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1. Introduction

Let {W (t); t ≥ 0} be a one-dimensional standard Brownian motion with W (0) = 0, and let

{L(t, x); t ≥ 0, x ∈ R} denote its jointly continuous local time process. That is, for any Borel

function f ≥ 0, ∫ t

0

f(W (s)) ds =

∫ ∞

−∞
f(x)L(t, x) dx, t ≥ 0.

We are interested in the process

(1.1) Y (t) :=

∫ t

0

ds

W (s)
, t ≥ 0.

Rigorously speaking, the integral
∫ t

0
ds/W (s) should be considered in the sense of Cauchy’s prin-

cipal value, i.e., Y (t) is defined by

(1.2) Y (t) := lim
ε→0+

∫ t

0

ds

W (s)
1l{|W (s)|≥ε} =

∫ ∞

0

L(t, x) − L(t,−x)

x
dx.

Since x 7→ L(t, x) is Hölder continuous of order ν, for any ν < 1/2, the integral on the extreme

right in (1.2) is almost surely absolutely convergent for all t > 0. The process {Y (t), t ≥ 0} is

called the principal value of Brownian local time.

It is easily seen that Y (·) inherits a scaling property from Brownian motion, namely, for any

fixed a > 0, t 7→ a−1/2Y (at) has the same law as t 7→ Y (t). Although some properties distinguish

Y (·) from Brownian motion (in particular, Y (·) is not a semimartingale), it is a kind of folklore that

Y behaves somewhat like a Brownian motion. For detailed studies and surveys on principal value,

and relation to Hilbert transform see Biane and Yor [4], Fitzsimmons and Getoor [13], Bertoin [2],

[3], Yamada [20], Boufoussi et al. [5], Ait Ouahra and Eddahbi [1], Csáki et al. [11] and a collection

of papers [22] together with their references. Biane and Yor [4] presented a detailed study on Y

and determined a number of distributions for principal values and related processes.

Concerning almost sure limit theorems for Y and its increments, we summarize the relevant

results in the literature. It was shown in [17] that the following law of the iterated logarithm holds:

Theorem A. (Hu and Shi [17])

(1.3) lim sup
T→∞

Y (T )√
T log log T

=
√

8 , a.s.

This was extended in [10] to a Strassen-type [18] functional law of the iterated logarithm.

Theorem B. (Csáki et al. [10]) With probability one the set

(1.4)

{
Y (xT )√

8T log log T
, 0 ≤ x ≤ 1

}

T≥3
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is relatively compact in C[0, 1] with limit set equal to

(1.5) S :=

{
f ∈ C[0, 1] : f(0) = 0, f is absolutely continuous and

∫ 1

0

(f ′(x))2 dx ≤ 1

}
.

Concerning Chung-type law of the iterated logarithm, we have the following result:

Theorem C. (Hu [16])

(1.6) lim inf
T→∞

√
log log T

T
sup

0≤s≤T
|Y (s)| = K1 , a.s.

with some (unknown) constant K1 > 0.

The large increments were studied in [7] and [8]:

Theorem D. (Csáki et al. [7]) Under the conditions

(1.7)





0 < aT ≤ T,

T 7→ aT and T 7→ T/aT are both non-decreasing,

lim
T→∞

log(T/aT )

log log T
= ∞,

we have

(1.8) lim
T→∞

sup0≤t≤T−aT
sup0≤s≤aT

|Y (t + s) − Y (t)|√
aT log(T/aT )

= 2, a.s.

Wen [19] studied the lag increments of Y and among others proved the following results.

Theorem E. (Wen [19])

(1.9) lim sup
T→∞

sup
0≤t≤T

supt≤s≤T |Y (s)− Y (s − t)|√
t(log(T/t) + 2 log log t)

= 2, a.s.

Under the conditions 0 < aT ≤ T , aT → ∞ as T → ∞, we have

(1.10) lim sup
T→∞

sup
0≤t≤T−aT

sup0≤s≤aT
|Y (t + s) − Y (t)|√

aT (log((t + aT )/aT ) + 2 log log aT )
≤ 2, a.s.

If aT is onto, then we have equality in (1.10).

