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Abstract. We discuss various topics. They include: strong approxima-
tion of local time and additive functionals; path properties of Cauchy
principal value; iterated processes; empirical processes; Vervaat error
process; Banach space valued processes.

1. Introduction

The work of Miklés Csorgd has had a great impact on modern probability and
statistics. His books, papers and ideas are wells of informations for these fields’
generations of mathematicians. This survey attempts to give only a brief account
of the papers, which he has co-authored with one or more of us during the twenty-
odd years that we have been his friends and collaborators. A number of these
papers were written with P4l Révész. In the following, we summarize the contents
of these papers which are focused on a few strongly related topics.

The basic object of these investigations is the standard Wiener process or
Brownian motion. [The two names will be alternatively used in this paper for
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the same process.] This is a mean zero Gaussian process {W(t), t > 0} with co-
variance EW (t1)W (t2) = min(t,t2). In certain cases we need a Wiener process on
the whole real line. Let {Wi(t), ¢ > 0} and {W5(¢), t > 0} be two independent
standard Wiener processes. Then a standard Wiener process on R is defined as
W(t) = Wi(t) for t > 0 and W (t) = Wa(—t) for t < 0.

2. Local time and additive functionals

2.1 The increments of the local time. At the beginning of the 1980-s
we were fascinated with the Brownian local time. The asymptotic behaviour of
the increments of the Wiener process was well understood, as Csérgd and Révész
[36], [37] proved their incredibly precise results in a couple of papers about how
big and how small are these increments of the Wiener process. In our first joint
paper our objective was to investigate the corresponding "how big” question for
the increments of the local time. Before quoting these results, we introduce a pair
of conditions which will be frequently used in the sequel.

Condition A:
0 < a; <t is a nondecreasing function of t such that t/a; is also nondecreasing.

Condition B:

log(ta, ')

00 loglog t = Foo

Theorem A (Csorgé and Révész [36], [38]) Under Condition A we have
lim sup Bra; /(W (¢ + ar) — W (¢))
t—o0

= lim sup ﬁta,;lm sup (W(s+ay) — W(s))

t—o00 0<s<t—as
= lim sup ﬁtat_l/Z sup W(t+s)—W(t) =1 a.s.,
t—o00 0<s<ai

where 3; = (2(logta; ' + loglogt))~'/2. Supposing Condition B as well, we also
have

lim ,Btat_l/2 sup (W(s+a)—W(s)) =1 a.s.
t—o0 0<s<t—a
As it turned out, the increments of the local time behave very similarly, though
a slightly different normalization is needed. We start with a quick definition of the
local time process. For any Borel set A on the real line let

H(A,t) :=XMs<t:W(s) € A}

be the occupation time of W, where X is the Lebesgue measure. H(A,t) is a
random measure which is absolutely continuous with respect to A with probability
1, its Radon-Nikodym derivative is called the local time of W, and will be denoted
by L(z,t), i.e.

H(A, 1) = /A L(z,1) da.
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The joint continuity of L(z,t) is a famous result of Trotter [79], who also
investigated the modulus of continuity, separately for x and for ¢. The celebrated
law of the iterated logarithm for the local time is due to Kesten [62]:

. L(0,t) . sup_ L(z,t)
1 EN— 00T <00 =1 .S. 2.1
i (2tloglogt)l/2 i (2tloglogt)l/2 a-s 21)

Let us denote L(0,t) by L(t). Our main result in [14] was the following
Theorem 2.1 Under Condition A we have

limsup 7Y (t) = lim sup fytalt_l/2 (L(t) = L(t—ay)) =1 a.s., (2.2)
t—o0 t—o0
where
Y() =Y (ta) =a;? sup (L(s+ar) — L(s))
0<s<t—ay
and

v = (logta;* 4 2loglogt) /2.

Assuming Condition B as well, we also have

tllglo%Y(t) =1 a.s.

2.2 Approximation by a Wiener sheet. Once we understood the asymp-
totic behaviour of the local time increments when ¢ — oo, we turned our attention
to the whole two-variate process L(z,t) — L(0,t). The starting point of these in-
vestigations was a landmark paper of Dobrushin [48] formulated for random walk
(instead of a Wiener process case) which we will quote later. This theorem tells us
that the local time increments normalized appropriately has a distribution, which
for large t is close to the distribution of the product of Nj4/|N3| where N; and
N are independent standard normal variables. This fact is even more intriguing
combined with the following insightful result of Yor [83]:

Theorem B (Yor [83]) As A — oo,

1 2, 1 2 1 2 2
(AW()‘ t), )\L(a,)\ 1), ) (L(a, A*t) = L(0, A t)))
3 (W(t), L(a,t), W*(a, L(0,t)))

where W*(a,u) is a Wiener sheet independent of W (t) and = denotes weak con-
vergence.

A Wiener (Brownian) sheet {W*(a,u), a > 0, u > 0} is a mean-zero Gaussian
process with covariance E W* (a1, u1)W*(aa, u2) = min(aq, az) min(uq, us).

