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Abstract

A finite set H in Rd is called an acute set if any angle determined by three
points of H is acute. We examine the maximal cardinality α(d) of a d-dimensional
acute set. The exact value of α(d) is known only for d ≤ 3. For each d ≥ 4 we
improve on the best known lower bound for α(d). We present different approaches.
On one hand, we give a probabilistic proof that α(d) > c · 1.2d. (This improves a
random construction given by Erdős and Füredi.) On the other hand, we give an
almost exponential constructive example which outdoes the random construction in
low dimension (d ≤ 250). Both approaches use the small dimensional examples that
we found partly by hand (d = 4, 5), partly by computer (6 ≤ d ≤ 10).

We also investigate the following variant of the above problem: what is the max-
imal size κ(d) of a d-dimensional cubic acute set (that is, an acute set contained
in the vertex set of a d-dimensional hypercube). We give an almost exponential
constructive lower bound, and we improve on the best known upper bound.
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1 Introduction

Around 1950 Erdős conjectured that given more than 2d points in Rd there must be three
of them determining an obtuse angle. The vertices of the d-dimensional cube show that 2d

points exist with all angles at most π/2.
In 1962 Danzer and Grünbaum proved this conjecture [7] (their proof can also be found

in [2]). They posed the following question in the same paper: what is the maximal number
of points in Rd such that all angles determined are acute? (In other words, this time we
want to exclude right angles as well as obtuse angles.) A set of such points will be called
an acute set in the sequel.
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The exclusion of right angles seemed to decrease the maximal number of points dra-
matically: they could only give 2d − 1 points, and they conjectured that this is the best
possible. However, this was only proved for d = 2, 3. (For the non-trivial case d = 3, see
Croft [6], Schütte [10], Grünbaum [9].)

Then in 1983 Erdős and Füredi disproved the conjecture of Danzer and Grünbaum.
They used the probabilistic method to prove the existence of a d-dimensional acute set
of cardinality exponential in d. Their idea was to choose random points from the vertex
set of the d-dimensional unit cube, that is {0, 1}d. We denote the maximal size of acute
sets in Rd and in {0, 1}d by α(d) and κ(d), respectively; clearly α(d) ≥ κ(d). The random
construction of Erdős and Füredi implied the following lower bound for κ(d) (thus for α(d)
as well)

κ(d) >
1

2

(
2√
3

)d
> 0.5 · 1.154d. (1)

In their paper they claimed (without proof) that “a bit more complicated random process

gives” κ(d) >
(

4
√

2− o(1)
)d

> 1.189d. The best (published) lower bound both for α(d)
and for κ(d) (for large values of d) is due to Ackerman and Ben-Zwi from 2009 [1]. They
improved (1) with a factor

√
d:

α(d) ≥ κ(d) > c
√
d

(
2√
3

)d
. (2)

In Section 2 we modify the random construction of Erdős and Füredi to get

α(d) > c

(
10

√
144

23

)d

> c · 1.2d. (3)

A different approach can be found in Section 3 where we recursively construct acute sets.
These constructions outdo (3) up to dimension 250. In Theorem 3.10 we will show that this
constructive lower bound is almost exponential in the following sense: given any positive
integer r, for infinitely many values of d we have a d-dimensional acute set of cardinality
at least

exp(d/ log log · · · log︸ ︷︷ ︸
r

(d)).

See Table 2 in the Appendix for the best known lower bounds of α(d) (d ≤ 84). These
bounds are new results except for d ≤ 3.

Both the probabilistic and the constructive approach use small dimensional acute sets
as building blocks. So it is crucial for us to construct small dimensional acute sets of large
cardinality. In Section 4 we present an acute set of 8 points in R4 and an acute set of 12
points in R5 (disproving the conjecture of Danzer and Grünbaum for d ≥ 4 already). We
used computer to find acute sets in dimension 6 ≤ d ≤ 10, see Section 4. Table 1 shows our
results compared to the construction of Danzer and Grünbaum (2d− 1) and the examples
found by Bevan using computer.

As far as κ(d) is concerned, in large dimension (2) is still the best known lower bound.
Bevan used computer to determine the exact values of κ(d) for d ≤ 9 [4]. He also gave a
recursive construction improving upon the random constructions in low dimension. The
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Table 1: Results for α(d) (d ≤ 10)

dim(d) D,G [7] Bevan[4] Our result

2 = 3
3 = 5
4 ≥ 7 ≥ 8
5 ≥ 9 ≥ 12
6 ≥ 11 ≥ 16
7 ≥ 13 ≥ 14 ≥ 20
8 ≥ 15 ≥ 16 ≥ 23
9 ≥ 17 ≥ 19 ≥ 27
10 ≥ 19 ≥ 23 ≥ 31

constructive approach of Section 3 yields a lower bound not only for α(d) but also for κ(d),
which further improves the bounds of Bevan in low dimension. Table 3 in the Appendix
shows the best known lower bounds for κ(d) (d ≤ 82). These bounds are new results except
for d ≤ 12 and d = 27.

The following notion plays an important role in both approaches.

Definition 1.1. A triple A,B,C of three points in Rd will be called bad if for each integer
1 ≤ i ≤ d the i-th coordinate of B equals the i-th coordinate of A or C.

We denote by κn(d) the maximal size of a set S ⊂ {0, 1, . . . , n − 1}d that contains no
bad triples. It is easy to see that κ2(d) = κ(d) but our main motivation to investigate κn(d)
is that we can use sets without bad triples to construct acute sets recursively (see Lemma
2.2). We give an upper bound for κn(d) (Theorem 3.1) and two different lower bounds
(Theorem 2.3 and 3.5). In the special case n = 2 the upper bound yields κ(d) ≤ 3(

√
2)d−1

which improves the bound
√

2
(√

3
)d

given by Erdős and Füredi in [8]. Note that for α(d)
the best known upper bound is 2d − 1.

