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1 Introduction

The following model originates from Kesten and Spitzer (1979): Every lattice site x € Z% is
attached to a price value Y (x), and a random walker moves on Z¢ (in this paper: d = 2),
whose movement is denoted by {S,; n > 0}, with say Sgp = 0. Each time the random walker
visits x € Z¢, he increases (or decreases, if the price is negative) his fortune by Y (x). Thus

at step n, the total amount of prices he gets is
(1.1) Z(n) =3V (Sy).
§=0

Throughout the paper, it is assumed that {Y (x); x € Z%} is a collection of independent,
and identically distributed random variables with E(Y (0)) = 0 and 02 % E(Y'2(0)) € (0, 00).
The collection of these variables is referred to as random scenery, and is furthermore supposed
to be independent of the random walk {S,; n > 0}. The process A {Z(n); n > 0} is the
so-called random walk in random scenery.

When d = 1, Kesten and Spitzer (1979) proved that, under some appropriate regularity
conditions upon Y (0), n~3/*Z(|nt|) (as a process indexed by ¢ € R, ) converges weakly in
D[0, 00) (space of cadlag functions endowed with the locally uniform convergence topology)
to a non-Gaussian process. For d > 3, it was noted by Bolthausen (1989) that n='/2Z(|nt])
converges weakly to (a constant multiple of) the Wiener process. In Khoshnevisan and Lewis
(1998) (for Gaussian sceneries), Cséki et al. (1999) and Révész and Shi (2000) these weak
limit assertions were strengthened to strong approximation results.

Not surprisingly, the dimension d = 2 is critical which separates the asymptotic Gaussian
and non-Gaussian behaviours of Z. For this case, Kesten and Spitzer (1979) conjectured that
Z still converges weakly to a Wiener process, but with the slightly non-standard normalizer
(nlogn)~1/2. The conjecture was later proved by Bolthausen (1989) (see also Borodin, 1980):
in D[0, c0),

(1.2) {%; te R+} converges weakly to {o(2/m)"?W(t); t € R, },
where W denotes a standard one-dimensional Wiener process.

The aim of this paper is to present a version of strong invariance principle for (1.2).
Throughout, we assume that {S,; n > 0} is a simple symmetric random walk on Z? (with
So = 0), i.e., in each step the walker moves to any of the nearest neighbour sites with equal
probability 1/4.



Theorem 1.1 Let d = 2 and assume that E(]Y (0)|?) < oo for some g > 2. Possibly in
an enlarged probability space, there ezist a version of {Z(n); n > 0} and a standard one-

dimensional Wiener process {W (t); t > 0}, such that for any € > 0 as n goes to infinity,

(1.3) Z(n) — o(2/m)* W (nlogn) = o (n*/?*(logn)*/**) , a.s.

Remark. It is important to note that 3/8 < 1/2. As consequences, Theorem 1.1 implies
the weak convergence in (1.2), and also the following iterated logarithm law due to Lewis

(1993):
) Z(n) 20
0.9 D e fog) e ogTogr® ~ 77

There are, however, many other consequences of Theorem 1.1. For example, it follows
that Strassen’s law holds: let

2Z(|nt))

def m n

Z,(t) = ;1€ (0,1].
®) a(nlognloglogn)'/? €[0.1]

Then {Z,(-) },>3 is almost surely relatively compact in C[0, 1] and the set of its limit points
consists of all absolutely continuous functions f(-) such that f(0) = 0 and fol( f(u))?du < 1.
The Chung-type law of the iterated logarithm

log1 1/2 1/2
(1.5) liminf U818 0 2k = O

— a.S.
n—00 (n]ogn)1/2 0<k<n 21/2 ’

is also a consequence of Theorem 1.1. Moreover, (1.4) and (1.5) can be extended to upper—

lower class results. O

The rest of the paper is organized as follows. In Section 2, Theorem 1.1 is proved by

means of four technical lemmas. The proofs of these lemmas are postponed to Sections 3—6.

2 Proof of Theorem 1.1

This section is devoted to the proof of Theorem 1.1. We shall use some technical lemmas
(Lemmas 2.1-2.4 below), whose proofs are provided in Sections 3-6, respectively.

Let {S,; n > 0} be a simple symmetric random walk on Z? as in the Introduction, and
let

g(na X) déf Z 1{S¢=x}a n > 07 X € Z2-
=0
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The process £(-, -) is often referred to as the local time of the random walk. The random

walk in random scenery Z defined in (1.1) can now be written as

Define the truncated scenery {?(x), x € Z?} and the associated random walk in random
scenery {Z(n); n > 0} by
> def
Y(x) = Y gveosmn — EY G)Lgyeo<in);
Zm) E Y ¢

XEZ2

Our first technical lemma says that Z(n) is reasonably close to Z(n).

Lemma 2.1 Under the conditions of Theorem 1.1, there exists § > 0 such that when n — oo,

(2.1) Z(n)—Z(n) =0 (n'/*7?), a.s.