The above two results suggested that the local time difference L(x,t) — L(0,t)
could be strongly approximated by o, W*(L**(0,t)) on such a way that

L(0,t) should be close to L**(0,t),

W*(t) and L**(0,t) should be independent,
and o, is a constant depending only on z. This conjecture was confirmed in [15] by

Theorem 2.2 There is a probability space with

e a standard Wiener process {W(t), t > 0} and its two-parameter local time
process {L(a,t), a € R, t > 0},
e a two-parameter Wiener process {B(a,u), a > 0,u > 0},
o a process {I1(0,t), t > 0}, with {L1(0,t), t > 0} 2 {L(0,¢), t > 0}
such that as t — oo



4 Endre Csiki, Anténia Féldes, and Zhan Shi

® SUDo<a<art5/2 |L(a7t) - L(07t) - ZB(G,LI(O,t))l = O(t((1+6)/47€/2) a.s.,
o |L1(0,t) — L(0,t)| = O(t'%/3? log? t) a.s.,
e {L1(0,t),t > 0} and {B(a,u), a > 0,u > 0} are independent,

and for the constants above we have; a* >0, 0 < § < 7/100, 0 < e < 1/72-6/7,

L denotes equality in distribution.

The proof of this result was based on two major ingredients. The first of these
two is an approximation theorem of Berkes and Philipp [4] for weakly dependent
vectors. The second ingredient is a method we developed in this paper to achieve
the stated independence of L'(0,t) and B(a,u) in the theorem.

As a consequence of the above results, one can conclude various limit distribu-
tions and laws of the iterated logarithm, such as

L(a,t) — L(0,t) D

Ny, t— o for any a > 0, 2.3

aL(0,t) ! Y (2.3)

L(a7t)_L(07t) D 1/2

oallz/t Ni|No |2, t—oo forany a>0, (2.4)
L(a,t) — L(0,t

lim sup (0t —LOY _ 1 as. forany a>0, (2.5)

t—oo  24/2aL(0,t)loglogt

, L(a, t) — L(0,?) 2°/4

hﬂi‘ip 21211/ (loglog )37 = as. forany a>0, (2.6)
L(a,t) — L

limsup sup (a,?) ©0,8)

t—00 0<a<a+ts 2¢/2a*t9L(0,t)(loglog?)

§6 1/4 L(aat) — L(07t) (27)

=1 a.s.

= limsu su
rne ocaconss & (a*19)1/201/4(loglog 1)%/4

for any a* > 0 and 0 < 6 < 7/200, z denoting convergence in distribution.

In fact, (2.3) and (2.4) also follow from Theorem B. However the rest of the
above statements do not follow from any weak invariance principle. (2.5) and (2.6)
were proved directly by Csaki and Foldes [28]. An important step in attaining the
above strong theorems was the following result which proved to be important in
its own right; If Wy (+) is a standard Wiener processes and La(-, ) is a Wiener local
time, independent of W7, then

: Wi(L2(0,t)) 25/4

2.3 Additive functionals. Let us consider a sequence of i.i.d. random vari-
ables X;, 7 = 1,2... taking values on the integer lattice Z. Put Sy = 0, S, =
Xy + Xo + ... + X,,. Let us denote the local time of the random walk S, by
&(z,n) := #{k:0 < k <mn, Sk = z}. Define the additive functional A,, as

T=—00
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where f(z), € Z is a real valued function. Clearly in the special case f(a) =
1, f(0) = —1, and f(z) = 0 otherwise, 4,, = £(a,n) — £(0,n). Let us denote

F=3 f).

k=—o00

The so called first-order results on A,, are establishing the following observation: If
f # 0 then the asymptotic behaviour of A, with appropriate normalization is the
same as the behaviour of fL(0,n). The interested reader should consult Kallianpur
and Robbins [60], Darling and Kac [44], Skorokhod and Slobodenyuk [78] and
Borodin [7] to see the history of these first order limit results. However, we were
interested in the so-called second order limit theorems for A, which are focused
on the behaviour of A, when f = 0 (clearly this is the case which contains the
increments of the local time). The history of this topic goes back to the above
mentioned famous result of Dobrushin [48] that we now formulate as the following
theorem:

Theorem C (Dobrushin [48]) Assume that P(X; = +1) =P(X; =-1)=1/2
and define the additive functional as in (2.9). If f(x), x € Z has finite support and

f =0, then

: An

where N1 and N> are two independent standard normal variables, and

=4 kRS D DifOFG) - Y] k).

k=—o0 —o0<Li<j< oo k=—oc0

This result has several generalizations. The corresponding functional version
was given by Kasahara [61] and Borodin [6].

Similarly to the discrete case, one can consider the additive functional of a
standard Wiener process. Let g(x) be an integrable function on the real line and
consider

t o}
G(t) ::/ g(W(s))ds :/ g9(z)L(z,t) dz, t>0.
0 —oo
Results on the additive functional G(t) are parallel to the results on A,. Let us
quote the functional form of the limit theorem given by Papanicolaou et al. [69],
Tkeda and Watanabe [58], Kasahara [61] and Borodin [6]. They proved (under
somewhat different assumptions on g) that

A VA(G(M) — GL(0,1) B oWy (La(t))  as A — oo, (2.11)

where g := ffooo g(z) dz, Wy is a standard Wiener process, Ly is a Wiener local
time at zero, such that W; and L» are independent, and o is an explicitly given
constant.