Although we can make no contribution to it, we mention that there is an affine variant
of this problem. A finite set H in Rd is called strictly antipodal if for any two distinct points
P,Q ∈ H there exist two parallel hyperplanes, one through P and the other through Q,
such that all other points of H lie strictly between them. Let α′(d) denote the maximal
cardinality of a d-dimensional strictly antipodal set. An acute set is strictly antipodal,
thus α′(d) ≥ α(d). For α′(d) Talata gave the following constructive lower bound [11]:

α′(d) ≥ 4
√

5
d
/4 > 0.25 · 1.495d.

A weaker result (also due to Talata) can be found in [5, Lemma 9.11.2].

2 The probabilistic approach

As we mentioned in the introduction, in 1983 Erdős and Füredi proved the existence of
acute sets of exponential cardinality [8]. Since then their proof has become a well-known
example to demonstrate the probabilistic method. In this section we use similar arguments
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to prove a better lower bound for α(d). The following problem plays a key role in our
approach.

Question 2.1. What is the maximal cardinality κn(d) of a set S ⊂ {0, 1, . . . , n− 1}d that
contains no bad triples? (Recall Definition 1.1.)

In the case n = 2, given three distinct points A,B,C ∈ {0, 1}d, ∠ABC = π/2 holds if
and only if A,B,C is a bad triple, otherwise ∠ABC is acute. So a set S ⊂ {0, 1}d contains
no bad triples if and only if S is an acute set, thus κ2(d) = κ(d).

If n > 2, then a triple being bad still implies that the angle determined by the triple is
π/2 but we can get right angles from good triples as well, moreover, we can even get obtuse
angles. So for n > 2 the above problem is not directly related to acute sets. However, the
following simple lemma shows how one can use sets without bad triples to construct acute
sets recursively.

Lemma 2.2. Suppose that H = {h0, h1, . . . , hn−1} ⊂ Rm is an acute set of cardinality n.
If S ⊂ {0, 1, . . . , n− 1}d contains no bad triples, then

HS def
= {(hi1 , hi2 , . . . , hid) : (i1, i2, . . . , id) ∈ S} ⊂ H ×H× . . .×H︸ ︷︷ ︸

d

⊂ Rmd

is also an acute set. Consequently,

α(md) ≥ κα(m)(d) and κ(md) ≥ κκ(m)(d). (4)

Proof. Take three distinct points of S:

i = (i1, i2, . . . , id); j = (j1, j2, . . . , jd); k = (k1, k2, . . . , kd),

and the corresponding points in HS:

hi = (hi1 , hi2 , . . . , hid) ; hj = (hj1 , hj2 , . . . , hjd) ; hk = (hk1 , hk2 , . . . , hkd) .

We show that ∠hihjhk is acute by proving that the scalar product

〈hi − hj, hk − hj〉 =
d∑
r=1

〈hir − hjr , hkr − hjr〉

is positive. Since H is an acute set, the summands on the right-hand side are positive with
the exception of those where jr equals ir or kr, in which case the r-th summand is 0. This
cannot happen for each r though, else i, j, k would be a bad triple in S.

To prove (4) we set |H| = n = α(m) and |S| = κn(d) = κα(m)(d). Then α(md) ≥
|HS| = |S| = κα(m)(d). A similar argument works for κ(md). (Note that if H ⊂ {0, 1}m,
then HS ⊂ {0, 1}md.)

In view of the above lemma, it would be useful to construct large sets without bad
triples. One possibility is using the probabilistic method. The next theorem is a general-
ization of the original random construction of Erdős and Füredi.
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Theorem 2.3.

κn(d) >
1

2

(
n2

2n− 1

) d
2

>
1

2

(n
2

) d
2

=

(
1

2

) d+2
2

n
d
2 .

Proof. For a positive integer m, we take 2m (independent and uniformly distributed) ran-
dom points in {0, 1, . . . , n− 1}d: A1, A2, . . . , A2m. What is the probability that the triple
A1, A2, A3 is bad? For a fixed i, the probability that the i-th coordinate of A2 is equal to
the i-th coordinate of A1 or A3 is clearly (2n− 1)/n2. These events are independent so the
probability that this holds for every i (that is to say A1, A2, A3 is a bad triple) is

p =

(
2n− 1

n2

)d
.

We get the same probability for all triples, thus the expected value of the number of bad
triples is

3

(
2m

3

)
p =

2m(2m− 1)(2m− 2)

2
p < 4m3p ≤ m, where we set m =

⌊
1

2
√
p

⌋
.

Consequently, the 2m random points determine less than m bad triples with positive
probability. Now we take out one point from each bad triple. Then the remaining at least
m+ 1 points obviously contain no bad triples. So we have proved that there exist

m+ 1 >
1

2
√
p

=
1

2

(√
n2

2n− 1

)d

points in {0, 1}d without a bad triple. (Note that the original 2m random points might
contain duplicated points. However, a triple of the form A,A,B is always bad, thus the
final (at least) m+ 1 points contain no duplicated points.)

Combining Lemma 2.2 and Theorem 2.3 we readily get the following.

Corollary 2.4. Suppose that we have an m-dimensional acute set of size n. Then for any
positive integer t

α(mt) >
1

2

(√
n2

2n− 1

)t

,

which yields the following lower bound in general dimension:

α(d) ≥ α

(
m

⌊
d

m

⌋)
>

1

2

(
2m

√
n2

2n− 1

)mb d
mc
≥ c

(
2m

√
n2

2n− 1

)d

.

Using this corollary with m = 5 and n = 12 (see Example 4.2 for a 5-dimensional acute
set with 12 points) we obtain the following.

Theorem 2.5.

α(d) > c

(
10

√
144

23

)d

> c · 1.2d,

that is, there exist at least c · 1.2d points in Rd such that any angle determined by three of
these points is acute. (If d is divisible by 5, then c can be chosen to be 1/2, for general d
we need to use a somewhat smaller c.)
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Remark 2.6. We remark that one can improve the above result with a factor
√
d by using

the method suggested by Ackerman and Ben-Zwi in [1].

