of proper subgroup of G, with |H| minimal, we may replace any
intransitive subgroup in H by a conjugate of H.
Let H be a cover for Gp, with smallest possible size, consisting of proper subgroups

of G with the property that if S ∈ H is intransitive then S is conjugate in G to H.
We may also assume that H consists of maximal subgroup in G.

If S = (Sa ≀Sb)∩G is a maximal imprimitive subgroup of G, then b < p and a < p
and so Π ∩ S = ∅. It follows that H does not contain imprimitive subgroups of G.

Let S be a primitive proper subgroup of G such that S intersects Π non-trivially.
The group S does not contain An. A theorem of Jordan [10, Theorem 3.3E] implies
that n = p + 1 or n = p + 2. In the latter case S is 3-transitive by another theorem
of Jordan [10, Theorem 7.4A (ii)].

If n ≥ p + 3, then H consists only of conjugates of H and it is easy to see that
|H| > p.
Let n = p+2. Assume that H contains p+1− r conjugates of H for some positive

integer r. Let H1, . . . , Hp+1−r be the list of conjugates of H which are contained

in H. There are (p − 1)!
(
r+1
2

)
elements of Π not contained in

⋃p+1−r
i=1 Hi. By the

above, there must be at most r proper primitive subgroups of G each contained in
H such that there union contains these (p − 1)!

(
r+1
2

)
elements of Π. In particular,

(p − 1)!
(
r+1
2

)
≤ rm where m is the maximal size of a proper primitive subgroup of

G. This gives 2((n− 3)/e)n−3 < 2(n− 3)! = (p− 1)!(r+1) ≤ 2m ≤ 2nn/2 by Lemma
5.3 and a result of Bochert [2]. This forces n ∈ {5, 7, 9, 13, 15}.
Recall that S is 3-transitive (and S does not contain An). Since n ∈ {5, 7, 9, 13, 15},

we must have n = 9, may assume that S = PΓL(2, 8), and |Π ∩ S| = 216, by Gap
[19]. This gives 6!(r(r + 1)/2) = (p− 1)!

(
r+1
2

)
≤ 216r, which is a contradiction.

Finally, let n = p + 1. It is sufficient to see that all the conditions of Lemma 5.1
are satisfied with X = G. Only the last condition is to be checked. Let S be a proper
subgroup of G. We would like to show that |xG∩S| ≤ (p−1)!/2 = |xH |. This is clear
if S is conjugate to H. If S is not primitive and not conjugate to H, then xG∩S = ∅.
Assume that S is primitive. Let K be a point-stabilizer. There are the following
possibilities for K according to Theorem 5.2. The group K could be a subgroup of
AGL(1, p). In this case |xG∩S| = (p+1)(p−1)/2 ≤ (p−1)!/2. The prime p could be
11 and K ≤ M11 (since PSL(2, 11) is contained in M11 by [1]), or the prime p could
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be 23 and K = M23. We have seen that in this case |xG ∩ S| = (p + 1)|K|/p, which
is smaller than (p − 1)!/2. Finally, the group K could be a subgroup of PΓL(d, q)
where p = (qd − 1)/(q − 1) for some integer d ≥ 2 and some prime power q. First let
p ≥ 17. In the paragraph after Lemma 5.3 we saw that (p− 1)!/|PΓL(d, q)| ≥ p+ 1.
From this we deduce that

|xG ∩ S| ≤ (p+ 1)|K|/2 ≤ (p+ 1)|PΓL(d, q)|/2 ≤ (p− 1)!/2.

Finally, let p ∈ {5, 7, 13}. In this case the inequality |xG ∩ S| ≤ (p − 1)!/2 may be
checked by Gap [19]. □

This proves (ii) of Theorem C.
Let n < p2. Since n ≥ 5, the prime p is odd and G = An. We will prove the

following.