We now work on the process {Z(n); n > 0}. We first look at this process along the
subsequence {n;} defined as follows. Fix p € (1/2, 1), and let the sequence {nj}y>1 of

non-decreasing numbers be given by

ne & exp(k?)].
We shall frequently use the following relations without further mention: when k£ — oo,

0Nk

(2.2) Ng+1 ~ Nk, log(nk+4 —'nk)’V kﬁ;nk, nk+1'—'nk/\’Eﬂi;;;jajgﬁg,

where ay ~ b means limy_,, ax /b, = 1. Also,
‘
(2.3) Zn%(log n)? = O (n§(logng)®+2) {— 0.

k=1
Let us consider

For brevity, we write



so that
U= &(x)Y(x).
x€Z?

The random variables Uy, k = 1,2, ... are the increments of Z (ng). Unfortunately, these
are not independent variables given the random walk {S,; n > 0}. The idea is to replace
these variables by another sequence of variables which are conditionally independent given
the random walk.

Let {Y (x), Y1(x), Y2(x), - -, x € Z?} be a collection of iid random variables. (It is always
possible to define these on the same probability space by working in a product space). For
any k > 1, let

(2.4) v, o Y GV () + Y &E)Vi),

x¢ Ay xE Ay
where
Ve(3) € Vi) Lviooi<in — E(Ve () 1y 00/ <)
and
A, {x €Z®: &(npy1,x) > E(nk,x) >0} .

In words, Ay, is the set of sites which are visited by the random walk during [0, nx] and again
during (ng, p-41].

It turns out that Vj is close to Uy. More precisely, the following estimate holds:

Lemma 2.2 Under the conditions of Theorem 1.1, for any € > 0, we have, when k — oo,

(2.5) U,—Vi=o0 (n,lc/2(log nk)l/%l/@@)“) : a.s.

By means of Lemma 2.2 (and in light of (2.3)), we can sum over k£ < ¢ — 1, and use the
relation Z(ng) = Z(n1) + Zf;ll Uk, to see that for any £ > 0, when ¢ — oo,

~

01
(2.6) Z(ng) — Z Vi=o0 (nyz (log ng)_1/2+1/(2")+6) , a.s.
k=1

Since {Vj}r>1 are (conditionally) independent variables (given the random walk), it is

possible to embed 22;11 Vi into a Wiener process, via the following lemma.



Lemma 2.3 Under the conditions of Theorem 1.1, possibly in an enlarged probability space,

there ezists a standard Wiener process {W (t); t > 0}, such that for any e > 0, when £ — oo,

-1
(2.7) > Vi = Witn) = o (n*0gn)™*),  as,
k=1
where
of 207
(2.8) by ¥ %nlogn,
def 3 1 1
2. fe o1 1y
(29) ’ e (4 40’ 49)

Assembling (2.1), (2.6) and (2.7), we arrive at: for any € > 0, when ¢ — oo,
(2.10) Z(ng) — Wi(by,) =0 (né/Z(log TL@)ﬂ+E) : a.s.

(We have used the fact that —1/2 + 1/(2¢) < (). This is a strong approximation for Z
along the subsequence {n,}. To claim that it holds for all large n, we need to control the

increments of Z and W.

Lemma 2.4 Under the conditions of Theorem 1.1, with probability one, for any ¢ > 0, as

{ — o0,
(2.11) max |Z(n) — Z(ng)| = o (niﬂ(log n£)1—1/<2g)+s> ,
ng<n<ngyq
(2.12) sup  |[W(@)—-W(b,,) = O (ni/z(logng)l‘l/@@)(loglog ne)l/Q) '
by <t<bn, |

It is now easy to complete the proof of Theorem 1.1. Indeed, since 1 —1/(2p) < 3/4 —
1/(40), we can bring (2.10), (2.11) and (2.12) together to see that for any € > 0 and
1/2< o<1,

Z(n) — W(b,) = o (n'*(logn)?**), a.s.

Taking o = 2/3 yields 8 = 3/8. Theorem 1.1 is proved. O

We prove the four lemmas in the next sections.



3 Proof of Lemma 2.1

Throughout, we assume g < 3 without loss of generality.
Since E(Y (x)) = 0 for any x € Z?, we have
(1) [Z(n)=Z(m) < Y &n,%) [[Y ()] Lyt + EY (0] Lgyeopsiie)] -
XEZ2
By Chebyshev’s inequality, for x # 0,

By ()| > [x]) < FIY GO _ E(Y (@)

e Il

Since g > 2, this yields

Y P(Y () > [x]) < o0
x€Z2
Consequently, in the expression Y _,,&(n,Xx)|Y(x)| 1fyx) x|} on the right hand side of

(3.1), only finitely many terms are different from zero. Moreover, for x # 0,

E(Y (9] 1y poopy) < 9l o 2RO

[x[le= 7 1+ (x|t
Hence, as n — oo, we have almost surely

(3.2) Z(n) — Z(n)| §(9<max§n x)—i—clz

x€7Z2
x€Z2?