Remark 2.7. We could have applied Corollary 2.4 with any specific acute set. The larger
the value 2m

√
n2/(2n− 1) is, the better the lower bound we obtain. For m = 1, 2, 3 the

largest values of n are known.

m = 1
n = 2

}
2

√
4

3
≈ 1.154

m = 2
n = 3

}
4

√
9

5
≈ 1.158

m = 3
n = 5

}
6

√
25

9
≈ 1.185

We will construct small dimensional acute sets in Section 4 (see Table 1 for the results).
For m = 4, 5, 6 these constructions yield the following values for 2m

√
n2/(2n− 1).

m = 4
n = 8

}
8

√
64

15
≈ 1.198

m = 5
n = 12

}
10

√
144

23
≈ 1.201

m = 6
n = 16

}
12

√
256

31
≈ 1.192

However, we do not know whether these acute sets are optimal or not. If we found an acute
set of 9 points in R4, 13 points in R5 or 18 points in R6, we could immediately improve
Theorem 2.5.

3 The constructive approach

3.1 On the maximal cardinality of sets without bad triples

In this subsection we investigate Question 2.1 more closely. Recall that κn(d) denotes
the maximal cardinality of a set in {0, 1, . . . , n − 1}d containing no bad triples. We have
already seen a probabilistic lower bound for κn(d) (Theorem 2.3). Here we first give an
upper bound. As we will see, this upper bound is essentially sharp if n is large enough
(compared to d).

Theorem 3.1. For even d
κn(d) ≤ 2nd/2,

and for odd d
κn(d) ≤ n(d+1)/2 + n(d−1)/2.

Proof. Suppose that S ⊂ {0, 1, . . . , n − 1}d contains no bad triples. Let 0 < r < d be an
integer, and consider the following two projections:

π1 ((x1, . . . , xd)) = (x1, . . . , xr) ; π2 ((x1, . . . , xd)) = (xr+1, . . . , xd).

Now we take the set

S0
def
= {x ∈ S : ∃y ∈ (S \ {x}) π1(x) = π1(y)} .

By definition π1 is injective on S \ S0, thus |S \ S0| ≤ nr. We claim that π2 is injective on
S0, so |S0| ≤ nd−r. Otherwise there would exist x, y ∈ S0 such that π2(x) = π2(y). Since
y ∈ S0, there exists z ∈ S such that π1(y) = π1(z). It follows that the triple x, y, z is bad,
contradiction.

Consequently, |S| ≤ nr + nd−r. Setting r =
⌊
d
2

⌋
we get the desired upper bound.
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Setting n = 2 and using that κ2(d) = κ(d) the next corollary readily follows.

Corollary 3.2. For even d

κ(d) ≤ 2(d+2)/2 = 2
(√

2
)d
,

and for odd d

κ(d) ≤ 2(d+1)/2 + 2(d−1)/2 =
3√
2

(√
2
)d
.

This corollary improves the upper bound
√

2(
√

3)d given by Erdős and Füredi in [8].
(We note though that they proved not only that a subset of {0, 1}d of size larger than√

2(
√

3)d must contain three points determining a right angle but they also showed that
such a set cannot be strictly antipodal which is a stronger assertion.)

If n is a prime power greater than d, then the following constructive method gives better
lower bound than the random construction of the previous section. We will need matrices
over finite fields with the property that every square submatrix of theirs is invertible. In
coding theory the so-called Cauchy matrices are used for that purpose.

Definition 3.3. Let Fq denote the finite field of order q. A k× l matrix A over Fq is called
a Cauchy matrix if it can be written in the form

Ai,j
def
= (xi − yj)−1 (i = 1, . . . , k; j = 1, . . . , l), (5)

where x1, . . . , xk, y1, . . . , yl ∈ Fq and xi 6= yj for any pair of indices i, j.

In the case k = l = r, the determinant of a Cauchy matrix A is given by

det(A) =

∏
i<j (xi − xj)

∏
i<j (yi − yj)∏

1≤i,j≤r (xi − yj)
.

This well-known fact can be easily proved by induction. It follows that A is invertible
provided that the elements x1, . . . , xr, y1, . . . , yr are pairwise distinct.

Lemma 3.4. Let q be a prime power and k, l be positive integers. Suppose that q ≥ k + l.
Then there exists a k × l matrix over Fq any square submatrix of which is invertible.

Proof. Let x1, . . . , xk, y1, . . . , yl be pairwise distinct elements of Fq, and take the k × l
Cauchy matrix A as in (5). Clearly, every submatrix of A is also a Cauchy matrix thus
the determinant of every square submatrix of A is invertible.

Now let k + l = d ≥ 2 and n be a prime power greater than or equal to d. Due to the
lemma, there exists a k × l matrix A over the field Fn such that each square submatrix of
A is invertible. Let us think of {0, 1, . . . , n− 1}d as the d-dimensional vector space Fdn. We
define an Fn-linear subspace of Fdn: take all points (x,Ax) ∈ Fdn as x runs through Fln (thus
Ax ∈ Fkn). This is an l-dimensional subspace consisting nl points. We claim that each of
its points has at least k + 1 nonzero coordinates. We prove this by contradiction. Assume
that there is a point (x,Ax) which has at most k nonzero coordinates. Let the number of
nonzero coordinates of x be r. It follows that the number of nonzero coordinates of Ax is
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at most k − r, in other words, Ax has at least r zero coordinates. Consequently, A has
an r × r submatrix which takes a vector with nonzero elements to the null vector. This
contradicts the assumption that every square submatrix is invertible.