Lemma 5.11. If 2p ≤ n < p2 and n > 316, then |Π ∩ S| ≤ |Π ∩H| for any proper
transitive subgroup S of G.

Proof. Write n in the form b1p + b0 where 2 ≤ b1 ≤ p − 1 and 0 ≤ b0 ≤ p − 1. The
disjoint cycle decomposition of x consists of b1 cycles of length p and b0 fixed points.
If b0 ≥ 1, then

(5.9) |Π ∩H| = (n− 1)!

pb1b1!(b0 − 1)!
,

while if b0 = 0, then

(5.10) |Π ∩H| = p!(n− p)!

pb1(b1 − 1)!
.

If b0 ≥ 1, then (5.3) gives

(n− 1)!

pb1b1!(b0 − 1)!
> e−n nn−1

(pb1)
b1 · b0b0−1

> e−n nn−1

nb1 · nb0−1
= e−nnn−b1−b0

and so (5.9) provides

(5.11) |Π ∩H| > e−(b1+1)pn(b1−1)p.

If b0 = 0, then (5.3) gives

p!(n− p)!

pb1(b1 − 1)!
>

(n− p)!

pb1
=

((1− 1/b1)n)!

pb1
>

((1− 1/b1)n

e

)(1−1/b1)b1p

· 1

pb1

and so (5.10) provides

(5.12) |Π ∩H| >
((1− 1/b1)n

e

)(1−1/b1)b1p

· 1

pb1
.

We may assume that S is a maximal subgroup in G. Assume first that S is
conjugate to (Sa ≀ Sb)∩G where a and b are integers at least 2 with ab = n. If b < p,
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then |Π∩S| ≤ |Π∩H| by the argument before Proposition 5.10. Assume that b ≥ p.
It follows that a < p. Let Σ be the system of imprimitivity for S. The action of any
elements in Π∩S on Σ has c fixed points, for some integer c, and moves b− c blocks
in cycles of lengths p. It follows that b0 = ac and b1p = a(b − c). Since b1 ≥ 2, all
elements conjugate to x in Sn belong to Π. All elements in Π∩ (Sa ≀ Sb) = Π∩ S are
conjugate in Sa ≀ Sb. Since there is always an odd element in Sa ≀ Sb centralizing x,
we find that Π ∩ S is a single conjugacy class in S. We find that

(5.13) |Π ∩ S| = a!b · b!
a!c · c! · a!(b−c)/p · ((b− c)/p)! · p(b−c)/p

≤ (a!(1−(1/p)) · b)(b−c)
.

The right-hand side of (5.13) is less than (aa · b)(b−c) = (a · b1/a)a(b−c)
< (a · n1/a)

b1p
.

The derivative of the function f(x) = x · n1/x is f ′(x) = n1/x(x− lnn)/x. It follows
that the maximum of f(x) in the interval [2,

√
n] is max{2

√
n, n1/

√
n
√
n} < 3

√
n.

These give

(5.14) |Π ∩ S| ≤ 3b1p · nb1p/2.

Let b0 ≥ 1. If b1 ≥ 3, then, comparing the bounds in (5.11) and (5.14), we see that
|Π ∩ S| ≤ |Π ∩H|, provided that n > 314. Let b1 = 2. In this case (5.9) and (5.14)
give

|Π ∩H| = (n− 1)!

2p2(b0 − 1)!
≥ (2p)!

2p2
≥ 32p · np ≥ |Π ∩ S|,

provided that n ≥ 1500.
Let b0 = 0. If b1 ≥ 3, then, comparing the bounds in (5.12) and (5.14), we see that

|Π ∩ S| ≤ |Π ∩H|, provided that n > 316. Let b1 = 2. In this case (5.10), (5.3), and
(5.14) give

|Π ∩H| = p!2

p2
>

(p
e

)2p 1

p2
≥ 32p · (2p)p ≥ |Π ∩ S|,

provided that n = 2p > 37.
From now on we may assume that S is a proper primitive subgroup of G. We have

(5.15) |Π ∩ S| < |S| ≤ 50 · n
√
n < 50 · np

by [26, Corollary 1.1].
Let b0 ≥ 1. If b1 ≥ 3, then (5.15) and (5.11) give

|Π ∩ S| < 50 · np < e−(b1+1)pn(b1−1)p < |Π ∩H|,

provided that n ≥ 38. If b1 = 2, then (5.15) and (5.9) give

|Π ∩ S| < 50 · np <
(2p)!

