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1. Introduction

Let {W(t); t > 0} be a one-dimensional Brownian motion with W (0) = 0, and let

{L(t,x); t > 0, x € R} denote its local time process. That is, for any Borel function f > 0,

/Of(W(s))ds:/_oo F@L{ ) dz, 130,

We are interested in the process

t
ds
1.1 Yt)= [ —— t>0.
(1.1 0= [ 7
Rigorously speaking, the integral f(f ds/W (s) should be considered in the sense of Cauchy’s

principal value, i.e., Y(¢) is defined by

t oo}
) ds L(t,z) — L(t,—x)
1.2 Y(t) = lim — 1w = dz.
(1.2) (t) vy st o W(s) {IW(s)|>e} /0 T L

Since z +— L(t,x) is Holder continuous of order v, for any v < 1/2, the integral on the
extreme right in (1.2) is almost surely absolutely convergent.

The study of Cauchy’s principal value of Brownian local time goes back at least to
It6 and McKean [12], and has become very active since the late 70s, due to applications in
various branches of stochastic analysis. For example, it is a natural example in Fukushima
[10]’s theory for Dirichlet processes and zero-energy additive functionals (these processes
cannot be treated in the frame of the usual It6 calculus techniques). Another important fact
is that principal values of local times can be represented as the Hilbert transform, or more
generally, fractional derivatives, of local times. The latter plays an important role in a class
of limit theorems for occupation times of Brownian motion, discovered by Papanicolaou,
Stroock and Varadhan [14]. Also, the principal values of Brownian local times are the
key ingredient in establishing Bertoin [1]’s excursion theory for Bessel processes of small
dimensions. For a detailed account of various motivations, historical facts and general
properties of principal values of local times, we refer to the recent collection of research
papers in Yor [18], to Chapter 10 of the lecture notes by Yor [19], and to the survey paper
by Yamada [17].



The process Y (-) defined in (1.1)—(1.2) is continuous, having zero quadratic variation.
Although it is not used in this paper, we mention an interesting property: stopped at some
suitably chosen random times, the principal values give all the possible symmetric stable
processes (cf. Biane and Yor [3], Fitzsimmons and Getoor [9], Bertoin [2]).

It is easily seen that Y (-) inherits a scaling property from Brownian motion, namely,
for any fixed a > 0, t — a~/?Y (at) has the same law as t — Y (). Although the afore-
mentioned zero quadratic variation property distinguishes Y (-) from Brownian motion (in
particular, Y (-) is not a semimartingale), it is a kind of folklore that ¥ behaves somewhat
like a Brownian motion. Let us first recall (cf. [11]) the global and local almost sure

asymptotics of Y (-):

. Y (t)
1.3 1 B S 5.
(9 TP Jioglog VS *
Y(t
(1.4) lim sup ®) =8, a.s.

P oelos (170
Comparing (1.3)—(1.4) with the corresponding laws of the iterated logarithm (LIL’s) for
Brownian motion, we see that Y (¢) and W (¢) satisfy exactly the same global and local
LIL’s.

The aim of this paper is to get a uniform version of (1.3)—(1.4) for the increments of

Y (t). Our first result characterizes its modulus of continuity in the sense of P. Lévy.

Theorem 1.1. With probability one,

_ Y(t+s)—Y(t)]
lim sup sup -
h—0 0g<t<1 0g<s<h hlog(1/h)

Remark 1.1.1. So %Y(t) and W (t) have the same moduli of continuity (and the same

remark applies to Theorem 1.2 below). We have already seen that Y (¢) and W (t) satisfy
the same LIL’s. Heuristically speaking, that a factor /2 is missing in the modulus of

1

continuity comes from the fact that the Hausdorff dimension of the zero set of W is 3.

Our second result concerns the large increments of Y'(-). The length of time window,
in which the increments are considered, denoted by ar, will be supposed to satisfy the

following condition:



(0 < ar < T,
T +— ap and T +— T/ar are both non-decreasing,

log(T
Lo log(T/ar) _
\ T—oo loglogT

(1.5) .

Here is our main result concerning the large increments of Y'(+).