Setting k =
⌊
d
2

⌋
and l =

⌈
d
2

⌉
we get a subspace of dimension

⌈
d
2

⌉
, every point of which

has at least
⌊
d
2

⌋
+1 > d

2
nonzero coordinates. We claim that this subspace does not contain

bad triples. Indeed, taking distinct points x1, x2, x3 ∈ Rl, the points (x1 − x2, A(x1 − x2))
and (x3 − x2, A(x3 − x2)) are elements of the subspace, thus both have more than d

2
nonzero

coordinates which means that there is a coordinate where both of them take nonzero value.
We have proved the following theorem.

Theorem 3.5. If d ≥ 2 is an integer and n ≥ d is a prime power, then

κn(d) ≥ nd
d
2e.

If n is not a prime power, then there exists no finite field of order n. We can still
consider matrices over the ring Zn = Z/nZ. If we could find a

⌊
d
2

⌋
×
⌈
d
2

⌉
matrix with all of

its square submatrices invertible, it would imply the existence of a set without bad triples

and of cardinality nd
d
2e. For example, in the case d = 3 the matrix (1 1) over Zn is clearly

good for any n so the next theorem follows.

Theorem 3.6. For arbitrary positive integer n it holds that κn(3) ≥ n2.

Proof. We can prove this directly by taking all points in the form (i, j, i+ j) where i, j run
through Zn (addition is meant modulo n). Clearly, there are no bad triples among these
n2 points.

Finally we show that the upper bound given in Theorem 3.1 is sharp apart from a
constant factor provided that n is sufficiently large compared to d.

Theorem 3.7. We have
κn(d) > (1− ε(d, n)) · nd

d
2
e,

where for any fixed d the error term ε(d, n) converges to 0 as n → ∞. In fact, for any
δ > 0 there exists Cδ such that ε(d, n) < δ provided that n ≥ Cδ · d2.11.

Proof. It was proved in [3] that for any sufficiently large n there is a prime number q
in the interval [n − n0.525, n]. If q ≥ d, then by Theorem 3.5 we can find a set S ⊂
{0, 1, . . . , q − 1}d ⊂ {0, 1, . . . , n− 1}d such that S contains no bad triples and

|S| ≥ qd
d
2
e ≥ (n− n0.525)d

d
2
e =

(
1− n−0.475

)d d
2
e
nd

d
2
e.

For fixed d the coefficient of nd
d
2
e clearly converges to 1 as n→∞. To obtain the stronger

claim we use the well-known fact that (1− 1/x)x−1 > 1/e for any x > 1. Consequently, if
the exponent dd

2
e is at most (n0.475 − 1)δ, then we have

|S| > (1/e)δnd
d
2
e > (1− δ)nd

d
2
e,

whence ε(d, n) < δ. A simple calculation completes the proof.
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3.2 Constructive lower bounds for α(d) and κ(d)

Random constructions of acute sets (as the original one of Erdős and Füredi or the one
given in Section 2) give exponential lower bound for α(d). However, these only prove
existence without telling us exactly how to find such large acute sets. Also, one can give
better (constructive) lower bound if the dimension is small.

The first (non-linear) constructive lower bound is due to Bevan[4]:

α(d) ≥ κ(d) > exp (cdµ) , where µ =
log 2

log 3
= 0.631... (6)

For small d this is a better bound than the probabilistic ones.
Our goal in this section is to obtain even better constructive bounds. The key will be

the next theorem which follows readily from Lemma 2.2, Theorem 3.5 and Theorem 3.6
setting d = 2s − 1. (In fact, the special case s = 2 was already proved by Bevan, see [4,
Theorem 4.2]. He obtained (6) by the repeated application of this special case.)

Theorem 3.8. Let s ≥ 2 be an integer, and suppose that n ≥ 2s−1 is a prime power. (In
the case s = 2 the theorem holds for arbitrary positive integer n.) If H ⊂ Rm is an acute
set of cardinality n, then we can choose ns points of the set

H× · · · × H︸ ︷︷ ︸
2s−1

⊂ R(2s−1)m

that form an acute set.

Remark 3.9. If H is cubic (that is, H ⊂ {0, 1}m), then the obtained acute set is also
cubic (that is, it is in {0, 1}(2s−1)m).

Now we start with an acute set H of prime power cardinality and we apply the previous
theorem with the largest possible s. Then we do the same for the obtained larger acute
set (the cardinality of which is also a prime power). How large acute sets do we get if we
keep doing this? For the sake of simplicity, let us start with the d0 = 4 dimensional acute
set of size n0 = 8 that we will construct in Section 4. Let us denote the dimension and
the size of the acute set we obtain in the k-th step by dk and nk, respectively. Clearly nk
is a power of 2, thus at step (k + 1) we can apply Theorem 3.8 with sk = nk/2. Setting
uk = log2 nk we get the following:

dk+1 = dk(2sk − 1) < dknk; nk+1 = nskk = n
nk/2
k ;

uk+1 = uk(nk/2) = uk2
uk−1 ≥ 2 · 2uk−1 = 2uk .

It follows that dk+1/uk+1 ≤ 2dk/uk so

dk ≤
d0
u0
uk2

k =
4

3
2kuk.

It yields that in dimension dk we get an acute set of size

nk = 2uk ≥ 2(3/4)2−kdk .
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Due to the factor 2−k in the exponent, nk is not exponential in dk. However, the inequality
uk+1 ≥ 2uk implies that uk grows extremely fast (and so does nk and dk) which means that
nk is almost exponential. For instance, we can easily obtain that for any positive integer
r there exists k0 such that for k ≥ k0 it holds that

nk > exp(dk/ log log · · · log︸ ︷︷ ︸
r

(dk)).

We have given a constructive proof of the following theorem.

Theorem 3.10. For any positive integer r we have infinitely many values of d such that

α(d) > exp(d/ log log · · · log︸ ︷︷ ︸
r

d).