Our goal was to prove the strong approximation version of (2.11) for the random
walk and the Wiener case as well. In both cases the method developed in [15] proved
to be the appropriate tool to achieve our results in [16]. To avoid being repetitious
we only quote the result of [16] in the case of a Wiener process.
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Theorem 2.3 Assume that f(z) is an integrable function on R and

/ o[+ f(2)|dz < 00 for some & > 0. (2.12)
—0oQ

Then on a suitable probability space one can define a standard Wiener process W (t)
with two other standard Wiener processes W1 (t) and Wa(t) such that

D Wl( ) and Wz( ) are independent,
o | [y f(W(s))ds — FL(0,8) — oW1 (L2(0,8))] = O(t7/?)  as., t— oo,
e |L(0, t) L2(0,t)| =0(t"*)  as., t— oo,

where f := [%_ f(x)dx and

02:=4/0 (/w f(y)dy>2dw+4/ (/ fly ) dz, (2.13)

L(z,t) and Ly(z,t) resp., are the local times of W(-) and W(-) resp., and k, T are
any numbers satisfying k < 41,

1 1 1 7 1
-t - -t 2. 2.14
4+2(2+6)<r<2, 4+2(2+6)<”< (2.14)

Remark It was shown in [22] that the condition (2.12) can be relaxed to
o0
/ |2|Y/2+0| f(2)|de < 00 for some & > 0. (2.15)
—00

As a consequence of the above theorem we get the following LIL type result for
the additive functionals.
Under the conditions of the above theorem we have

Uy SV (s) ds = FLO,] _ 2
lim sup
00 t1/4(10g log t)3/4 7 3374
Both of the above two results and their random walk counterparts became
the starting point of many further investigations in this direction. The method of
proof was successfully used to generalize these results for the additive functionals
of various processes. Extensions were given for Markov chains by Csédki and Csorgd
[13], for diffusions by Csédki and Salminen [32], for Markov processes by Eisenbaum
and Foldes [50], for simple symmetric random walk on the plane by Cséaki et al. [30].
In [29] additive functionals of more general random walks in one and two dimensions
were strongly approximated under various conditions. As a consequence of these
results one always gets both LIL-type and weak convergence results.

a.s.

2.4 Principal value of Brownian local time. An important special type
of additive functionals is the following

t [eS]
ds / L(z,t) — L(—=x,t)
Vo) = | ——0 = dz, 2.16
(t) W) s o (2.16)
where the integral fot ds/We(s) (notation: z* = |z|*sgn(z)) is in the sense of

Cauchy’s principal value). Strictly speaking, the first integral is defined as Cauchy’s
principal value for 1 < a < 3/2 and as Riemann integral for a < 1. The investiga-
tion of the process Y] (¢) which is called the Cauchy principal value of the Brownian
local time goes back at least to Ité6 and McKean [59] and has become very active



Our joint work with Miklés Csorgd 7

since the late 70s, due to applications in various branches of stochastic analysis. For
example, it is a natural example in Fukushima [55] theory for Dirichlet processes
and zero-energy additive functionals. Also, the principal values of Brownian local
times are the key ingredient in establishing Bertoin [5]’s excursion theory for Bessel
processes of small dimensions. For a detailed account on these facts and general
properties of principal values of local times, we refer to the collection of research
papers in Yor [84] and to the survey paper by Yamada [82].

Hu and Shi [56] proved the following LILs for the local and global behaviour of
the principal value:

Theorem D (Hu and Shi [56])

: Yi(t)
1 ———=2V2 8. 2.17
I?l»sogp tloglogt vz as (2.17)
and
lim sup & =22 a.s.

r—0 /hloglog(1/h)

This result supports the common belief that the principal value process Y (t)
is very similar in behaviour to the Brownian motion. To explore further this phe-
nomenon we investigated some path properties of Y,(-) and especially Y;(-). We
studied the modulus of continuity and large increment properties (including the
LIL) of Y, (), as well as appropriate properties of a simple symmetric random walk
along these lines. Due however to lack of precise distributional properties of Y, (),
when a # 1, we could not obtain the desirable exact constants, though the rates
we established are optimal. In our first theorem [22] we proved the upper bounds
for the LIL, large increments and modulus of continuity.

Theorem 2.4 Under Condition A for 0 < a < 3/2 we have

SUPg<y<t—a, SUPo<s<q, |Ya(u + 8) — Yo (u)|

lim sup <ci(a) as. (2.18)
o0 ay = (log(t/a;) + loglog t)*/*
Yo (h
lim sup Ya(h) a.s. (2.19)

<
P50 Wi=a/2(log log(1/m)2 < “(*)
. SUPo<t<1—h SUPo<s<n |Ya(t + 8) — Ya(t)|
im sup a2
h—0 hi=a/2 (log(1/h))

Here, the constant c¢1 () is given by

< ci(a) a.s. (2.20)

3. 27a/6
ci(a) = a20/3(3 — 2a)1-0/3(2 — a)o/3” (2.21)
Remark In the particular case a; = t we get
. Yo (t)]
h?ij)gp =072 (log log 1)°72 <ca(w) a.s. (2.22)

Concerning the constant in LIL, we have the following result [22].