In this note our aim is to investigate further limsup and liminf behaviors of the increments of

Y .
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Theorem 1.1. Assume that T 7→ aT is a function such that 0 < aT ≤ T , and both aT and T/aT

are non-decreasing. Then

(i)

(1.11) lim sup
T→∞

sup0≤t≤T−aT
sup0≤s≤aT

|Y (t + s) − Y (t)|√
aT

(
log
√

T/aT + log log T
) =

√
8, a.s.

(iia) If aT > T (log T )−α for some α < 2, then

(1.12) lim inf
T→∞

√
log log T

aT
sup

0≤t≤T−aT

sup
0≤s≤aT

|Y (t + s)− Y (t)| = K2, a.s.

(iib) If aT ≤ T (log T )−α for some α > 2, then

(1.13) lim inf
T→∞

sup0≤t≤T−aT
sup0≤s≤aT

|Y (t + s) − Y (t)|√
aT log(T/aT )

= K3, a.s.

with some positive constants K2,K3. If, moreover,

lim
T→∞

log(T/aT )

log log T
= ∞,

then K3 = 2.

Theorem 1.2. Assume that T 7→ aT is a function such that 0 < aT ≤ T , and both aT and T/aT

are non-decreasing. Then

(i)

(1.14) lim inf
T→∞

√
T log log T

aT
inf

0≤t≤T−aT

sup
0≤s≤aT

|Y (t + s)− Y (t)| = K4, a.s.

with some positive constant K4. If, limT→∞(aT /T ) = 0, then K4 = 1/
√

2.

(iia) If 0 < ρ ≤ 1, then

(1.15) lim sup
T→∞

inf0≤t≤T−ρT sup0≤s≤ρT |Y (t + s) − Y (t)|√
T log log T

= ρ
√

8, a.s.

(iib) If

lim
T→∞

aT (log log T )2

T
= 0,

then

(1.16) lim sup
T→∞

√
T

aT

√
log log T

inf
0≤t≤T−aT

sup
0≤s≤aT

|Y (t + s) − Y (t)| = K5, a.s.

with some positive constant K5.
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Remark 1. The exact values of the constants Ki, i = 2, 3, 4, 5 are unknown. It seems difficult to

determine the exact values of these constants. In the proofs we establish upper and lower bounds

with possibly different constants. It follows however by 0-1 law for Brownian motion that the

limsup’s and liminf’s considered here are non-random constants.

Remark 2. Plainly we recover some previous results on the path properties of Y by considering

particular cases of Theorems 1.1 and 1.2. For instance, Theorems A and C follow from (1.11) and

(1.12) respectively by taking aT = T , and (1.8) follows from (1.11) combining with (1.13). However

in Theorem 1.1(ii) and Theorem 1.2(ii) there are still small gaps in aT .

The organization of the paper is as follows: In Section 2 some facts are presented needed in

the proofs. Section 3 contains the necessary probability estimates. Theorem 1.1(i) and Theorem

1.1(iia,b) are proved in Sections 4 and 5, resp., while Theorem 1.2(i) and Theorem 1.2(iia,b) are

proved in Sections 6 and 7, resp.

Throughout the paper, the letter K with subscripts will denote some important but unknown

finite positive constants, while the letter c with subscripts denotes some finite and positive universal

constants not important in our investigations. When the constants depend on a parameter, say δ,

they are denoted by c(δ) with subscripts.

2. Facts
Let {W (t), t ≥ 0} be a standard Brownian motion and define the following objects:

g := sup{t : t ≤ 1, W (t) = 0}(2.1)

B(s) :=
W (sg)√

g
, 0 ≤ s ≤ 1,(2.2)

m(s) :=
|W (g + s(1− g))|√

1 − g
, 0 ≤ s ≤ 1.(2.3)

Here we summarize some well-known facts needed in our proofs.

Fact 2.1. (Biane and Yor [4])

(2.4)
P(Y (1) ∈ dx)

dx
=

√
2

π3

∞∑

k=0

(−1)k exp

(
− (2k + 1)2x2

8

)
, x ∈ R.

Consequently we have the estimate: for δ > 0

(2.5) c1 exp

(
− z2

8(1 − δ)

)
≤ P(Y (1) ≥ z) ≤ exp

(
−z2

8

)
, z ≥ 1
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with some positive constant c1 = c1(δ). Moreover, g, {B(s), 0 ≤ s ≤ 1} and {m(s), 0 ≤ s ≤ 1} are

independent, g has arcsine distribution, B is a Brownian bridge and m is a Brownian meander.