We can also get a constructive lower bound for κ(d). We do the same iterated process
but this time we start with an acute set in {0, 1}d0 . (For instance, we can set d0 = 3 and
n0 = 4.) Then the acute set obtained in step k will be in {0, 1}dk . This way we get an
almost exponential lower bound for κ(d) as well.

However, Theorem 3.8 gives acute sets only in certain dimensions. In the remainder of
this section we consider the problems investigated so far in a slightly more general setting
to get large acute sets in any dimension. (The proofs of these more general results are
essentially the same as the original ones. Thus we could have considered this general
setting in the first place, but for the sake of better understanding we opted not to.)

Let n1, n2, . . . , nd ≥ 2 be positive integers and consider the n1× · · · ×nd lattice, that is
the set {0, 1, . . . , n1 − 1} × · · · × {0, 1, . . . , nd − 1}.

Question 3.11. What is the maximal cardinality of a subset S of the n1× · · ·×nd lattice
containing no bad triples?

We claim that if n ≥ max{n1, . . . , nd} and the set S0 ⊂ {0, 1, . . . , n − 1}d contains no
bad triples, then we can get a set in the n1 × · · · × nd lattice without bad triples and of
cardinality at least

n1

n
· · · nd

n
|S0| .

Indeed, starting with the n × . . . × n lattice, we replace the n’s one-by-one with the ni’s;
in each step we keep those ni sections that contain the biggest part of S0. Combining this
argument with Theorem 3.5 and 3.6 we get the following for the odd case d = 2s− 1.

Theorem 3.12. Let s ≥ 2, and suppose that n ≥ 2s−1 is a prime power (in the case s = 2
the theorem holds for arbitrary positive integer n). For positive integers n1, . . . , n2s−1 ≤ n
in the n1×n2×· · ·×n2s−1 lattice at least dn1n2 · · ·n2s−1/n

s−1e points can be chosen without
any bad triple.

Also, one can get a more general version of Lemma 2.2 with the same proof.

Lemma 3.13. Suppose that the set Ht = {ht0, ht1, . . . , htnt−1} ⊂ Rmt is acute for each
1 ≤ t ≤ d. If S ⊂ {0, 1, . . . , n1 − 1} × · · · × {0, 1, . . . , nd − 1} contains no bad triples, then
the set {(

h1i1 , h
2
i2
, . . . , hdid

)
: (i1, i2, . . . , id) ∈ S

}
⊂ H1 ×H2 × · · · × Hd ⊂ Rm1+···+md

is an (m1 + · · ·+md)-dimensional acute set.
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Putting these results together we obtain a more general form of Theorem 3.8.

Theorem 3.14. Let s ≥ 2, and suppose that n ≥ 2s−1 is a prime power (in the case s = 2
the theorem holds for arbitrary positive integer n). Assume that for each t = 1, . . . , 2s− 1
we have an acute set of nt ≤ n points in Rmt. Then in Rm1+···+m2s−1 there exists an acute
set of cardinality at least ⌈

n1n2 · · ·n2s−1/n
s−1⌉ .

The obtained acute set is cubic provided that all acute sets used are cubic.

Remark 3.15. We also note that in the case s = 3 the theorem can be applied for n = 4
as well. Consider the 4-element field F4 = {0, 1, a, b}. Then the 2× 3 matrix

A =

(
1 1 1
1 a b

)
has no singular square submatrix which implies that Theorem 3.5 holds for d = 5;n = 4,
thus Theorem 3.12 and Theorem 3.14 hold for s = 3;n = 4.

Now we can use the small dimensional acute sets of Section 4 as building blocks to
build higher dimensional acute sets by Theorem 3.14. Table 2 in the Appendix shows the
lower bounds we get this way for d ≤ 84. (We could keep doing that for larger values of
d and up to dimension 250 we would get better bound than the probabilistic one given in
Section 2.) These bounds are all new results except for d ≤ 3.

We can do the same for κ(d), see Table 3 in the Appendix for d ≤ 82. This method
outdoes the random construction up to dimension 200. (We need small dimensional cubic
acute sets as building blocks. We use the ones found by Bevan who used computer to
determine the exact values of κ(d) for d ≤ 9. He also used a recursive construction to
obtain bounds for larger d’s. His method is similar but less effective: our results are better
for d ≥ 13; d 6= 27. In dimension d = 63 we get a cubic acute set of size 65536. This is
almost ten times bigger than the one Bevan obtained which contains 6561 points.)

Tables 4 and 5 in the Appendix compare the probabilistic and constructive lower bounds
for α(d) and κ(d).

Finally we prove the simple fact that α(d) is strictly monotone increasing. We will need
this fact in Table 2.

Lemma 3.16. α(d+ 1) > α(d) holds for any positive integer d.

Proof. Assume that we have an acute set H = {x1, . . . , xn} ⊂ Rd. Let P be the convex
hull of H and y be any point in P \ H. We claim that ∠yxixj < π/2 for any i 6= j. Let
Hi,j be the hyperplane that is perpendicular to the segment xixj and goes through xi. Let
Si,j be the open half-space bounded by Hi,j that contains xj. For a point z ∈ Rd the angle
∠zxixj is acute if and only if z ∈ Si,j. It follows that H \ {xi} ⊂ Si,j while xi lies on the
boundary of Si,j. Thus y ∈ P \ {xi} ⊂ Si,j which implies that ∠yxixj < π/2.

Now let us consider the usual embedding of Rd into Rd+1 and let v denote the unit
vector (0, . . . , 0, 1). Consider the point yt = y + tv for sufficiently large t. It is easy to see
that ∠ytxixj < π/2 still holds, but now even the angles ∠xiytxj are acute. It follows that
H ∪ {yt} ⊂ Rd+1 is an acute set.

Remark 3.17. For κ(d) it is only known that κ(d+ 2) > κ(d) [4, Theorem 4.1]. In Table
3 we will refer to this result as almost strict monotonicity.
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4 Small dimensional acute sets

In this section we construct acute sets in dimension m = 4, 5 and use computer to find
such sets for 6 ≤ m ≤ 10. These small dimensional examples are important because the
random construction of Section 2 and the recursive construction of Section 3 use them to
find higher dimensional acute sets of large cardinality.