Theorem 2.5 For 0 < a < 3/2, there exists a finite positive constant ca(c)
such that

Y,
lim sup Yo (t)]

WD G 1 Leg e = (@) € [23042 TG - a), ai(a) as.  (2.23)
o0
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The LIL holds true also for random walks via the following invariance principle

[22]. Let S;,i =1,2,... be a simple symmetric random walk on the line, starting
from 0, and let £(z,n) be its local time. Define
n oo . .
1 Sr#0 f(l,’l’l/) - 5(_7@”)
Ga(n) =" % =% = . (2.24)
k=1 i=1

Theorem 2.6 On a suitable probability space one can define a Wiener process
{W(t), t > 0} and a simple symmetric random walk {Sp, n = 1,2,...} such that
for any 0 < a < 3/2 and sufficiently small € > 0 we have

Ya([t]) — Ga([t])] = ot ~27*7%)  aus., (2.25)
ast — o0.

As a consequence of our Theorem 2.6, the LILs in (2.17), (2.22) and (2.23)
remain true if Y, is replaced by G,,.

As it is easily seen, Y, is not defined for a > 3/2. In this case, we considered
instead the process

. W ! - . 2.2
Zu(t) /0 e (s) ds /1 dz (2.26)

This is a "nice” additive functional, for which Theorem 2.3 can be applied. The
limit process associated with such functionals is V(¢) = W1 (La(t)), where W1 (+) is
a standard Wiener process and La(-) is a Wiener local time at zero, independent of
Wi.

Considering the special case of Y7, in [21] we characterized the modulus of
continuity as follows.

Theorem 2.7 With probability one,

Y1t +s) — Yi(2)]

lim sup sup =2
h—0 0<¢<1 0<s<h hlog(l/h)

Remark Y; (t)//2 and W (t) have the same moduli of continuity (and the same
remark applies to our next theorem below). We have already seen that Y; (¢)/2 and
W (t) satisfy the same LIL. Heuristically speaking, that a factor v/2 is missing in
the modulus of continuity, this comes from the fact that the Hausdorff dimension
of the zero set of W is 1/2.

As to the large increments of Y;(+), in [21] we proved

Theorem 2.8 Under Conditions A and B we have

[V (u+ s) — Y (u)]

lim  sup sup =2 a.s.
=00 g<y<t—a, 0<s<ay ag log(t/at)

Remark Recently Csdki and Hu [31] was able to fill the gap in the above
increment results by showing that Condition A is enough to get a limsup.
To look at the the corresponding two-dimensional question, let

be a two-dimensional Wiener process, where Wi (t) and Wa(t) are two independent
one-dimensional Wiener processes, with W7 (0) = W»(0) = 0. Put

R(t) := [[W@)Il = /W (H) + W3 (D).
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Tt is well-known that {R(t), t > 0} is a two-dimensional Bessel process. In [23]
we were interested in the additive functional

= tods
Z(t) := —_—,

0= ), 7=
the critical case being a = 2 (instead of 3/2). It can be seen that the integral in
(2.27) converges for a < 2, but diverges for a > 2 almost surely. In the latter case
we defined the modified process

t

1
Zx(t) := —1 ds. 2.28
a(t) /0 R(s) {R(s)>1} 4S ( )

Considering the random walk counterpart, let {S,, n = 1,2,...} be a simple
symmetric random walk on the integer lattice Z?, i.e. S, = Y ,_, X}, where the
random variables X;, ¢ =1,2,... are ii.d., with

(2.27)

P(X:=(0,1)) =P(Xy = (0,-1)) = P(X1 = (1,0)) = P(Xy = (-1,0)) = 3

We also proposed to study the discrete process

~ 1
Ua(n) = Z Wl{sk;ﬁo}. (229)
k=1

Define
§(X7n) = #{ka 1 < k <mn, Sk = X}:

for any lattice point x € Z2. This is the local time process of {S,, n =1,2,...}.

First we considered the case 0 < a < 2, for which we managed to show that
the processes Z,(-) and 2-%/2U,(-) are close enough to each other to share many
of their properties. Based on some results of Revuz and Yor [72], Azencott [1]
and Borovkov and Mogulskii [8], in [23] we proved the following lim sup and lim inf
results for both of these processes.

Theorem 2.9 For 2/3 < a < 2 we have
limsu Z ®) = lim su 2702, (n)
pro tl-a/2(loglogt)®/2 sl nl-2/2(loglogn)/2
and

= Ki(a) a.s.

litm inf t~(1=2/2) (log log t)*/ Z, (t)
—00

= lim inf n~ 0~/ (log log n)*/22-*/2U, (n) = K»(c) a.s.,

n— 00

whith certain positive constants K1 (a) and Ky (a).

On the other hand, it turned out that when « > 2 then the two processes have
to be investigated separately. However both processes, suitably centered, are close
to certain iterated processes. We only quote the results from [23] in random walk
case, and some of its consequences, parallel results are true for Z*(t).

Theorem 2.10 Let o > 2. There exists a probability space where one can
define

o o two-dimensional simple symmetric random walk {S,, n = 1,2,...} with
its local time {£(x,n), x € Z%, n = 1,2,...}, and with the corresponding
additive functional {Uy(n), n=1,2,...} as in (2.29);

e a process {£M(0,n), n=1,2,...} £ {£(0,n),n=1,2,...};
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e a standard Wiener process {W(t), t > 0}, independent of {£()(0,n), n =
1,2,...};

such that, for some e >0, as n — oo,
o Ua(n) = fob(0,n) = 0 W (£ (0,n)) + O(log'*™“n)  as.,
e £(0,n) = M (0,n) + Olog' ¢ n) a.s.

where fy := > xez\ [0} W, oq =/ Var(Uy(p1)) -
The above theorem has both weak and strong implications.