Theorem 1.2. Under (1.5),

. Y(t+s)—Y(t)]
lim sup sup =2, a.s.
T—oo gg<t<T—ar 0<s<ar ar log(T/ar)

We note that in Csaki et al. [5], we have already proved the upper bounds in Theorems
1.1 and 1.2 with a different constant, and assuming only the first two conditions of (1.5).

In particular, under these conditions, we established

Y (t -Y(t

limsup sup sup Y(t+5) ®)l <3 27/6, a.s.
h—0 0<t<1—h 0<s<h 4/ hlog(1l/h)
Y(t —-Y(t

limsup  sup sup Y(t+5) ®)l <3- 27/6, a.s.

T—oo 0<t<T—ar 0<s<ar ar log(T/ar)

These bounds were proved using estimates for local times. The reason for which we are able
to get lower bounds and the exact constants is that we shall be using different techniques,
based on fine analysis of Bessel processes. Also, due to third condition of (1.5), presently
we have as well ar/T — 0 as T — oo. Hence we could have stated Theorem 1.2 with
Supggir instead of supggicq_g, in its present form. The proof of the latter version of
Theorem 1.2 would require only a few slight changes in its current proof. We prefer to
keep the present form of Theorem 1.2, for it could be still true as an exact limsupp_, o,
statement under only the first two conditions of (1.5).

The rest of the paper is organized as follows. The upper bounds in Theorems 1.1 and
1.2 are proved in Section 2, and the lower bounds in Section 3. The proof of the upper
bounds is the harder part, requiring careful analysis on path decompositions and deep
properties of three-dimensional Bessel processes. The proof of the lower bounds mainly

consists in choosing some “nice” random stopping times.
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Notation. Throughout the paper, the letter ¢ with subscripts denotes some finite
and positive universal constants. When the constants depend on a parameter, say p, they

are denoted by c¢(p) with subscripts.

2. Upper bounds

The upper bounds in Theorems 1.1 and 1.2 are based on some key probability estimates
which are stated below as Lemmas 2.7 and 2.8. Let us first recall some known results.
Recall that W (-) is a standard Brownian motion, and that Y () is defined in (1.1).

The first useful result concerns the distribution of Y (s) for any fixed s. This was

evaluated by Biane and Yor [3].

Fact 2.1. The density function of Y (s) is given by: for s > 0 and z > 0,

P(Y (s) € dz) 2 (2k +1)222
e = Z(—l)’C exp (—7> .

m3s 8s
k=0

Comment 2.1.1. From Fact 2.1 it follows that
(2.1) lim = log (Y (1) > A) = ——
} im — =—_.
A—00 A2 & 8

Moreover, for s > 0 and A > 0,

(2.2) P(IY (5)] > M5) < e1 exp (—%) ,

where ¢ is a universal constant (cf. [11]). O

The second theorem we shall make use of in the proof of the upper bounds is time-
reversal for Bessel processes, cf. Exercise XI.1.23 in Revuz and Yor [16]. We recall that
a three-dimensional Bessel process is the Euclidean modulus of an R3-valued Brownian

motion.

Fact 2.2. Let Ty = inf{t > 0: W (t) = 0}, the first hitting time of W at 0. Then for any

z >0,
(2.3) {W(it);0<t<To | W(0) =z} faw {R(L;—1);0<t< Ly}
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where R(-) is a three-dimensional Bessel process starting from 0, and L, = sup{t > 0 :

R(t) = z}, the last exit time from z.

Comment 2.2.1. Observe that (2.3) also guarantees the identity in law between T (given

W(0) = z) and L,. Thus
RO 4 z? (v—u)x
(2.4) P(U<£x<v):/u Wexp <——> dy < YR
for any v > u > 0 and =z > 0. O

The next identity in law, due to Pitman and Yor [15], relates a particular additive
functional of the three-dimensional Bessel process and the range of one-dimensional Brow-

nian motion. This will be frequently applied to our situation.