2p2
< |Π ∩H|,

provided that n ≥ 37.
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Finally, let b0 = 0. If b1 ≥ 3, then (5.15) and (5.12) give

|Π ∩ S| < 50 · n
√
n <

((2/3)n
e

)(2/3)n

· 1

pn/p
< |Π ∩H|,

provided that n ≥ 36. If b1 = 2, then (5.15) and (5.10) give

|Π ∩ S| < 50 · (2p)
√
2p <

(p!)2

p2
< |Π ∩H|,

provided that n ≥ 35. □

Let n ≥ p2. In this case G ∈ {An, Sn}.

Lemma 5.12. If n ≥ max{p2, 311} and n ̸= pk, then |Π ∩ S| ≤ |Π ∩ H| for every
proper transitive subgroup S of G.

Proof. We first present an upper bound for |CG(x)|. Recall that n =
∑k

i=j bip
i where

k ≥ 2 and where each bi satisfies 0 ≤ bi ≤ p − 1 unless possibly if p = 2 when
0 ≤ bk−1 ≤ 3. We have

|CSn(x)| ≤
( k∏

i=j

bi!
)( k∏

i=j

pibi
)
≤ 3

2
·
( k∏

i=j

pp
)( k∏

i=j

pibi
)
≤ 3

2
· pk(k+3)p/2.

It follows that

(5.16) |Π ∩H| ≥ (n− pj)!(pj)!

3 · pk(k+3)p/2
≥ n!

3 · 2n · pk(k+3)p/2
≥ n!

3 · 2n · n(5/2)
√
n
.

If S is primitive, then

|Π ∩ S| < |S| ≤ 50 · n
√
n ≤ n!

3 · 2n · n(5/2)
√
n
≤ |Π ∩H|,

by [26, Corollary 1.1] and (5.16), provided that n ≥ 311.
Let S be an imprimitive subgroup of G. We may assume that it is maximal, that

is, it is the group (Sa ≀Sb)∩G where a and b are integers at least 2 with ab = n. Thus

|Π ∩ S| < |S| ≤ a!b · b! ≤ eb+1
(a
e

)n(b
e

)b

≤ e1−n · an · bb = e1−n · nn · bb−n,

by Lemma 5.3. This, (5.16), and Lemma 5.3 give

|Π ∩ S| < e1−n · nn · bb−n ≤ nn

3 · 2n · en · n(5/2)
√
n
<

n!

3 · 2n · n(5/2)
√
n
≤ |Π ∩H|,

provided that b ≥ 3 and n ≥ 38.
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Let b = 2. If p is odd, then we argue as in the lines preceding Proposition 5.10.
Let p = 2. We have

|CSn(x)| ≤ 6 ·
( k∏

i=j

2ibi
)
= 6 · 2

∑k
i=j ibi ≤ 3

2
· 2k(k+3)/2 ≤ 3

2
· n(log2 n+3)/2,

since n > 2k > 4. It follows that

(5.17) |Π ∩H| ≥ (n− 2j)!(2j)!

3 · n(log2 n+3)/2
.

On the other hand, |Π ∩ S| < |S| ≤ 2(n/2)!2. We have |Π ∩ S| ≤ |Π ∩ H| if the
inequality

(5.18) 6 · (n/2)!2 · n(log2 n+3)/2 ≤ (n− 2j)!(2j)!

holds by (5.17). After rearranging (5.18), we get

(5.19) 6 · n(log2 n+3)/2 · (2j + 1) · · · (n/2) ≤ ((n/2) + 1) · · · (n− 2j).