Theorem 2.11 For o > 2 we have

el Bg 2 o0, (2.30)
falogn
Ua(n) — fa§(0>”) D
2 E 2.31
oovlogr V2r 5 E, n— oo, (2.31)
lim sup Ual) _ fa a.s., (2.32)

nooo lognloggn 7

lim sup Ua(n) — fa£(0,1) =2 a.s., (2.33)

n—s00 Viognlogs n V2

where E is a bilateral exponential random variable with density e~!*! /2, z € R, and
|E| is exponential with parameter 1.

2.5 Integral functionals. In [20] we studied the following two types of inte-
gral functionals of geometric stochastic processes which are of interest in financial
modelling:

At) = /0 Cep(X(w)du,  B(H) = /0 ~ exp (Y(u) _ %) du,  (2.34)

for 0 <t < 0.

We managed to show, that under fairly general conditions on X (t) and Y (t)
respectively, log A(t) and log B(t) behave like supy«,<; X (v) and supg<, o (¥ (u)—
u®/t). We only quote our first strong invariance theorem which deals with X ().

Theorem 2.12 Let the stochastic process {X(t);0 < t < oo} have almost
surely continuous sample paths, P(X(0) =0) =1 and put

Z(t) :==log A(t) and U(t) := Oitith(u).

Assume that for the increment of X (t) we have

sup sup |X(s+v)—X(s)] =O(r(t,ar)) a.s.
0<s<t—a: 0<v<a;
as t — oo, with some non-decreasing a; (1 < a; < t) and rate r(t,a;). Then as
t — oo,

|Z(t) = U(t)| = O(r(t,as) + logt) a.s.

We applied these strong approximation theorems for a number of processes,
such as Wiener process, fractional Brownian motion, Gaussian processes, and dif-
fusion processes.
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3. Iterated processes, and their local times

3.1 Iterated processes. K. Burdzy [9] proposed to investigate the process

Z(t) = {Wi(Wa (), 0 <t < o}, (3.1)

where {W1(t), t € R} and {Ws(t), t > 0} are two independent standard Brownian
motions. He called this process an iterated Brownian motion (IBM), and proved
the following LIL:

Theorem E (Burdzy [9])

Z(t) _25/4

li = 2
ot /4 (oglog(1/0)3/t ~ 3t P 32)

Closely related processes to Z(t) are
H(t) = (Wi(Wa(8)), 0 <t < o0} (3.3)

and
V(t) := {Wi(La(t)), 0 <t < o0},
where Lo is a Wiener local time at 0, independent of ;.

In 1993-94 many people got interested in these processes, one should consult
[17] for proper references. In the above Theorem E we have an LIL for ¢ — 0 and
in (2.8) we have an LIL for the process V (t) as ¢ — oo with the very same constant.
The latter result combined with a famous result of Paul Lévy, mentioned earlier,
implies that the same is true for the process Y (t) := Wi(maxg<s<; Wa(s)), and
H(t), as well. It is easy to see that

V(t) » Ht) p Y(t) »
i an oA VI (3-4)

where N; and N, are two independent standard normal variables. We have seen
this distribution to appear in Dobrushin’s theorem (2.10) and in (2.4) as well. In all
of these results we have in the above sense an iterated process created from a pair
of independent processes. This gave us the idea that there must be a common way
to investigate these three processes and started to study these iterated processes
more closely. To introduce our first result in this direction, we recall the following
definition: Let S be the Strassen class of functions, i.e., S C C]0,1] is the class
of absolutely continuous functions (with respect to the Lebesgue measure) on [0, 1]
for which

1
F0)=0  and / (f'(@))2dz < 1. (3.5)
0
The set of R2-valued, absolutely continuous functions

{(9();h(2)),0<y<1,0<z <1} (3.6)

for which g(0) = h(0) = 0 and

1 1
| @wra+ [ @< (57)
0 0

will be called Strassen class S2.
Now let Cp[0,1] C C]0,1] be the set of continuous functions f(-) on [0, 1] for
which f(0) = 0. Let A be an operator on Cy[0, 1], satisfying
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(C.1) Acf =crAf (p>1, ¢>0),

(C2) Af >0,

(C.3) Af € Cofo, 1],

(C.4) A islocally uniformly continuous on Cy[0, 1].

Some of our examples for Af(x) are the following: |f(z)|, maxo<y<s f(y), and
maxo<y<az |f(y)-

Theorem 3.1 Let Wi(-) and W(-) be two independent standard Wiener pro-
cesses starting from zero, and let A be an operator satisfying conditions (C.1)—(C.4).
Then for 0 <x <1, 0 <y <1, the limit set of the vector

Tr/4(2loglog T)(P+2)/4” (2T loglog T')1/2

is (g(yAh(z)), h(z)), where (g,h) € S2.

This theorem gives an easy way to show the above LILs, and it has many more
consequences. Here we mention only one of them as an example.

Theorem 3.2 For0<z<1,0<y <1, p>1 we have

lim sup Wi (yAW,(2T))
oo T/ (2loglog T) (P +2)/8

where Ay = supscs Af(@).

(3.8)

= 2V 2\L/2y112 gl 4 2)~ (P H2) /4 a.s., (3.9)

Using the invariance principle of Komlés et. al. [65], [66] it was also shown that
if we construct an iterated random walk U(n) := S1(]S2(n)|) from two independent
simple symmetric random walks S; and Sa, then the iterated random walk is close
to the iterated Brownian motion.