Danzer and Grünbaum presented an acute set of 2m − 1 points in Rm [7]. It is also
known that for m = 2, 3 this is the best possible [6, 10, 9]. Bevan used computer to find
small dimensional acute sets by generating random points on the unit sphere. For m ≥ 7
he found more than 2m− 1 points [4].

Our approach starts similarly as the construction of Danzer and Grünbaum. We con-
sider the following 2m− 2 points in Rm:

P±1i = (0, . . . , 0, ±1︸︷︷︸
i-th

, 0, . . . , 0); i = 1, 2, . . . ,m− 1.

What angles do these points determine? Clearly, ∠P−1i P±1j P+1
i = π/2 for i 6= j and all

other angles are acute. We can get rid of the right angles by slightly perturbing the points
in the following manner:

P̃±1i = (0, . . . , 0, ±1︸︷︷︸
i-th

, 0, . . . , 0, εi); i = 1, 2, . . . ,m− 1, (7)

where ε1, ε2, . . . , εm−1 are pairwise distinct real numbers.
Our goal is to complement the points P̃±1i with some additional points such that they

still form an acute set. In fact, we will complement the points P±1i such that all new angles

are acute. (Then changing the points P±1i to P̃±1i we get an acute set provided that the
εi’s are small enough.)

Under what condition can a point x = (x1, . . . , xm) be added in the above sense? Simple
calculation shows that the exact condition is

‖x‖ > 1 and |xi|+ |xj| < 1 for 1 ≤ i, j ≤ m− 1; i 6= j. (8)

For example, the point A = (0, . . . , 0, a) can be added for a > 1. This way we get an acute
set of size 2m−1. Basically, this was the construction of Danzer and Grünbaum. We know
that this is the best possible for m = 2, 3. However, we can do better if m ≥ 4.

Suppose that we have two points x = (x1, . . . , xm) and y = (y1, . . . , ym) both satisfying
(8) (that is, they can be separately added). Both points can be added (at the same time)
if and only if

|xi + yi| < 1 + 〈x,y〉 and |xi − yi| < min
(
‖x‖2 , ‖y‖2

)
− 〈x,y〉 for 1 ≤ i ≤ m− 1. (9)

We can find two such points in the following simple form: A1 = (a1, a1, . . . , a1, a2) and
A2 = (−a1,−a1, . . . ,−a1, a2). Then points A1 and A2 can be added if and only if

1

m− 1
< a1 <

1

2
and a22 >

∣∣1− (m− 1)a21
∣∣ . (10)

Such a1 and a2 clearly exist if m ≥ 4.
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Example 4.1. For sufficiently small and pairwise distinct εi’s the 8 points below form an
acute set in R4.

( 1 0 0 ε1 )
( −1 0 0 ε1 )
( 0 1 0 ε2 )
( 0 −1 0 ε2 )
( 0 0 1 ε3 )
( 0 0 −1 ε3 )
( 0.4 0.4 0.4 1 )
( −0.4 −0.4 −0.4 1 )

For m = 5, we can even add four points of the following form:

A1 = (a1, a1, a1, a1, a2);A2 = (−a1,−a1,−a1,−a1, a2);
B1 = (b1, b1,−b1,−b1,−b2);B2 = (−b1,−b1, b1, b1,−b2).

We have seen that 1/4 < a1, b1 < 1/2 must hold so we set a1 = 1/4 + δ and b1 = 1/2− δ.
Then we set a2 =

√
3/2 and b2 = 2

√
δ so that ‖Ai‖ and ‖Bi‖ are slightly bigger than 1.

Example 4.2. Let us fix a positive real number δ < 1/48 and consider the points below.

A1 = ( 1/4 + δ 1/4 + δ 1/4 + δ 1/4 + δ
√

3/2 )

A2 = ( −1/4− δ −1/4− δ −1/4− δ −1/4− δ
√

3/2 )

B1 = ( 1/2− δ 1/2− δ −1/2 + δ −1/2 + δ −2
√
δ )

B2 = ( −1/2 + δ −1/2 + δ 1/2− δ 1/2− δ −2
√
δ )

Then the set {P̃±1i : i = 1, 2, 3, 4} ∪ {A1, A2, B1, B2} is an acute set of 12 points in R5

assuming that εi’s are sufficiently small and pairwise distinct.
(This specific example is important because the random method presented in Section 2
gives the best result starting from this example.)

Proof. We need to prove that A1, A2, B1, B2 can be added to P±1i ’s in such a way that all
new angles are acute. First we prove that any pair of these 4 points can be added. Since
each of them satisfies (8), we only have to check that each pair satisfies (9). For the pair
A1, A2 we are done since they satisfy (10). It goes similarly for the pair B1, B2. For the
pairs Ai, Bj (9) yields the condition 3/4 < 1−

√
3δ ⇔ δ < 1/48.

Now we have checked all new angles except those that are determined by three new
points. The squares of the distances between the 4 new points are:

d(A1, A2)
2 = 1 + 8δ + 16δ2; d(B1, B2)

2 = 4− 16δ + 16δ2; d(Ai, Bj)
2 = 2 + 2

√
3δ + 2δ + 8δ2.

Now for any triangle in {A1, A2, B1, B2} the square of each side is less than the sum of the
squares of the two other sides which means that the triangle is acute-angled.