&(n,x)
Lo [Jxfjo

Observe that
£(n,x) —(g—1 _
_S\Vh )~ g—1)/2 — ,(38—q)/2
> 1+ [xfet =" > Enx)=n ’
x€Z2, ||x||>nl/2 XEZL?
and that

£(n, x) 1
2 i S (i*éaz’z‘f("”‘)) 2 THNE

x€Z2,||x||<n!/2 [Ix||<nt/2
1/2
" r

comaxé(n,x —
2er2§( )/0 1+ et
< ¢3nB 92 max£(n, x).

X€EZ?

IN

Plugging these into (3.2) gives that, when n — oo,

Z(n)—Z(n) =0 (n(3_q)/ rré%ﬁ(n x)) a.s.

According to Erdés and Taylor (1960), maxyez> £(n, x) = O(log® n) almost surely, and since
q > 2, this yields Lemma 2.1. O



4 Proof of Lemma 2.2

We start with a preliminary estimate (Lemma 4.1 below), which will be of frequent use later.
Recall that £(n, x) is the local time of the two-dimensional random walk {S,;; n > 0}. It is
well-known (see for example Révész, 1990, p. 183) that

1 1

which implies the existence of a finite and positive constant ¢, such that P(S, = 0) < ¢4/n,
for all n > 1. Since {(n,0) = >_" ; 1(s,=0}, We arrive at: for any integer m > 1, there exists
¢s = ¢s(m) such that

E(£™(n,0)) < ¢s5 (logn)™, n > 2.

For any fixed x € Z?, £(n,x) is stochastically smaller than or equal to £(n, 0). Accordingly,

(4.2) sup E(£™(n,x)) < ¢ (logn)™, n>2.

x€Z2
An immediate consequence of (4.2) together with Hélder’s inequality is that, for any

positive integers £ and my, - -+, my,

(4.3) sup E(£™(n,x1)---£™(n,x¢)) < cg (logn)™ T +me, n>2,
X1€Z2, -, Xy EL2

where cg = cg(£, my, -+ -, my).

Lemma 4.1 Let {n(n,x);n > 1, x € Z?} be a set of random variables independent of the

random walk {Sy}n>0, such that for some o > 0,
P (0 <nn,x) <|x]|*; n>1x€Z’) =1

Then for any integers m > 1 and £ > 1, and any € > 0 and 0 < v < &/(2¢), there exist

cr = cr(m, b, e, v, ) and cg = cg(£, v, ) such that for all n > 2,

£
(44) E ( > & (n,x)n(n, x)) < ernt (no2e—es00Em)” | 5, ) (log )™V

xEZ2

where

l
(4.5) ot = sup E( [[nm.x) ).
)”,151‘38 =1

Ix]|<nt/?(log n

8



In particular, we have

14
(4.6) E ( Z £™(n, x) ”X”a> < cq né+a£/2(log n)(mfl)lJre’ n>2,

xX€EZ2

for some ¢y = cg(m, £, a, €).

Proof. Write

0 ¥ {x € Z%: ||x|| > n'*(logn)"},

Qy {x € 7% ||x|| < n*?(logn) “1.
Then
> M nxnnx) = ( Do+ ) £ (n, x)n(n, x)
x€Z? x€Q  x€Q
(4.7) € L+,

with obvious notation. Observe that for j =1 or 2,

(4.8) =) - ZE(H&mnxz) (f[n(n,xi))

X1€Q X[EQ

We now estimate E(I7) and E(I{) separately. Define
R, % {So, S1,-..,5u},

which is the range of the random walk up to step n. When ||x|| > n'/?, we have

2
(4.9) P(x € R,) <P ( max ||Sx|| > ||x||> < ¢10 exp (_CH ||>;|| ) |

0<k<n

for some absolute constants c¢io and c¢y;.
Since £™(n,x) = £™(n,x)lixer,} for any x € Z?, we can apply Holder’s inequality to see
that, if ||x;|| > n'/?(logn)” for all 1 < i < ¢,

P ‘ 1/(26) ‘ 1/(2¢)
E (Hgm(n’ Xz)) (HE(/S%m(n,Xi))> (H]P’(Xi € Rn))
eu Yoy ||xz-||2) |

IN

< ¢ (logn)™ exp (‘ 20 n

9



the last inequality following from (4.2) and (4.9). Therefore, by (4.8) and the assumption
n(n,x) < [Ix[|%

14

ey ||x|1?
B < callogn™ | S Ilen (<55 )
[Ix||>nt/2(log n)¥
(4.10) < ey ntte? exp (—cs (logn)™) .