Theorem 3.3 On a rich enough probability space (2, F,P) one can construct
an iterated Wiener process {H(t), t > 0} and an iterated random walk {U(n), n =
1,2,...} such that

max |U(k) — H(k)| = O(logn) a.s., N — o0 (3.10)

This theorem enables us to carry over many limit theorems from the IBM
processes to the iterated random walk.

3.2 Local time and occupation time. In [18] we defined the local time
L*(x,t) of H(t) = Wyi(|Wa(t)|) as follows:

(o, t) :=/ To(s,)diLy(z,5), wER, t>0. (3.11)
0

where Ly (-,-), Li(-,-) are the local time processes of [Wa(-)| and W (-), respectively.
In particular, Ly (z,t) := La(z,t) + La(—=,t), £ > 0, where La(+, ) is the local time
process of W(-). At about the same time Burdzy and Khoshnevisan [10] studied
the local time of the process Z(t) = Wi (Wa(t)) and proved its Holder continuity.
Concerning L*, we established its joint continuity and studied its path behaviour
aiming at the four classical Lévy classes of functions. However, these results are far
from being optimal yet, and leave open many problems for further considerations,
including even that of proving an LIL for L*(z,t) at x = 0. Indeed, a systematic
study of the fine analytic properties of the process {L*(z,t), x € R, ¢t > 0} along
the lines of those of the classical Brownian local time of P. Lévy seems to be a
challenging problem. For further liminf type results we refer to [75].
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We also considered the corresponding iterated random walk U(n) = S (|S2(n)|)
and defined its local time by

£ (x,n):=#{k:0<k<n,Uk) = z}.
Then we established that on an appropriate probability space, as t — oo,

sup |€*(x,t) — L*(z,t)| = O@#1/10+)  as. (3.12)
TEZL

which implies that all the above mentioned Lévy class type results are inherited by
£ (@, 1).

It is quite interesting to note that even though Z(t) = W1 (|Wa(t)|) and V(t) =
W1 (L2(t)) share many properties, the investigation of their respective local times
reveals how different they really are. We started our investigation with studying
the occupation time of V(t), and it turned out that we must confine our attention
to it as V(t) has no local time. Actually because of the non-Markovian nature
of V(t) it is more appropriate to talk about the non-existence of its occupation
density. Another surprise was to realize that we were unable to establish a strong
approximation result similar to (3.10), hence each result had to be established
separately for V(t) and the corresponding iterated random walk. For simplicity,
here we only explain how to define the occupation time of the iterated random walk.
Let S1(-) and Sa(-) be two independent simple symmetric random walks as above
and denote the local time at zero of Sa(+) by &2(n). In the spirit of V (¢) = Wi (La(t))
we define R(n) := S1(§&2(n — 1)) and the corresponding occupation time of R(n) is
defined as

Eryn) :=#{k: 1<k <n,R(k)=r}. (3.13)
Then clearly

Er,n) =D H{Si(&(k—1)) =1}
k=1
= Y (p+1)An—p()I{Si(s) =7}, (3.14)

0<s<§2(n—1)

where I(-) is an indicator function and 0 = p2(0) < p2(1) < ... are the consecutive
return epochs to zero of our second walk S2(-). Thus we have

&(r, p2(n)) = i(m(s +1) = p2(s))I{S1(s) =r}. (3.15)

Further studying (3.15) led us to the right way of interpreting £(r,n) and the
occupation time of V(¢) as well. It turned out that these occupation times has
interesting limiting distributions. Here we only mention the following one.

Theorem 3.4 For any fized integer r > 0, as n — oo, we have

£(r,n)

ni/2
where Ny and N> are independent standard normal random variables that are also
independent of the stable (1/2) random variable Ty, and C is a standard Cauchy
random variable independent of N,.

B N2|N|Ty 2 C?| N, (3.16)
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As it was indicated above, the Lévy class type results for the occupation time
of V(s) and R(s) were separately established. For further LIL-type results for £ we
refer to Révész [71].

4. Empirical processes

4.1 Level crossings. Let Uy, Us, ... be a sequence of i.i.d. random variables
uniformly distributed in (0,1). The empirical process «, based on the first n
observations is defined as:

an(t) :=n2(F(t)—t), 0<t<1,

where F,(t) := #{i: 1<i<n, U; <t}/n,0<t <1, is the empirical distribution
function.
Consider the (normalized) level crossings of the empirical process:

Ly(z) :=n""?#{t€[0,1]: an(t) =2}, zeR
Let us also define the maximal level crossings:

Ly :=supL,(z).
z€R

We recall the following results.
Theorem F (Révész [70]) Almost surely,

lim su _LO ___
ey (2loglogn)l/2 —

Theorem G (Bass and Khoshnevisan [3]) We have,

. L;
lim sup

n—soo  (2loglogn)l/2 - a-s.

lim inf (log log )21 =22 as.

In [41], we proved the following results.

Theorem 4.1 Almost surely, as n — 00,

{ (@siogr @ostag)

is relatively compact, with limit set equal to {(z,y): 0 <z <y <1}.
Theorem 4.2 We have,

o0

li -
e (log log n)'/? /m
2|CL1 |

[} 3/2
liminf(loglogn)l/z/ (Ln(m))zda::( 3 ) a.s.,

n— o0

(Lo (1)) = (;)/

where a; < 0 is the largest real zero of the Airy function Ai(-).