For m ≥ 6 we used computer to add further points to the system (7). We generated
random points on the sphere with radius 1 + δ and we added the point whenever it was
possible. Table 1 shows the cardinality of acute sets we found this way compared to
previous results. The reader can also find examples for m = 6, 7, 8 in the Appendix. For
m ≥ 11, the recursive construction presented in Section 3 gives better result than the
computer search (see Table 2 in the Appendix for the best known lower bounds of α(d) for
d ≤ 84).
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Appendix A Small dimensional acute sets

We have seen in Section 4 that the following 2m− 2 points form an acute set in Rm:

P̃±1i = (0, . . . , 0, ±1︸︷︷︸
i-th

, 0, . . . , 0, εi); i = 1, 2, . . . ,m− 1,

where ε1, ε2, . . . , εm−1 denote sufficiently small, pairwise distinct real numbers. We used
computer to add points to this system in such a way that they still form an acute set.
Below the reader can find the obtained additional points in dimension m = 6, 7, 8. In order
to get integer coordinates, we start with the enlarged system 999 · P̃±1i ; i = 1, 2, . . . ,m− 1.

With the following additional points we have an acute set of 16 points in R6.

( −88 2 −244 −35 124 −957 )
( 1 −448 −458 −482 485 349 )
( −537 364 −358 −227 −426 466 )
( −386 473 494 −420 455 −18 )
( 455 467 −47 490 296 494 )
( 435 411 −431 −533 −39 −413 )

With the following additional points we have an acute set of 20 points in R7.

( −398 −425 −271 548 316 −191 −389 )
( −29 174 −320 278 322 250 789 )
( −413 −261 −498 −295 −263 −288 524 )
( 453 −273 −380 −241 −493 438 −288 )
( −224 473 −260 −410 73 319 −619 )
( −398 28 348 475 −511 479 60 )
( −117 −420 377 −422 548 386 199 )
( 506 −444 490 292 −233 −409 −20 )

With the following additional points we have an acute set of 23 points in R8.

( −403 160 381 120 −438 470 435 −226 )
( −3 470 −158 −424 −375 423 233 447 )
( −456 349 387 −135 −32 −538 −438 145 )
( 166 −170 −16 286 −35 −314 188 853 )
( 239 −281 451 −297 −521 255 −454 173 )
( 271 273 438 −543 204 446 148 −321 )
( 384 149 −408 476 −499 116 −195 −370 )
( −239 −414 −499 −151 −230 −273 99 −603 )
( 563 410 93 219 −399 −415 354 26 )

14



Appendix B Best known bounds in low dimension

The following tables show the best known lower bounds for α(d) and κ(d). Beside the
dimension and the bound itself, we stated the value of s, n and the product n1 · · ·n2s−1/n

s−1

with which Theorem 3.14 is applied. From the ni’s the reader can easily obtain the mi’s.
Str. mon. and a. str. mon. stand for strict monotonicity (cf. Lemma 3.16) and almost
strict monotonicity (cf. Remark 3.17).

For example, in dimension 39 in Table 2 we see that s = 5 and n = 9. (Note that n
is indeed a prime power and n ≥ 2s − 1 holds.) The expression 86 · 93/94 means that we
need to apply Theorem 3.14 with n1 = n2 = . . . = n6 = 8 and n7 = n8 = n9 = 9. (Note
that they are all indeed at most n.) Then for each i we take the smallest dimension mi

in which we have an acute set containing at least ni points. In our case the corresponding
dimensions are m1 = m2 = . . . = m6 = 4 and m7 = m8 = m9 = 5. Consequently, the total
dimension is 6 ·4 + 3 ·5 = 39. We obtain that in R39 there exists an acute set of cardinality
at least d86 · 93/94e = 29128.

Recall that in the case s = 2 we can take arbitrary n (it does not need to be a prime
power). See dimension 14 and 15 in Table 2.

Also, according to Remark 3.15, in the case s = 3 we can have n = 4 (even though
n ≥ 2s− 1 does not hold). See dimension 13 and 15 in Table 3.
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Table 2: Best known lower bound for α(d) (1 ≤ d ≤ 84)

dim l. b. s n

1 2
2 3
3 5
4 8 construction
5 12 construction
6 16 computer
7 20 computer
8 23 computer
9 27 computer
10 31 computer
11 40 2 8 51 · 82/81