Observe that
(n/2) + i

2j + i
≥ 4

3
for every positive integer i at most (n/2)− 2j. Observe also that (n/2)− 2j ≥ n/6.
From these it follows that (5.19) is satisfied provided that

(5.20) 6 · n(log2 n+3)/2 ≤
(4
3

)n/6

.

It is easy to see that (5.20) holds if n ≥ 210. □

We summarize the last results in this section in the following proposition.

Proposition 5.13. If n ≥ 2p, n ̸= pk, and n > 316, then

1

bj

(
n

pj

)
≤ σp(G) ≤

(
n

pj

)
.

Proof. This follows from Proposition 5.9 and Lemmas 5.11 and 5.12. □

We are now in the position to prove Theorem C.

Proof of Theorem C. This follows from the discussion above in the case when n = pk.
We have σp(G) = p + 1 when p + 1 ≤ n < 2p by Proposition 5.10. Let n > 316. In
the remaining cases

(5.21) σp(G) ≥ 1

bj

(
n

pj

)
by Proposition 5.13. Since 1 ≤ pj ≤ n/3 and bj ≤ max{3, p− 1}, the right-hand side
of (5.21) goes to infinity as n → ∞ (for every fixed p). □
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To conclude this section we investigate the relationship between σp(G) and σ(G).

Corollary 5.14. Let p be a prime. The following are true.

(i) If n runs over the set of positive integers not of the form pk, then both the
sequence σp(An)/σ(An) and the sequence σ2(Sn)/σ(Sn) tend to 0.

(ii) The sequence σ2(S2k)/σ(S2k) tends to 1 as k grows.
(iii) The sequence σ2(A2k)/σ(A2k) tends to 0 as k grows.
(iv) If p > 2, then the sequence σp(Apk)/σ(Apk) tends to 1 as k grows.

Proof. Let n be different from pk, that is, different from a power of p. In this case
pj < pk. We have σp(Sn) ≤

(
n
pj

)
and σp(An) ≤

(
n
pj

)
by Lemma 5.6. In the former

case pj ≤ n/3. Every binomial coefficient of n is at most c ·2n/
√
n for some universal

constant c, by Stirling’s approximation. If n > 9, then σ(An) ≥ 2n−2 by [27, Theorem
1.1]. This proves the first statement of (i). For the proof of the second statement of
(i) we assume that p = 2. If n > 9 is odd, then σ(Sn) = 2n−1 by [27, Theorem 1.1],
while if n is even and tends to infinity then σ(Sn) ∼

(
n

n/2

)
/2 by [27, Theorem 3.2].

The observation pj ≤ n/3 together with the sentence after [27, Theorem 3.2] now
imply (i).

Let p = 2 and n = 2k > 16. Both σ2(Sn) and σ2(An) are equal to
(

n
n/2

)
/2

by Proposition 5.5. Statement (ii) follows from the previously mentioned fact that
σ(Sn) ∼

(
n

n/2

)
/2. Statement (iii) follows from the facts that

(
n

n/2

)
/2 ≤ c · 2n/

√
n and

σ(An) ≥ 2n−2.
We turn to the proof of (iv). Let us assume that n = pk > p for p > 2. We have

σp(An) =
n!

p!((n/p)!)p

by Proposition 5.4. Let us denote this formula by h(n). It follows from [27, Theorem
4.2] that h(n) < σ(An) < h(n)+g(n) where g(n) is a function with the property that
g(n)/h(n) tends to 0. Thus

h(n)

h(n) + g(n)
<

σp(An)

σ(An)
< 1

and the left-hand side of this inequality tends to 1. □

6. Concluding remarks

The following theorem is a consequence of Theorems C and D of [6] and a form of
this was mentioned in the Introduction.