(2.6)

P

(∫ 1

0

dv

m(v)
< z

∣∣∣m(1) = 0

)

=
∞∑

k=−∞
(1 − k2z2) exp

(
−k2z2

2

)
=

8π2
√

2π

z3

∞∑

k=1

exp

(
−2k2π2

z2

)
, z > 0.

(2.7) P(m(1) > x) = e−x2/2, x > 0.

Fact 2.2. (Yor [21, Exercise 3.4 and pp. 44]) Let Qδ
x→0 be the law of square of Bessel bridge

from x to 0 of dimension δ > 0 during time interval [0, 1]. The process (m2(1 − v), 0 ≤ v ≤ 1)

conditioned on {m2(1) = x} is distributed as Q3
x→0. Furthermore, we have

(2.8) Qδ
x→0 = Qδ

0→0 ∗ Q0
x→0, ∀ δ > 0, x > 0,

where ∗ denotes convolution operator. Consequently, for any x > 0

(2.9) P

(∫ 1

0

dv

m(v)
< z

∣∣∣m(1) = x

)
≥ P

(∫ 1

0

dv

m(v)
< z

∣∣∣m(1) = 0

)
.

Fact 2.3. (Hu [16]) For 0 < z ≤ 1

(2.10) c2 exp
(
− c3

z2

)
≤ P( sup

0≤s≤1
|Y (s)| < z) ≤ c4 exp

(
− c5

z2

)

with some positive constants c2, c3, c4, c5.

Fact 2.4. (Csörgő and Révész [12]) Assume that T 7→ aT is a function such that 0 < aT ≤ T , and

both aT and T/aT are non-decreasing. Then

(2.11) lim sup
T→∞

sup0≤t≤T−aT
sup0≤s≤aT

|W (t + s) − W (t)|√
aT (log(T/aT ) + log log T )

=
√

2, a.s.

Fact 2.5. (Strassen [18]) If f ∈ S defined by (1.5), then for any partition x0 = 0 < x1 < . . . <

xk < xk+1 = 1 we have

(2.12)
k+1∑

i=1

(f(xi) − f(xi−1))
2

xi − xi−1
≤ 1.

Fact 2.6. (Chung [6])

(2.13) lim inf
t→∞

√
log log t

t
sup

0≤s≤t
|W (s)| =

π√
8
, a.s.

Define g(T ) := max{s ≤ T : W (s) = 0}. A joint lower class result for g(T ) and M(T ) :=

sup0≤s≤T |W (s)| reads as follows.
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Fact 2.7. (Grill [15]) Let β(t), γ(t) be positive functions slowly varying at infinity, such that

0 < β(t) ≤ 1, 0 < γ(t) ≤ 1, β(t) is non-increasing, β(t)
√

t ↑ ∞, γ(t) is monotone, γ(t)t ↑ ∞,

γ(t)/β2(t) is monotone. Then

P

(
M(T ) ≤ β(T )

√
T , g(T ) ≤ γ(T )T i.o.

)
= 0 or 1

according as I(β, γ) < ∞ or = ∞, where

I(β, γ) =

∫ ∞

1

1

tβ2(t)

(
1 +

β2(t)

γ(t)

)−1/2

exp

(
− (4 − 3γ(t))π2

8β2(t)

)
dt.

Now define d(T ) := min{s ≥ T : W (s) = 0}. Since {d(T ) > t} = {g(t) < T}, we deduce from

Fact 2.7 the following estimate on d(T ) when T → ∞.

Fact 2.8. With probability 1

d(T ) = O(T (logT )3), T → ∞.

3. Probability estimates

Lemma 3.1. For T ≥ 1, δ, z > 0 we have

(3.1)

P

(
sup

0≤t≤T−1
sup

0≤s≤1
|Y (t + s) − Y (t)| > z

)

≤ c6

(√
T exp

(
− z2

8(1 + δ)

)
+ T exp

(
− z2

2(1 + δ)

))

with some positive constant c6 = c6(δ).

For the proof see Csáki et al. [7], Lemma 2.8.