12 64 2 8 83/81

13 65 str. mon.
14 96 2 12 81 · 122/121

15 144 2 12 123/121

16 145 str. mon.
17 192 2 16 121 · 162/161

18 256 2 16 163/161

19 320 3 8 51 · 84/82

20 512 3 8 85/82

21 513 str. mon.
22 514 str. mon.
23 704 3 11 82 · 113/112

24 982 3 13 81 · 124/132

25 1473 3 13 125/132

26 1600 4 8 52 · 85/83

27 2560 4 8 51 · 86/83

28 4096 4 8 87/83

29 4097 str. mon.
30 4098 str. mon.
31 4099 str. mon.
32 5632 4 11 83 · 114/113

33 7744 4 11 82 · 115/113

34 10873 4 13 81 · 126/133

35 16310 4 13 127/133

36 20457 5 9 89/94

37 23015 5 9 88 · 91/94

38 25891 5 9 87 · 92/94

39 29128 5 9 86 · 93/94

40 36864 4 16 122 · 165/163

41 49152 4 16 121 · 166/163

42 65536 4 16 167/163

dim l. b. s n

43 85184 5 11 82 · 117/114

44 120439 5 13 81 · 128/134

45 180659 5 13 129/134

46 195714 5 13 128 · 131/134

47 212023 5 13 127 · 132/134

48 229692 5 13 126 · 133/134

49 262144 6 11 86 · 115/115

50 360448 6 11 85 · 116/115

51 495616 6 11 84 · 117/115

52 681472 6 11 83 · 118/115

53 937024 6 11 82 · 119/115

54 1334092 6 13 81 · 1210/135

55 2001138 6 13 1211/135

56 2167900 6 13 1210 · 131/135

57 2348558 6 13 129 · 132/135

58 2544271 6 13 128 · 133/135

59 2756293 6 13 127 · 134/135

60 2985984 6 16 126 · 165/165

61 4378558 7 13 84 · 129/136

62 6567837 7 13 83 · 1210/136

63 9851755 7 13 82 · 1211/136

64 14777632 7 13 81 · 1212/136

65 22166447 7 13 1213/136

66 24013651 7 13 1212 · 131/136

67 26014789 7 13 1211 · 132/136

68 28182688 7 13 1210 · 133/136

69 30531245 7 13 129 · 134/136

70 33075516 7 13 128 · 135/136

71 35831808 7 16 127 · 166/166

72 47775744 7 16 126 · 167/166

73 63700992 7 16 125 · 168/166

74 84934656 7 16 124 · 169/166

75 113246208 7 16 123 · 1610/166

76 150994944 7 16 122 · 1611/166

77 201326592 7 16 121 · 1612/166

78 268435456 7 16 1613/166

79 268435457 str. mon.
80 268435458 str. mon.
81 322486272 8 16 129 · 166/167

82 429981696 8 16 128 · 167/167

83 573308928 8 16 127 · 168/167

84 764411904 8 16 126 · 169/167
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Table 3: Best known lower bound for κ(d) (1 ≤ d ≤ 82)

dim l. b. s n

1 2
2 2
3 4
4 5 Bevan
5 6 Bevan
6 8 Bevan
7 9 Bevan
8 10 Bevan
9 16 2 4 43/41

10 16
11 20 2 5 41 · 52/51

12 25 2 5 53/51

13 32 3 4 21 · 44/42

14 32
15 64 3 4 45/42

16 64
17 65 a. str. mon.
18 80 3 5 42 · 53/52

19 100 3 5 41 · 54/52

20 125 3 5 55/52

21 125
22 126 a. str. mon.
23 126
24 133 3 7 51 · 64/72

25 160 3 8 41 · 51 · 83/82

26 200 3 8 52 · 83/82

27 256 2 16 163/161

28 320 3 8 51 · 84/82

29 384 3 8 61 · 84/82

30 512 3 8 85/82

31 512
32 513 a. str. mon.
33 576 3 9 82 · 93/92

34 681 4 7 51 · 66/73

35 817 4 7 67/73

36 1024 4 8 42 · 85/83

37 1280 4 8 41 · 51 · 85/83

38 1600 4 8 52 · 85/83

39 2048 4 8 41 · 86/83

40 2560 4 8 51 · 86/83

41 3072 4 8 61 · 86/83

dim l. b. s n

42 4096 4 8 87/83

43 4096
44 4097 a. str. mon.
45 4097
46 4608 4 9 83 · 94/93

47 5184 4 9 82 · 95/93

48 5832 4 9 81 · 96/93

49 6561 4 9 97/93

50 7991 5 9 52 · 87/94

51 10229 5 9 41 · 88/94

52 12786 5 9 51 · 88/94

53 15343 5 9 61 · 88/94

54 20457 5 9 89/94

55 23015 5 9 88 · 91/94

56 25891 5 9 87 · 92/94

57 29128 5 9 86 · 93/94

58 32768 5 9 85 · 94/94

59 36864 5 9 84 · 95/94

60 41472 5 9 83 · 96/94

61 46656 5 9 82 · 97/94

62 52488 5 9 81 · 98/94

63 65536 4 16 167/163

64 65536
65 65537 a. str. mon.
66 65537
67 65538 a. str. mon.
68 67505 6 11 89 · 92/115

69 75943 6 11 88 · 93/115

70 85436 6 11 87 · 94/115

71 102400 5 16 52 · 167/164

72 131072 5 16 41 · 81 · 167/164

73 163840 5 16 51 · 81 · 167/164

74 196608 5 16 61 · 81 · 167/164

75 262144 5 16 41 · 168/164

76 327680 5 16 51 · 168/164

77 393216 5 16 61 · 168/164

78 524288 5 16 81 · 168/164

79 589824 5 16 91 · 168/164

80 655360 5 16 101 · 168/164

81 1048576 5 16 169/164

82 1048576
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Appendix C Comparing the two approaches

To compare the lower bounds given by the probabilistic and the constructive approach we
do the following. For a small value of m we take an m-dimensional acute set of prime
power cardinality n, then we apply Theorem 3.8 with the largest possible s to get an acute
set of size ns in dimension d = (2s − 1)n. Then we compare this to the probabilistic
bound α(d) > (1/2)(144/23)d/10 (in fact, we obtained this result only for d divisible by
5; for general d it only holds with a somewhat smaller constant factor). For the sake of
simplicity we consider the base-10 logarithm of the bounds. (See Table 2 for values of n
used here.)

Table 4: Comparing constructive and probabilistic lower bound of α(d)

m n s dimension constructive l.b. probabilistic l.b.
d = (2s− 1)m s lg n lg 1

2
+ d

10
lg 144

23

4 8 4 28 3.61 1.92
5 11 6 55 6.24 4.08
6 16 8 90 9.63 6.86
7 19 10 133 12.78 10.29
8 23 12 184 16.34 14.35
9 27 14 243 20.03 19.05

10 31 16 310 23.86 24.39
11 37 19 407 29.79 32.12
12 64 32 756 57.79 59.92

We can do the same for κ(d). We apply Theorem 3.8 for small dimensional acute
sets in {0, 1}d with the largest possible s and compare what we get to the bound κ(d) >
(1/2)(4/3)d/2 given by Erdős and Füredi. (See Table 3 for values of n used here.)

Table 5: Comparing constructive and probabilistic lower bound of κ(d)

m n s dimension constructive l.b. probabilistic l.b.
d = (2s− 1)m s lg n lg 1

2
+ d

2
lg 4

3

4 5 3 20 2.09 0.94
6 8 4 42 3.61 2.32
9 16 8 135 9.63 8.13

11 19 10 209 12.78 12.75
12 25 13 300 18.17 18.43
13 32 16 403 24.08 24.87
15 64 32 945 57.79 58.73
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