Theorem 6.1. Let G be a group generated by its p-elements. If x1, . . . , xp ∈ Gp −
Z(Op(G)), then Gp ̸⊆ CG(x1) ∪ · · · ∪ CG(xp).

As mentioned in the Introduction, our results have some consequences on the
noncommuting graph.
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Corollary 6.2. Let G be a p-solvable group. Let x1, . . . , xp ∈ G−Z(G). Then there
exists y ∈ Gp such that y is joined to x1, . . . , xp. In particular, the induced subgraph
by the noncommuting graph of G on Gp − Z(G) has diameter at most 2.

Proof. There exists y ∈ Gp − (CG(x1) ∪ · · · ∪ CG(xp)) by Theorem B. The result
follows. □

Corollary 6.3. Let G be a group generated by its p-elements. Let ∆ be the in-
duced subgraph of the noncommuting graph of G on Gp − Z(Op(G)). Then for any
x1, . . . , xp ∈ Gp − Z(Op(G)) there exists y ∈ Gp − Z(Op(G)) such that y is joined to
xi for every i. In particular, ∆ is connected with diameter ≤ 2.

Proof. There exists y ∈ Gp − (CG(x1) ∪ · · · ∪ CG(xp)) by Theorem 6.1. The result
follows. □

It is not clear if we really need to remove the elements from Z(Op(G)) both in
Theorem 6.1 and in Corollary 6.3.

Our work in this paper suggests that perhaps the following question has an affir-
mative answer.

Question 6.4. Let G be a group generated by its p-elements and let p be a prime.
Let σp(G) = n < ∞. Does there exist {H1, . . . Hn} cover of Gp such that every Hi

contains a Sylow p-subgroup of G?

We do not even know an example of a group G with a covering {H1, . . . , Hn} of
Gp of size σp(G) = n such that |Hi| < |G|p for some i.
Another problem that seems interesting is the following. Sambale and Tărnăuceanu

proved in [32] that there exists c = c(n) > 0 such that if a finite group G is not covered
by {H1, . . . , Hn} then the proportion of elements of G in G \ (H1 ∪ · · · ∪ Hn) is at
least c. (Actually, they proved stronger and more precise results.) The following is
the p-version of this.

Question 6.5. Does there exist c = c(n) > 0 (possibly depending on p too) such that
if G is a finite group and Gp is not covered by H1, . . . , Hn < G then |Gp \ (H1 ∪ · · · ∪
Hn)|/|Gp| ≥ c?
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[13] P. E. Holmes, A. Maróti, Pairwise generating and covering sporadic simple groups. J. Algebra

324 (2010), no. 1, 25–35.
[14] M. Hall, On the number of Sylow subgroups in a finite group. J. Algebra 7 (1967), 363–371.
[15] P. Hall, A note on soluble groups. J. London Math. Soc. 3 (1928),98–105.
[16] B. Huppert, Endliche Gruppen. I. Die Grundlehren der Mathematischen Wissenschaften, Band

134 Springer-Verlag, Berlin-New York 1967.
[17] F. Fumagalli, M. Garonzi, On the primary coverings of finite solvable and symmetric groups.

J. Group Theory 24 (2021), no. 6, 1189–1211.
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[28] A. Maróti, J. Mart́ınez, A. Moretó, Covering the set of p-elements in finite groups by Sylow

p-subgroups. Submitted for publication.
[29] G. Navarro, Number of Sylow subgroups in p-solvable groups. Proc. Amer. Math. Soc. 131

(2003), 3019–3020.
[30] B. H. Neumann, Groups covered by finitely many cosets. Publ. Math. Debrecen 3 (1954), 227–

242.
[31] L. Pyber, The number of pairwise noncommuting elements and the index of the centre in a

finite group. J. London Math. Soc. (2) 35 (1987), no. 2, 287–295.
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