In the last inequality, we used the fact that for any fixed constant ¢ > 0, when n — o0,

Y ixzn2ogmy X[ exp(=cllx||?/n) = O(n*/2**(log n)*” exp(—c(logn)™)).
To estimate E(I£), we recall Lemma 22.5 of Révész (1990, p. 224) (with slightly different

notation): for any sites xy, - - -, X, in Z?,

(4.11) P(x1; € Ry, -+, X¢ € Rp) < (pu(n))* ! 1II<1§1<XZP(X¢ €R,),

where p(n) o maxi<i<j<n P(X; — X; € R,). We take this opportunity to correct a mis-
print in page 224 of Révész (1990), where the definition of p(n) is mistakenly stated as
maxXi<i<n P(X; € Ry).

We now apply Holder’s inequality. Let a > 1. It is possible to find p > 1 such that
1/a+1/p =1. Then (writing AY {x1 € R,, ---, x¢ € R,} for brevity)

V4
]E(Hﬁm(n,xi)) = E(E™(n,x1)---E™(n,x;) 1)
< [E(E™(n,x;)- - €™ (n,x,))]'"” [P(A)]"*,

which, according to (4.3) and (4.11), is

¢
< c14 (logn)™ Z P(x; — x; € R,,)¢V/a ZIP’(xk € R,)Ye.

1<i<j<e k=1
Plugging this into (4.8) (and using symmetry) yields that for some ¢;5 = ¢15(m, £, a),

E(I3) < ci5@new (logn)™(n(logn)®) 1,
(4.12) +e15 Onew (logn) ™ (n(logn)®) 21y,

where

L, Y ) P(xi —x2 € R)VP(xy € R,V

x1E€Q2 x2E€N2

10



LN 3 Pl xe € R) VR € R,

x1€0Q2 x2€02 X302

(When ¢ = 1, we simply have E(I5) < ¢15 ¢ne, (logn)™ >, o, P(x € R,)Y®. When ¢ = 2,
I, should be considered as 0).
If (Xl,XQ) € QQ X QQ, then

X; — Xy € 0, ¥ {xeZ®: ||x|| < 2n'*(logn)"}.

Thus
13 S Z P(Xl c Rn)l/a Z P(x (= Rn)(f—l)/a

x1€Q2 XE§2
(4.13) < Z P(Xl c Rn)l/a Z P(X c Rn)(é—l)/a.

X1E§~22 XEK~22
Similarly,
(4.14) I, < cign(logn)® Z P(x3 € R,)"* Z P(x € R,)* Ve,

X3€ﬁz Xeﬁz
To see how ) 5 P(x € R,)® behaves, we recall the following result of Erdds and Taylor

(1960): for n > 2 and n'/® < ||x|| < n'/?/20,

TIOg(nl/z/HXH) _

P(xeR,) <¢ log

This clearly also yields P(x € R,) < cig/logn for ||x|| > n'/2/20. When ||x|| < n!/5,

log(n'/2/||x||)/ logn is of constant order (except for the special case x = 0). Therefore,

log, (n*?/(||x|| +1
< e+ )

(4.15) P(x € R,) : n>2, x €7

where log, u logmax(u, e) for all u € R.

Accordingly, for any b > 0,

oz (n'/2/(Ilx b
S PxeR) < exn Y (1 g.(n'/(| ||+1)))

—~ — logn
x€N2 x€Qy

[ (e DY,
c
2 0 logn

IN

< exen(logn) “hrw

11



where ¢y = ¢92(b, V). Plugging this into (4.13) and (4.14) gives I3 < co3 n?(logn) %+ and

I, < ey m®(logn) =46 Going back to (4.12), we obtain: for some cy5 = c5(m, £, v, a),
E(I5) < o5 @n e, ' (log )™ 240,

Since v < €/(2¢) and since a > 1 is arbitrary, combining this estimate with (4.7) and (4.10)
completes the proof of Lemma 4.1. Il

Now we are ready to prove Lemma 2.2.

Proof of Lemma 2.2. By definition,

Vi—Upr= > &x - V(%))
XEAy,
Let PS(-) = P(- |{Sy}u>0), the conditional probability given the random walk. We write
ES for the expectation associated with this conditional probability. Under PS, for each k,
{Vi(x) — Y(x), x € Ay} are independent mean-zero variables.
Recall Rosenthal’s inequality (see for example Petrov, 1995, p. 59): if X, ---, X,, are
independent mean-zero variables and if p > 2, then

P p/2
(4.16) ]E( ><C‘ Z]E\X\P (Z]EX2> :

where C(p) € (0,00) is a constant depending only on p.

Let g be the constant in Theorem 1.1, and let p > ¢ be an even integer. Note that
(4.17) ES([Y (x)[7) < a6 (1 + [Ix[P79),

for some constant cog = co6(gq) > 0.