Theorem 4.3 For any p > 3, with probability one,
1 oo
lim sup / (L, (z))Pdz

n—oo (loglogn)®=1/2 J_

1 1 1=p
— op+1)/2( _ 1)(p-1)/2 (p—3)/2 - -
2 (p-1) (p+1) (B(z’p—1>) ;
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where B(-,-) stands for the usual beta function.

4.2 Vervaat error process. Let F),(t) be as before the empirical distribution
function from a uniform [0,1] sample. Let F,, ! be the left-continuous inverse of F},.
We denote the empirical and quantile processes over the interval [0, 1] by

an(t) :=n'2(F,(t) —t), 0<t<1,

Ba(t) :=n'P(F () — 1), 0<t<1,
respectively. The sum

Ry(t) := an(t) + Ba(t), 0<t<1,

of the empirical and quantile processes is known in the literature as the Bahadur—
Kiefer process (cf. Bahadur [2], Kiefer [63], [64]). This process enjoys some re-
markable asymptotic properties, which are of interest in statistical quantile data
analysis (cf., e.g., Csorg6 [33], Shorack and Wellner [77]). We summarize the most
relevant results of Kiefer [63], [64], Shorack [76], Deheuvels and Mason [46] in the
following theorem. For further developments one can consult Deheuvels and Mason
[47], Einmahl [49], Csorgd and Szyszkowicz [42].

Theorem H For every fixed t € (0,1), we have

n1/4Rn(t) = (¢(1 - t))1/4N1(|N2|)1/2, n — 00, (4.1)
”1/4|R (t)| 1 95/4

i MR b LAFA R — /42

hTILnsup (Tog, n)?/* = (t(1 -1)) 3374 a.s., (4.2)

where N1 and N, are independent standard normal variables. Also,
[ Rxll

lim n'/4(logn) /2 1~ =1 8. 4.3
g, oem) e e =1 A (43
where || f|| := supg<;<; | f(t)| denotes the sup-norm of f.

Via using the usual and the other laws of the iterated logarithm for a,,, (4.3)
immediately implies

limsupn'/*(logn)~*/2(loglogn) /4||R,|| =27 Y/*  as., (4.4)
n—oo

1/4 1/2 1/4 '/
linrgior;fn "(logn) =2 (loglogn)'/*||R,|| = Si/d a.s., (4.5)

while a direct application of (4.3) together with the weak convergence of a,, to a
Brownian bridge B gives

n'/4(logn) 2| Ra[| 3 (B2, n — oo. (4.6)

Nevertheless, the following result, which one can immediately conclude also by
combining (4.1) with (4.6), is true, and it was first formulated and proved directly
by Vervaat [81].

Theorem I (Vervaat [81]) The statement
anRn 3 Y, n—o>x

cannot hold true in the space D[0,1] (endowed with the Skorokhod topology) for
any sequence {ay} of positive real numbers and any non-degenerate random element
Y of D[0, 1].
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In view of Theorems H and I, it is of interest to see the asymptotic behaviour
of the Bahadur—Kiefer process possibly in other norms as well. In this regard the
following theorem was proved in [39], [40].

Theorem 4.4 For any p € [2,00), we have

Tim. m/4$ —cop)  as, (4.7)
where
1/p
co(p) := (B|N1[P)/? = /2 (W) , (4.8)

. 1 1/p
and Ny stands for a standard normal variable, and ||f||, := (fo [f@)P dt) , the

L, norm of f.

Vervaat’s ([81]) elegant proof of Theorem I was based on the following inte-
grated Bahadur—Kiefer process

t
Ln(t) = / Ra(s)ds, 0<t<1.
0
Concerning the latter process, he established the weak convergence of
Vu(t) = 221, (1) (4.9)

to B2, the square of a Brownian bridge, as well as a functional LIL for V,,, via
proving the following theorem.

Theorem J (Vervaat [80], [81]) We have

1i_>m (loglogn) ||V, — 2] =0  as. (4.10)
lim ||V, —aZ||=0  in probability. (4.11)
n—oo

In particular, in the space C[0,1],
V., 3B, n— . (4.12)

We call the process V;, of (4.9) the uniform Vervaat process.
Bahadur [2] introduced R, as the remainder term in the representation
Bn = —an+ Ry

of the quantile process 3, in terms of the empirical process a,,. As we have seen
above, the remainder term R,, i.e., the Bahadur—Kiefer process, is asymptotically
smaller than the main term oy, i.e., the empirical process, in both the L, and
sup-norm topologies.

Similarly, one can consider the process

Qn(t) := Va(t) —ap(t), 0<t<1, (4.13)
that appears in both statements (4.10) and (4.11) of Theorem J. Then @, is the
remainder term in the following representation

Vo =0l +Qn (4.14)

of the uniform Vervaat process V,, in terms of the square of the empirical process.
It is well-known (cf. Zitikis [85], for details and references) that the remainder term



Our joint work with Miklés Csorgd 17

@, in (4.14) is asymptotically smaller than the main term o?. Thus, just like in
the case of R,, one may like to know how small the remainder term @, is.