Fact 2.3. Let R(-) be as before a three-dimensional Bessel process starting from 0. The

following identity in law holds:

1
ds law .
= sup W(s)— inf W({(s).
/0 R(s) 0<521 (5) 0<s<1 (5)

Comment 2.3.1. It is an immediate consequence of Fact 2.3 and Feller’s exact distribution

function of the range of Brownian motion (cf. [8]) that

(2.5) ]1»(/()1 ;(z) >,\) < ey exp (—’\;) A> 0,

with some absolute constant cy. By applying the diffusion comparison theorem stated in

Theorem XI.3.7 of Revuz and Yor [16] to squared Bessel processes, we deduce the intuitively
clear fact that a three-dimensional Bessel process starting from 2 > 0 is stochastically

greater than a three-dimensional Bessel process starting from 0. Consequently, for any

IF’(/OI;(‘Z)>)\‘R(O):$)<P</01%>)\).

By means of the Markov and scaling properties we arrive at:

(2.6) P (/: ;(‘Z) > A) < caexp (—%) :

_6_
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forv>wu>0and A > 0. O

We start the proof of the upper bounds in Theorems 1.1 and 1.2 with an elementary

estimate.

Lemma 2.4. Let M and N be independent random variables such that for all x > 0,
(2.7) P(M > z) < pexp(—az?), P(N > z) < vexp(—pz?),

for some positive constants u, v, a and 3. Then for all z > 0,

2
P(M+ N >z) <cs(1 +:c2)eXp (_zﬁxﬂ> )

where ¢z = c3(pu, v, 3) = p+ 2v + 20pw.

Remark. We note that the term in the exponential here is sharp.

Proof. We have
P(M+N>z)<P(M>z)+P(N>z)+P(N>z— M, 0< M < x).

Observe that the last probability term on the right hand side is
< E (Ve_ﬁ(m_M) ]l{ogMgm})
= —v / e A=Y q,P(M > y)
y€[0,x]

<ve P 1 20y / (z — y)e PEV P(M > y) dy
yG[O,ac]

< ve Bz’ | 2,6’/wm/ e=Ala—y)’—ay® dy.
y€[0,x]

Since B(x — y)? + ay? > aBz?/(a + B), this yields,

2
P(M + N > zx) < ,ue_o“”2 +2ve P 4 2Bpvz? exp (— :ﬁ%) ,

as desired. 0

It is intuitively clear that, if we want Y () to get extraordinarily large increments, the

Brownian motion W (-) should be close to 0. However, due to the fact that Y (-) is defined
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only as a principal value, we have to treat it carefully. The next preliminary estimates
(Lemmas 2.5 and 2.6) concern the two different situations: (i) W (-) is away from 0; and
(ii) W (-) is close to 0. The tail probability of the increment of Y'(-) in the second situation

is greater, as expected.

Lemma 2.5. For any positive d, t, h, and any A > 1 and a >

P (|Y(t +h) =Y ()] > A2, inf s)| > 0)
(2 8) sE[t,t+h
. _ C4((S) a2 h1/2 . )\2 ) e ( ((J, 1) >
L ————€X — X
t+hz P61 +o0) P

Proof. Let t > 0, h > 0 and A > 1. Write I; = I1(t, h, ) for the probability expression
on the left hand side of (2.8). Then

I,=P (\Y(t +h) =Y ()] > M2, inf  [W(s)| > 0)

s€[t,t+h]

—P <|Y(t/h+ D—Y(@E/R)| >N imf  |[W(s) > 0) .

s€E[t/h,t/h+1]
L ds
f\z :]P’( /
A=) o W3

It follows from symmetry and the Markov property that

Define

>, T0>1‘W )

(2.9) L=2 /0 TP (/h) € ds) f( 2).

Let us now estimate f(\,z). According to (and in the notation of) Fact 2.2,

Ly s
f()\,a:):P</£ _1;()>)\ Lo >1)

Fix a 6 € (0,1]. Then

- ds
= -1 1 . < 1
f\ ) Z]P’(/L_lR()>)\,(k J0+1<L k-H—i—)

k=1
kO+1 dS
2.10 IP’/ >N (E=1)0+1< L, <kO+1].
(210) SLP i 7N E
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By (2.6),

()l
<cpexp | — ,
(k—1)0 2(8) 2 2(0+1)

]P’((k-—l)0+1<£w<k0+1> <

whereas by (2.4),

Ox o x
(1+ (k- 1)9)3/2 = E3/291/2°

Going back to (2.10) and using Hélder’s inequality, we get that, for any p > 1 and ¢ > 1
with 1/p+1/q¢ =1,
xl/a

e8] 2
1/p _ A
f()\,ﬂf) < kz_lcz €xXp ( 2(0 + 1)p> k3/(29)91/(29)

—cPexp (- A z!/a ¢ 3
2 TP\ T )p) 070" \2g )

where ((-) denotes the Riemann zeta function.