Applying (4.16) to our conditional probability PS yields

( > &) -Y(x ))p>]

p/2
(4.18) < c27E< D) x| 4> + e E ( > 5,3(::))

XEAL XEA

E[[Vi - Ul =

We write [|x|/P~ instead of 1 + [|x|/P~¢ on the right hand side because ) ., &(x) <
(Xoxea, &i (X))

12



We now estimate the two expectation expressions on the right hand side. For the
second expression, we note that Y-, &X(x) = >, 4> &F (X)L ixer,,}, Where R, denotes
as before the range of the random walk up to step n. Let S; of Sitn, — Sp,- Then
{gj}jzo is again a simple symmetric random walk on Z? independent of {S,}o<n<n,. If
we define g(j, y) def 320 1/5,_y), the local time of the new random walk, then & (x) =

&(ng41 — nk, x — Sy, ). By a change of variables y =x—S,,,,

Z 51%(3‘) = Z 52(nk+1 - nk,Y)l{ersnkERnk}-

XEAk yEZ2

Note that {1(y;s, er, }; ¥ € Z’} is independent of {§j}j20 (thus of its local times), and is

distributed as {1(ycr, }; ¥ € Z*} (this is easily seen using time reversal). As a consequence,

p/2 p/2
E ( Z f,%(x)) =E ( Z Ez(nkﬂ - nkax)l{xERnk})

XEAy xX€7Z,2

For the expression on the right hand side, we can apply Lemma 4.1 to n = ng,1 — ng and
v = min((1 — 9)/(30), €¢/(2p)). To see how ¢, ¢, (defined in (4.5)) behaves in this setting,
we observe that by (4.11), if ||x;|| < n'/?(logn)” (for all 1 < i < £), then

P(x € Ry, -~ X¢ € Ry,) < sup (P(x € R,,))",
[Ix||<2n/2(log n)¥

which, according to (4.15), is

log 1y, - log ny,

1/2 1/2 v ¢ ¢
< <log{n,c /(2n**(logn) )}) < ea <loglognk> .

(We have used (2.2) and the fact that (1 — p)/(20) > v). Therefore, by (4.4) (taking m = 2

and £ = p/2 there; this is the place where we need p to be an even integer),
p/2
(4.19) E ( Z g,f(x)) < c31 n2? (log my )27/ PO+ (log log my, P12,
XEAk

We now estimate the expression E(}_, ., & (x)[|x[[P~%) on the right hand side of (4.18).
For further applications in Section 5, we estimate E{(erAk & (x)|1x[|4)} for @ > 0 and
integer £ > 1.

13



By the same argument as before, we see that the random variable > __,. & (x)||x||* is
distributed as > ;o E”(nkﬂ — ng, X) ||x — Sy, ||*, where € is independent of the variable
Sy,- Thus,

l l
(Zsk ||x||a) = E(Z%“p<nk+1—nk,x> ||x—snk||a)

xEZ2 x€Z? ‘
~p
< ¢ E ( Z £ (kg1 — g, X) ||X||a)
xX€EZ2
l
~p
+eEQ [1Sn 1% (Zﬁ (741 —W>>
XEZ?
l
< CgQE ( Z §p(nk+1 - nkvx) ||X||a>
XEZ2
l
+C33 ”ke/ E ( Z &P (41 — Mg, X )> :
XEZ?2

We can apply (4.6) to see that for any € > 0,

L
E ( Z (41 — Mg, X) ||X||°‘> < ey n£+ at/2 (lognk)fc35Z(lf@)/@+(p*1)f+s,

X€EZ?2

¢
ae/Q ( Z EP (kg1 — mp, X )> < es ”ﬁ ot (IOg”k)fe(lfg)/ﬁ(pil)usa

X€Z2

where ¢35 1 + a/2 > 1. Note that —¢(1 — 9)/o+ (p — 1)¢ = —¢/ o + p¢. Consequently, for
any € > 0,

12
(4.20) ( Z {:p ||x||a) < a7 nl+ K/Q(IOgnk)—e/ﬁpHs’

x€Z2
for some c37 = ¢37(p, ¢, @, p,€). This is a general estimate which we shall use for several times
in Section 5.

Take @ = p—gand £ =1, and since D>, & (X)[|x[|P~7 < 32, 72 &0 (x)[|x[[P~9, we obtain:

( D &) X q) < eggny P (log my) Hetre,

XEAR

Plugging this into (4.19) and (4.18) yields that, for any € > 0,

E[ Vi — UklP] < 39 ni/Q(log nk)p/2—p/(2g)+6

14



Lemma 2.2 now follows by means of an application of Chebyshev’s inequality and the Borel—

Cantelli lemma. O

5 Proof of Lemma 2.3

We use the Skorokhod embedding schema (for more details, see Skorokhod, 1965) summa-
rized as follows. Let X be a random variable with E(X) = 0 and E(|X|?) < oo for some
p > 2, and let {W(t); ¢ > 0} be any given Wiener process starting from 0. The Skorokhod
embedding ensures the existence of (finite) stopping time 7 such that W (7) is distributed as
X, and that E(7) = E(X?). Moreover, for any a € [1, p/2],

E(r") < C(p) E(|X[*),

where C'(p) € (0,00) is a constant whose value depends only on p. By iterating the con-
struction and using the strong Markov property, this yields an embedding of independent
but not necessarily identically distributed variables into a Wiener process: if {Xj};>1 is a
sequence of independent random variables, with E(Xy) = 0 and E(|X;|?) < oo for some
p > 2 and all £ > 1, then there exists a non-decreasing sequence of finite stopping times
0=1<7 <7 <--- with E(y — 7%_1) = E(X?) for any k£ > 1, such that

law)

(Xedior "2 {W (1) = W(Te1) boor

where ““2 stands for identity in law. Moreover, for any £ > 1 and any 1 < a < p/2,

E (1% — 75-1)%) < C(p) E(| X, [**).