In view of Theorems H and 4.4, one suspects that there should be substan-
tial differences between the asymptotic pointwise, sup- and L,-norm behaviour of
the process @,. Indeed, Csorgd and Zitikis [43] established the following strong
convergence result for ||Qn|, -

Theorem K (Csorgd and Zitikis [43]) For any p € [1,00), we have

1
lim nlMM = —c¢ a.s., 4.15
nsoo (||04n||3p/2)3/2 /3 o(p) ( )

where co(p) is defined in (4.8).

For a comparison of this result to that of Theorem 4.4, as well as for that of
their consequences, we refer to Csorgé and Zitikis [43], who have also conjectured
that in sup-norm the analogue statement of (4.15) should be of the following form:

lim bnnl/‘iM =
n—o0 (llanl)?/2

where b, is a slowly varying function converging to 0 and c is a positive constant.

One of our aims in [24] was to prove that this conjecture is true with b, =
(logn)~'/2. Tn addition, we also studied the pointwise behaviour of the Vervaat er-
ror process (). We summarize our results in the following theorem, which parallels
Theorem H concerning the process R,,.

Theorem 4.5 For every fized t € (0,1), we have

n4Qn(t) B (4/3)'2(#(1 — 1)) Ny (IN2)??, n— o0,  (4.17)

211/431/4
55/4

a.s., (4.16)

n'41Qn ()]
li = (t(1 - 1))/
lin_folip (log log n)5/4 ( ( ))

where N1 and Ny are independent standard normal variables. Also,

_NQall (4/3)'? as. (4.19)

a.s., (4.18)

lim n'/*(logn)~1/?
n—o0 (llanl)3/2

As a consequence of this theorem, as well as that of Theorem K combined with
(4.19), we have the following corollary, which confirms the above conjecture.

Corollary 4.1 The statement
anQn =Y, n— oo,

cannot hold true in the space D[0,1] for any sequence {a,} of positive real numbers
and for any non-degenerate random element Y of the space D|0,1].

Another consequence of (4.19) is the following corollary.

Corollary 4.2 We have

] _ _ 21/4

lim sup n'/*(logn) ™2 (loglogn) "/ H|Qnll = 575 as,
s 1/4 —1/2 3/4 w3/2

11nn_1>1orcl)fn (logn) (loglogn)°/*||Qn| = 3129574 a.s.,

n/*(logn) 2(|Q.l B (4/3)V2(|BI*?, n = o,

where B is a standard Brownian bridge.
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5. Banach space valued stochastic processes

Let {Y(t), t € R} := {X,(t), t € R, k=1,2,...} be a sequence of independent
Ornstein-Uhlenbeck processes with coefficients v and Mg, i.e. X is a stationary,
mean zero Gaussian process with EXy(s) Xi(t) = (ve/Ak) exp(—Ak|t — s|). This
process was introduced by Dawson [45] and its path properties were studied by
Csorg6 and Lin [34], [35], Fernique [52], [53], [54], Iscoe et al. [57], Schmuland [73],
[74]. For further development we refer to the books [67], [68] and the references
therein. The basic ingredient in these investigations was the celebrated inequality
of Fernique [51] and its various extensions.

In [25] we studied the infinite series

X(t) :=iXk(t), —00 <t < 00

and established certain moduli of continuity and large increment results.

In subsequent papers [11], [12], [26], [27] investigations on moduli of continuity
and large increments were extended to Banach space valued processes, £2- and
fP-valued processes in particular. We quote two general theorems from [26].

Theorem 5.1 Let {I'(t), —oco < t < oo} be a stochastic process with values
in a separable Banach space B with norm || - ||. Let P be the probability measure
generated by T'(-). Assume that T'(-) is P-almost surely continuous with respect to
|| - || and that for |t| < to, 0 < z* < z, and 0 < h < hg there exist non-negative
non-decreasing functions o1(h) and o2(h) such that

P(|L(t +h) =T@)|| > zo1(h) + 02(h)) < K exp(—ya”)
with some K,v,3 > 0. Then we have

P( sup sup [[U(t+s) =T ()] = z(01(a) + 01(a, k))
0<t<T 0<s<a
+07(a, k) + 02(a) + 02 (a, F)

for any 0 <T <tg,0<a< hg,z>x* and any k > 3, where

o1(a k) = 25+0/9) / = oalee)

2k—3 z
> gy(ae?)
oa2(a, k) =6 e,
ok—3 z
14 1/8 (o)
oi(a, k) =4 (—) ﬁ/ o1 (ae_zﬁ) dz.
v 2(k=2)/8

Before stating the next theorem, we give a definition: A function f(z) is called
quasi-increasing on (a,b) if there exists a positive number ¢ such that

f@)<cf(y) forall a<z<y<b.

Theorem 5.2 Assume the conditions of Theorem 5.1 with tg = 0o and that
o1(h) and o5(h) are continuous functions such that o, (h)/h* and o5(h)/h* are
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quasi-increasing for some a > 0. Let ar and by be continuous functions of T such
that

b 1
—T+U1(aT)+——>oo, T— o0
ar o1(ar)

and

limsupar < hg.
T—o0

Then we have

limsup sup sup Br|T(t+s)-T@)| <1 a.s.,
T—oo 0<t<br 0<s<ar

where
ﬂT =01 (aT)AT + Gg(aT),

Ar = (% (log (1 + Z—;) + log log (al(aT) + %)))Uﬂ.

Acknowledgement The authors are indebted to the referees for their helpful
remarks.
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