Now let @ > 1 and 6 > 0. We first treat the situation when x < a. Note that
€(3/(2q)) < oo for ¢ < 3/2. We can choose § = 6(0) € (0,1] and p = p(d) > 3 such that
g €[1,3/2) and that (6 + 1)p = 3(1 + 0). Accordingly,

22
6(1+9)

(2.11) f(A z) < e5(0) aexp (— ) , for z < a.

The other situation is x > a. By definition,

FO,z) <P ( inf Wi(s) < AL ‘ W (0) = x)
s€[0,1]

<P (sei%fl](vv(s) —W(0)) < —(a— A‘1)>
el

(2.12) < 2exp (— 5

Plugging (2.11)—(2.12) into (2.9), we see that

11<205((5)aexp(—6(1)\7j_5))]?(0<W(%)<a)
+4exp<—w>
¢s(8) a2 h1/? 2 a— \—1)2
<2<t((2—h>32“p(‘6(3+5>>+4e"p<‘( ; )>’

_9_



proving the lemma. O

Lemma 2.6. For any positive §, t, h, A, and any b > 1

s€[t,t+h]

bh1/2 )\2 b2
2.1 < g 2 ) +4 ).
(213) C“(t+h)1/2exp< 8(1+6)>+ eXp( 2)

P <|Y(t +h)=Y(t)] > A2, inf  [W(s)| = 0)

Proof. Write Iy = I5(t, h, \) for the probability on the left hand side of (2.13). It is easy

to estimate Iy when ¢ = 0. Indeed, in this situation, we can use (2.2) to see that
I,=P <|Y(h)\ > ARY2 inf W (s)| = 0)
s€[0,h]
A2
(2.14) < 1 exp (—g) , when ¢t = 0.

Now assume ¢t > 0. Note that

(2.15) =2 / P(W (t/h) € dz) g(A ),
0
where
\z) =P " ds £ |W(s)| O‘W(O)
= in = =) .
I (3) s€[0,1]
Recall Tj from Fact 2.2. Comblnlng Fact 2.2 (in its notation) with the strong Markov and
scaling properties, we obtain:
1
ds
Az)=P S To<1 ‘ W (0
02 =2 (|| g > o<1 [0 =)

Loy
0

where R and Y (1) are assumed to be independent. Now fix an integer n > 1. Clearly,

P(/k/n ds)+\/1—k—|y(1)|>/\)
P([/ ds \/—%\Y(l)\>)\>.

M:

g\ z) <

>
1

1

M=

>
1

1



We want to apply Lemma 2.4 to M = \/k/nfo ds/R(s), N =+/1—(k—1)/n|Y(1)

view of (2.5) and (2.2), it is seen that (2.7) is satisfied with u = ¢, @« = n/(2k), v = 1
and f=1/8(1 — (k—1)/n). It follows from Lemma 2.4 that

" 1+ X A2
C7Z1— k—1)/ eXp(_8+(8—6k)/n>

<ern?(1+ A%)exp (—8(14)‘_721/7%)) :

Let 6 > 0. We can choose n = n(§) such that n=! < §/2. Therefore,

g\, z) < cs(8) (1+ A?) exp <_m)

(2.16) < co(6) exp (—8(3715» ,

is uniformly

the last inequality following from the fact that (1 + A\?) exp( s(i\j- 5 5 -|)‘j5 /2))

bounded in A > 0.
The estimate (2.16), which holds uniformly in z, is not accurate enough when z is

large. Let b > 1. When z > b, we have

s€[0,1]

2
(2.17) g\ z) <P ( inf (W(s) —W(0)) < —b) < 2exp (_%> _

Using (2.16) for = € [0,b] and (2.17) for = € (b, 00), and in view of (2.15), we obtain
that, for ¢t > 0,

I < co(6) exp (—8(1{ 5)) P(0 < W(t/h) <b) + 4exp (‘g)

hl/2p A2 b2
< — S — —— .
< ¢o(9) (t+ h)1/2 eXp( 8(1+6)> +4eXp< 2>

This, together with (2.14), completes the proof of Lemma 2.6. a

The next two probability estimates (Lemmas 2.7 and 2.8) are the main ingredient in
the proof of the upper bounds in Theorems 1.1 and 1.2. More precisely, Lemma 2.7 is
our key probability estimate, which will be reinforced later in Lemma 2.8 into a maximal

inequality.