Proof of Lemma 2.3. Let PS(-) = P(-[{Sn}n>0) as before, and let {Vi}i>1 be the
sequence of random variables defined in (2.4). Under PS, these are mean-zero independent
variables with ES (|V|P) < oc (for all p > 0), so that by the aforementioned Skorokhod-type
embedding, there exist finite stopping times 0 = 70 < 7, < 7 < --- satisfying ES (7, —
Te—1) = ES(V2) and B ((13, — 7_1)?) < cao ES (|V4|%) for any k > 1 and p > 1, such that
Vb & (W (7) = Wi )}

Without loss of generality, we assume that {Vj}r>1 = {W(7%) — W (7k_1) }k>1 (otherwise,

by a usual coupling argument, we can work in an enlarged probability space, with redefined
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variables and processes; see for example page 53 of Berkes and Philipp, 1979 for more details).
Therefore, for any ¢ > 1,

(5.1) W (re_1) Z Vi.

In order to show Lemma 2.3 we state and prove several lemmas.

Let
def
7% ——IE (7} — Tk— 1 ]ES L% j{: fk )
X€EZ?2
Lemma 5.1 For any e > 0, as £ — oo we have
-1
(5.2) o1 — ZTk = 0 (ny(log ng)3/2‘1/(2")+5) ’ as.
k=1

Proof. We can write

-1 . -1
d

o 1—ZT1¢=Z = Tho1) = Th) = D Ay,

—1 k=1

k

and note that {Ag}r>1 is a sequence of independent mean-zero variables under PS. By
Rosenthal’s inequality recalled in (4.16), for any p > 4,

1 |P/2 1 1 p/4
ES | |7e1— ZTk < cm ZES(‘AHM?) + (ZES(A@)
k=1 k=1 k=1

Since IES(\Ak\p/Q) < ¢go BS ((r — T— 1)p/2) < 042040Es(|Vk|”), and IES(A%) < IEJS(('r,c -
T—1)?) < cao S (V}1), this leads to:

-1 |P/2 —1 p/4
(5.3) B |reer — ) T < i3 Z]ES VilP) + caq (Z]ES v ) .
k=1 k=1

At this stage, we need to estimate ES(|V,|?). This can be done by another application of

Rosenthal’s inequality in (4.16), for V; is sum of independent mean-zero variables under PS:

p/2
B ([Vil?) < ess Y EE)IXIP+ cus (Zﬁi(X)) :

xEZ2 xXEZ2

We have used (4.17) and the fact that > ;. &8 (x) < (30, cz2 E2(x))P/2.
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Plugging this into (5.3), and taking expectation (with respect to E) on both sides, we

obtain:
—1 p/2 p/2
(-S| < wZE(ka lxll“)+04sZE(ka )
k=1 XEZ2 X€EZ2
-1 2 p/4
teoE [ 303 e |x||4q+Z<ka )
k=1 xe7? = x€EZ2
(5.4) Y L+

We now assume that p > 4 is an even integer. By (4.20),

<Z§k ) I[P~ q) < G0 77/119+(p7q)/2(10gnk)fl/gﬂ’ﬁ,

XEZ?

p/2
E ( Z SE(X)) < ¢ n (logn ) P/(29)+P+6,

XEZ2

which yields

£—-1
I5 < cs2 I()‘ < cs3 ZnZ/Q(log nk)*p/(20)+p+5
k=1
(5.5) < csanl?(logmy)V/ep/ 0 tp=tte

To estimate I7, we first note that

p/4

-1 p/4 /—1 2
I7 < 55 E (Z D& ||X||4_q> +ossE| D ( > fi%("))

k=1 x€7?2 k=1 x€7Z?2

Observe that for any b and o, {3}, 72 & () [|x]|*}k>1 is a sequence of independent random
variables. Now we make use of another inequality of Rosenthal, which can be found in Petrov
(1995, p. 63): let p > 1 and let Xy, Xo, - - - be independent variables with E(| X} |?) < oo for
all £ > 1. Then there exists a constant ¢(p) depending only on p, such that for all n > 1,

( )<cp STE(XP) + (mek)].

k=1
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Applying this inequality to Xy = >° & (%) [|x]|*77 and to X = (3, 72£2(x))?, respec-
tively, and we obtain:

Cs7 §E ( > &) Il q>p/ + Ca (ZE ( D &G [Ix)* q) )M

k=1 xX€EZ?2 x€Z2
p/2 2\ /4
+C592E(Z§k ) + ¢e0 ZE(ka )
XEZ2 xX€Z2

By applying (4.20) we can see that the dominating term is

2\ P/ -1 /4
Z E ( Z gk ) < ¢ (Z(nk+1 — nk)Q(log nk)2+5>
xeZ? k=1
< C2 n:Z/Q (log ne)3p/4—17/(49)+116/4’
which means
I;=0 < p/2 (log g )3p/4—P/(49)+p5/4) , ! = 0.
Combining this with (5.4) and (5.5) yields that, for any & > 0,
-1 |P/2
El |7e-1— ZTk < Cg3 n p/2 (logny )310/4 p/(40)+e
k=1

By choosing p sufficiently large and applying the Borel-Cantelli lemma, we obtain (5.2). O

The next lemma says that T} is close to Hy defined by

(5.6) HyE0?) €(x)

XEZ?2

Lemma 5.2 As { — oo,

T
L

(5.7) (H, — Ty) = O(ny), a.s.

=
I
MR

Proof. By definition,

EH: - Ti =E| ) &x)(* —EY’(®))| = Y E(&(x)) (0" -~ EY*(x))).

x€Z? x€Z2
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For each x € Z2,

o? ~E(Y?*(x) = E(igf)l{nx»nxu}) + [E(Y () 1y osiny)]”

T [l

IA

whereas E (£2(x)) < E(&*(ng+1,x)). Therefore,

& (M1, )
(5.8) ]E|Hk—Tk\<cﬁ4]E(ZT;”qQ :

€72

It is easy to estimate the expression on the right hand side. Indeed, supy.z2E(£2(n,x)) <
ces (logn)?, cf. (4.2). On the other hand, by (4.6), for any € > 0, there exists cgs = cg6(€)
such that E[Y ", ;. &%(n, x)] < cg6 n(logn)' <. Accordingly,

& (n,x _ E(£2(n, x)) £2(n,x)
(Zannq ) = 2 e TR 2 T

€z? [Ix||<nt/2 [Ix||>nt/2
ces (log n) -2 | 2(
< q
< D 1_|_||X||q2 > €mx)
| <nt/2 xeZ?
< cern? 2 (logn)? + ces n?~*(logn)'+e
(5.9) < cegn? 2 (logn)?.

Plugging this into (5.8) yields that
E|H, — Ty = O (ni‘q/Q(lognk)z) . k- oo
By Chebyshev’s inequality,
P(|Hk - Tlc| > Mpg1 — nlc) < cg9 nll;qp(log nk)1+1/g,

which is summable for k. Hence, by the Borel-Cantelli lemma, when k£ — co, Hy — T}, =
O(ng+1 — nk), a.s. This immediately yields (5.7). O

Finally, we need the following lemma to estimate i_:ll Hy.

Lemma 5.3 For any e >0, as { — oo,

(5.10) Z H, — — ng logn, = 0 (ne(log ng)l/@"”g) , a.s.
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Proof. We now estimate the first two moments of Hy. First, by writing Y- ;. E%(n,x) =

>0 2o Lisi=s;}, we have B (Y0, ,26%(n,x)) =n+14+23777 'S P(S,, = 0), which,
in view of (4.1), yields that

(5.11) E( Zf%n,x)) = %nlogn—l—@(n), n — 0o.

XEZ2

For the second moment of Y __,.&*(n,x), Bolthausen (1989) proved (cf. also Lewis, 1993)
that
(5.12) Var ( Z £(n, X)) = O(n?), n — o0o.
x€Z2?
Recall from (5.6) that Hy = 02> ;& (x), which is distributed as 0® Y ;2 £* (g1 —
ng,X). Therefore, by (5.11),

-1 —1
202
ké_l E(Hk) = —7'(' kg_l (nk+1 — nk) lOg(TLk_H — ’I’Lk) —+ 0 (ng)

2
- 2 nglogng + O (ngloglogny),
7r

whereas according to (5.12),

o1 2 4
(Z (Hy — k))) = ZVar(Hk) =0 (ng(logm)l_l/") .

Consequently,
-1 952 2
E H, — —nyl = O (n?(logl 2 { — oo.
(; k - Ty ognz> ("e( oglogny) ), o0

Now (5.10) follows by means of the Borel-Cantelli lemma. O

We are now ready to complete the proof of Lemma 2.3. Indeed, Lemmas 5.1, 5.2 and 5.3
together imply that for any € > 0, almost surely when ¢ — oo,

2 2
(5.13) To—q — il nelogng = o (ne(log n4)25+5) ,
T

where (3 is as in (2.9). Note that § < 1/2 and 2p > 1.
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Let us recall the following result in Csérg6é and Révész (1981), p. 30: let t — a; be a
non-decreasing function on R, such that 0 < a; < ¢ and that ¢ — ¢/a; is non-decreasing.