Lemma 2.7. For all positive numbers 6, t and h, and all A > 1,

P([Y(t+h) - Y () > MH?)
< c10(9) (szth)l/2 exp (_23(1)\742”5)) +8 exp <_/\;) _

Proof. Take 6 = 1/6 and a = A + A~! in (2.8) to see that, for A > 1,

P(|Y(t+h)—Y(t)] > Y2, inf |W >0)
(ve+m-vo) ()

_ cu A2 hl2 . MY L e A2
<———exp|—— xp | ——
t+hiz P77 Pl
c12 ht/? A2 A2
. < ——— - 4 —— .
(2.18) G+ h)72 exp 3 +4dexp 5
On the other hand, replacing 6 by 26 and taking b = X in (2.13), we get that

P <|Y(t +h) =Y ()] > ARY2,  inf  |[W(s)| = o)

s€[t,t+h]
< 8 AR/ e X +4dex s
S ——5p | == -
@+ 1) 72 P\ T8(1 + 20) P77
c13(0) h1/? 22 22
2.1 P AL _ 4 _2).
(2.19) G+ P\ Tsarey) TP T
Combining (2.18) with (2.19) yields the lemma, with ¢19(d) = c12 + ¢13(9). O

Lemma 2.8. Ford >0,z >0andT >0, h > 0,

P ( sup sup |Y(t+s)—-Y(¢)] > x\/ﬁ>
0Kt<T 0<s<h

s (@ o (“sara) e (s 5))) |

Proof. Lemma 2.8 is a consequence of Lemma 2.7. The dyadic approximation argument

we are using here is not new, and can be found for example in the proofs of Lemma 1.1.1
in Csorgd and Révész [7], and of Lemma 2.2 in Csaki et al. [4]. The main ideas go back

to Lévy [13].



For positive real number s and integer n put s, = 27"|2"s|. We have
Y (t+s) = YO <Y((t+ 8)n) = Y(tn)|

Y Snjl_Y S)n+j
(220 +JZOI (4 8)ntjt1) = Y ({4 8)ntj)l

oo

+ D Y (tngr) = Y(tnas)|-

§=0
Consider ¢t € [0,T] and s € [0, h]. Clearly |(t + 8),, — t,| < h +27". Therefore, by Lemma
2.7, for any A > 1

P ( Y ((t+8)5) — Y (t)| > A\/m)
(2.21) < ¢10(0) }(;-:_725;: exp (_8(1)\7—7—6)> + 8exp <—)\;> .
Note that there exists an ¢ with 0 < ¢ < (T + h)2", such that (¢t + s), = 27", ie.
t+seli27™, (i+1)27™). If i = 0, then the probability on the left hand side of (2.21) is
simply 0. For each i with 1 < i < (T + h)2", there are at most 2™h + 3 different values of
(t)n, such that (¢t + s), = i2~™. Therefore, by (2.21),

]P’( sup  sup |Y((t+s)n) —Y(tn)| > AW)

0<t<T 0<s<h

610((5) vVh 427" )\2 A2
< (2"h + 3) Z ( _ exp (—7 +8exp|——) ).
1<i<(T+h)2n Va2 8(1+9) 2

Since Y, cic, iH/? < 24/a for any a > 1, we arrive at:
AN

(2.22) P ( sup  sup |[Y((t+ $)n) —Y(tn)| > AWh+ 2_”) < ¢1(n),

0<t<T 0<s<h

where
$1(n) = e15(8) /(T + 2" (2*h + 3)*/2 exp (‘ﬁ)
+8(2™h + 3)(T + h)2" exp (_;) .