Then . .
(5.14) lim sup SPosusa SWPogssra W (s + 1) = W(s)|

t—00 V/2a;(log(t/a;) + loglogt)
Applying (5.14) to t = (30%/m)nslogn, and a; = cyot/(logt)=2=¢ (for ¢ € (0,1 — 20),

of course), and in view of (5.13), we obtain: for any £ > 0,

=1, a.s.

2

2
W (1—1) = W (i nelog ne) =0 (né/z(log 7’L[)ﬁ+6) , a.s.
i

In light of (5.1), this yields Lemma 2.3. a

6 Proof of Lemma 2.4

We start with two moment estimates for Z(n) and Z(n). Recall that 2 < ¢ < 3.

Lemma 6.1 There exists a finite and positive constant cy1 such that

E [(Z(n) - 2(71))2] < e n* 2 (logn)?, n>2.

Proof. By definition,

Z(n Z &(n,x) 1{|Y(x)\>||x||} —E [Y(X)l{IY(x)bllxll}]) .

X€EZ2

Let PS(- )def P(-[{Sy}n>0) be as before the conditional probability given the random walk.
Then

E® [(2(n) - Z(n))’]
- Y 2mx { [V2(%) 1y > iy — [E(Y(X)1{|Y(x)\>||x||})]2}

xEZ2

£%(n, x)
S Cr2 Z 1 + ||X||‘1 9"
XEZ2

Taking expectation (with respect to E) on both sides, and the lemma follows from (5.9). O
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Lemma 6.2 Foranyp > q ande > 0, there exists a finite and positive constant c;3 satisfying

E (|2(n)|p> < cz3nP/?(log )P/, n> 2.

Proof. By Rosenthal’s inequality (cf. (4.16)), for any p > g,

p/2
ES (\2(n)|p) < on Z & (n, x) E(JY (x)[”) + ¢4 (Z &(n, x) B(Y2(x )))
XEZ XEZ o2
< o 3 € [P + erg (Z £, X>) -
x€Z2 x€Z2

Taking expectation (with respect to E) on both sides, and applying (4.6) to &« = p — ¢ and

a = 0 respectively, we obtain: for any € > 0,
E(1Z(n)")

as desired. 0

crr n' 002 (log )P~ - eqg nP/2 (log )2+

<
2
< plate,

Cr9 nP/? (logn)

We have now all the ingredients to prove Lemma 2.4.

Proof of Lemma 2.4. Taking t = b,,,, and a; = cgt/(logt)1=9/¢ in (5.14) yields the
estimate (2.12). So we only have to check (2.11). We use the following maximal inequality
due to Bolthausen (1989): let X, & Y wez2€2(m, x), then for any a > V20 and any m > 1,

P (Ogl%zu) > a@) < 2P (Z(m) > (a— \/io)\/XTn) .

Mg41

ol def .
Therefore, writing n = ny,1 — ny for brevity,

ng<j<ng41

I = P( max (Z(j)—z<w>>>(nm—wfﬂaogna”w)

- 1/2 1/2+¢
< ]P’(()n;g;Z(z)>n (logn) )
. . [T 3
< P (Orgzas);Z(z) > (logn) \/gX" ) +P (Xn > ;nlogn)
< 2P (Z(n) > (/7/3 (logn)® — \/50)\/Xn> +P (Xn > §nlogn) .
7r
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When n is sufficiently large, \/7/3 (logn)® — /20 > /7 (logn)¢/2. Thus

Iy < 2P<Z(n)>M\/)Tn>+P<Xn>%nlogn>

2

IN

1
2P (Z(n) > §n1/2(logn)1/2+5)

1
+2P (Xn < n ogn) +P (Xn > §nlogn)
™

™

(6.1) = 2Iy+ 2L+ L1;.
Observe that by Lemmas 6.1 and 6.2, for any p > 2 and € > 0,
= 1
Iy, < P (Z(n) —Z(n) > an/Q(log n)l/2+5>

= 1
+P <Z(n) > anﬂ(logn)l/”s)

16c71 n' 9 (logn)' 2 + cg; (logn) 7/2

<
S Cg2 (log n) _pg/z,

whereas according to (5.11) and (5.12),

>

2
IlO + Ill =P (‘Xn - —nlogn
™

nlogn Ccg3 M2 _ 72 css
= [(nlogn)/m]? — (logn)?

We can choose p sufficiently large such that pe/2 > 2. Plugging these estimates into (6.1)
yields

P Z(i)—Z — )21 1/24e ) < Ca4
(nfSI?gV}l(l+1( (]) (TL@)) > (TL@_H nf) (Ognf) = (log(nz+1 — né))2’

which is summable for /. By the Borel-Cantelli lemma, and since ¢ > 0 is arbitrary, we

have, almost surely for / — oo,

max (Z(j) = Z(ne)) = o0 ((nesr —ne)"(logne)'/**)

ng<J<ngqr
= o (néﬂ(log ne)1—1/(29)+5) :

The same estimate holds for (—7) in place of Z. This yields (2.11), and completes the proof
of Lemma 2.4. O
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