Similarly, for any u € [0, T + k] and integer j > 0, since |t 4j+1 — Untj| < 27D we

have, by Lemma 2.7, for any A; > 0,
P (lY(un—i—j—}—l) - Y(un+g)| > )\j2_(n+j+1)/2>

< erol6) 4| T N 8 Aj
X C].O( ) Up i1 exp _8(]. +5) + €xp _E 3




which leads to:

P( s ‘Y(“n+j+1>—Y<un+j>|>Aj2—<n+j+1>/z)

0<u<T+h

2 2

h = eXp | — + 8exp | ——

1<i<(T+Zh)2n+j+1 \/; 8(1 + (5) 2

< pa(n, ),
with
1) — ntj+1 . 7 nbi+ A

b2(n.3) = x0(0) V(T + W exp (g | +8(1 4 1)2 exp< 2 )

Collect (2.20), (2.22) and (2.23) to see that,

P| sup sup |Y(t+s)—Y(t)|>Ah+2"7+2) A2 rHHD/2

0<t<T 0<s<h =0

oo

< pr(n) +2)  ¢a(n, ).

i=0
Let p = p(0) € (0,1) be such that /1 + 2u + 20 /81 < 1+ 4§, where ¢y is the absolute
constant defined in (2.24) below. Choose \; = /A% 4+ 45, and let n = n(h,d) be such that
27" € [ph, 2ph]. Then

*QE:@"J) q*)< Tzhem(—aﬁi®)+T2h@m(—§))-

On the other hand, since A\; < A + 251/2 and X > 1, we have,

oo

(2.24) Z)\ 2~ +1)/2 ¢ Z (A4 2512270 D/2 = ¢1g X+ ¢19 < cao A,
7=0

(with c13 = Z;io 2=U+1/2 619 =2 Z;iojl/22_(j+1)/2 and ca9 = c13+¢19), which implies
AWh+277 423 X272 /T4 2u AWh + ea0 /B AV,
=0

Since /1 4 2u + c20 /8u < 1+ 6, we have proved that

11»( sup  sup \Y(t+s)—Y(t)|>(1+5)A\/E>

0<t<T 0<s<h

T+h A2 T+h A2
< - — ~Z 7.




This holds actually for all A > 0 (when A € (0,1), we only have to take an enlarged value
of ¢17(9) if necessary). Taking x = (1 + d)A, and since § > 0 is arbitrary, this yields the

lemma. O

Proof of the upper bounds in Theorems 1.1 and 1.2. To check the upper bound in
Theorem 1.1, we write

©(h) = sup sup |Y(t+s)—Y(t)|
0<t<1 0<s<h

Let § > 0 and hy = hi(6) = k=3/9. Applying Lemma 2.8 to T = 1, h = h and
x =2(14 6)4/log(1/hy) gives that

P (©(he) > 21+ 8)/he log(1 /) )

1 1496 1
< 2c¢14(9) <\/T exp (— 5 log h_k>
k

= 2614(5) (h2/2 + hi+25),

1 1
— —-2(1 log —
+hkexp< (1+9) oghk>)

which is summable in k. By the Borel-Cantelli lemma, almost surely for all large £,

O(hr) < 2(1 4 6)y/hilog(1/hy). Now let h € [hg41, hi]. We have

O(h) O (hg) Vhi
VIlog(1/h) ~ \/hyy1log(1/hy) Vi1

Since y/hk+1 /vVhi — 1 (as k — 00), we obtain that

lim sup Oh)

h—0 +/hlog(1l/h)

This yields the upper bound in Theorem 1.1, as  can be as close to 0 as possible.

<2(1+6)

< 2(1+9), a.s.

The upper bound in Theorem 1.2 is proved using exactly the same argument, consid-

ering O(T) = SUPo<t<T—ar SUPogs<ar | Y (E 1 8) — Y (t)] instead of O(h). O

3. Lower bounds

As before, W(-) is a standard Brownian motion, and Y (-) denotes the principal value
defined in (1.1)—(1.2). The proof of the lower bounds in Theorems 1.1 and 1.2 relies on

the following estimate.



Lemma 3.1. ForT > 2a > 0,e € (0,1),6 >0 and A > 0,

]P’( sup (Y(t+a)—-Y(t) < A\/a)

0<t<T—a

a\¢&/2 T (1—e)/2 2
Z _ bl —(1+0)A%/8
<5<T> —I—exp( c91(0) <a> e .

Proof. Let us construct an increasing sequence of stopping times {nx = nx(a)}r>o0 by:

no = 0 and
Nk+1 = inf{t > n +a: W(t) =0}, k>0
Let
vr =vp(a) =max{i >0: 7, < T — a}.
Clearly,

sup  (Y(t+a)=Y(t) > max (Y(n;+a)—Y(ni)),
0<t<T —a oKy

which yields

]P’( sup (Y(t+a)—Y(t)) < )\\/E)

0<t<T—a

<P (V0 0) = V() < MG )

Ogigl/T

T (1—e)/2
<P (VT < <—>
a

(3.1) +P ( max Y(mi+a)—Y(n)) < )\\/c_z> :
0i<(T/a)1=5)/2

It was shown in Cséki and Foldes [6] that for T' > 2a and € € (0, 1),

(32) b (I/T B (%)(1_6)/2> < 23 (%)6/2‘

On the other hand, by the strong Markov property, {Y (n;+a)—Y (1;) }i>0 are iid variables,
having the same law as Y (a). Hence,

P (e (VO 0) = Y () < AVa)

0<i<(T/a) =9/
L(T/a)3=2)/2)

= (1-P(Y(a) > \Wa))



In view of (2.1), we have, for any 6 > 0 and A > 0,
P(Y (1) > A) > cga(6) e (1HON/8,
which implies that

P (o (VO ) = V() < A )

0<i<(T/a)(1=2)/2

2 g\ LT/ 0972
< (1 _ 622(5) e—(l—}—&)A /8)

(3-3) < exp (— L(T/a)1=5)/2] ca9(5) e—<1+5w/8) ,

the last inequality following from the relation that 1 —z < e~ (for > 0). Assembling

(3.1)—(3.3) yields the lemma. O

Proof of the lower bounds in Theorems 1.1 and 1.2. Again, these bounds are
proved using the same argument. For the upper bounds, we chose to prove Theorem
1 (cf. Section 2), so we give the proof of the lower bound in Theorem 1.2 here. The

corresponding proof for Theorem 1.1 is similar and easier.

log(T'/ar)

loglog T — 00, we have T' > 2ar for all

Let ar be a function satisfying (1.5). Since

large T, say T' > ng. Consider

AT)= sup (Y(t+ar)—-Y(t)), T > 0.
0<t<T—ar

Let § > 0 and € € (0,1/2). Define Ty, = T(5) = (1 +6)k. Apply Lemma 3.1 to T' = Ty,
a=ar, and A = 2” 26\/10g (T'/ar,), to see that for T' >

P (A(Tk) 2? Var, log Tk/aTk)>

- (aﬂ)e/z . (—021((5) <E>(1_EW eXp<—(1 — 2¢)log(Ty/ar,) )>

Tk ar, 2

€/2 €/2
_5( T _ T
_5<Tk) +exp< c21(9) <0Tk) )

% — 00, we have T'/ar > (log T)3/¢ for large T. Therefore, 3", (ar, /Tx)*/? <

Since
oo and Y, exp(—ca1(0) (Tx/ar,)¥/?) < co. By the Borel-Cantelli lemma, almost surely
for all large k,

21— 2¢
Nirea

A(J%) \/aTklog Ik/aT%)



Let

Ao(T) = sup sup (Y(t+s)—Y(t)).
0<t<T —ar 0<s<ar

Clearly T — Ay(T) is non-decreasing, such that Ag(T) > A(T). Therefore, for T €
[T, Th+1],

A[) (T) S AO (Tk) > 2\/ 1—2¢ \/aTk log(Tk/aTk)
\/aT log(T/ar) - \/aTk+1 log(Tk+1/ar,) V1+6 \/aTk+1 log(Tk+1/at,)

Since log(T'/ar) — oo (cf. (1.5)),

log(T/aT,) _ log(Tk/ar,)

= — 1, k — oo,
log(Tkq1/ar,) log(Tw/ar,) + log(1 + 0)

and since T+ T'/ar is non-decreasing,

aTy, Tk 1
> = )
ATy 41 Tk+1 1+46

we obtain:

liminf 0@ V12

> , a.s.
T—o0 arlog(T/ar) 1+9

Sending € and ¢ to 0 yields the lower bound in Theorem 1.2. O
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