Lemma 3.2. For T > 1, 0 < δ < 1/2, z > 1 we have

(3.2)

P

(
sup

0≤t≤T−1
(Y (t + 1)− Y (t)) ≥ z

)

≥ min

(
1

2
,

c
√

T − 1

z
exp

(
− z2

8(1− δ)

))
− exp

(
−z2

)

with some positive constant c7 = c7(δ) > 0.

Proof. Let us construct an increasing sequence of stopping times by η0 := 0 and

ηk+1 := inf{t > ηk + 1 : W (t) = 0}, k = 0, 1, 2, . . .
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Let
νt := min{i ≥ 1 : ηi > t}

Zi := Y (ηi−1 + 1)− Y (ηi−1), i = 1, 2, . . .

Then (Zi, ηi − ηi−1)i≥1 are i.i.d. random vectors with

ηi − ηi−1
law
= 1 + τ2, Zi

law
= Y (1),

where τ has Cauchy distribution. Clearly, for t > 0,

sup
0≤s≤t

(Y (s + 1)− Y (s)) ≥ max
1≤i≤νt

Zi = Zνt
,

with Zk := max1≤i≤k Zi. First consider the Laplace transform (λ > 0):

λ

∫ ∞

0

e−λu
P
(
Zνu

< z
)

du

= λ
∞∑

k=1

E

∫ ∞

0

e−λu1{ηk−1≤u<ηk}1{Zk<z} du

=
∞∑

k=1

E

([
e−ληk−1 − e−ληk

]
1{Zk<z}

)

=
∞∑

k=1

(
E

[
1{Zk<z}e

−ληk−1

]
− E

[
1{Zk<z}e

−ληk

])

=
∞∑

k=1

(
E

[
1{Zk−1<z}e

−ληk−1

]
− E

[
1{Zk−1<z, Zk≥z}e

−ληk−1

]
− E

[
1{Zk<z}e

−ληk

])

= 1 −
∞∑

k=1

E

[
1{Zk−1<z, Zk≥z} e−ληk−1

]

= 1 −
∞∑

k=1

E

[
1{Zk−1<z}e

−ληk−1

]
P(Y (1) ≥ z)

= 1 −
∞∑

k=1

(
E

[
1{Z1<z}e

−λη1

] )k−1

P(Y (1) ≥ z)

= 1 − P(Y (1) ≥ z)

1 − E

[
1{Z1<z}e−λη1

] ,

i.e.,

(3.3) λ

∫ ∞

0

e−λu
P
(
Zνu

≥ z
)

du =
P(Y (1) ≥ z)

1 − E

[
1{Z1<z}e−λη1

] .

But (recalling that Z1 = Y (1))

1 − E

[
1{Z1<z}e

−λη1

]
≤ 1 − E(e−λη1) + P(Y (1) ≥ z)
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and (cf. [14], 3.466/1)

1 − Ee−λη1 = 1 − 1

π

∫ ∞

−∞

e−λ(1+x2)

1 + x2
dx =

2√
π

∫ √
λ

0

e−x2

dx ≤ 2
√

λ,

hence

λ

∫ ∞

0

e−λu
P
(
Zνu

≥ z
)

du ≥ P(Y (1) ≥ z)

2
√

λ + P(Y (1) ≥ z)
.

On the other hand, for any u0 > 0 we have

λ

∫ ∞

0

e−λu
P
(
Zνu

≥ z
)

du = λ

∫ u0

0

e−λu
P
(
Zνu

≥ z
)

du + λ

∫ ∞

u0

e−λu
P
(
Zνu

≥ z
)

du

≤ P
(
Zνu0

≥ z
)

+ e−λu0 .

It turns out that

P
(
Zνu0

≥ z
)
≥ P(Y (1) ≥ z)

2
√

λ + P(Y (1) ≥ z)
− e−λu0 ≥ min

(
1

2
,

P(Y (1) ≥ z)

4
√

λ

)
− e−λu0 ,

where the inequality
x

y + x
≥ min

(
1

2
,

x

2y

)
, x > 0, y > 0

was used. Choosing u0 = T − 1, λ = z2/u0, and applying (2.5) of Fact 2.1, we finally get

(3.4)

P

(
sup

0≤t≤T−1
(Y (t + 1) − Y (t)) ≥ z

)

≥ min

(
1

2
,

c8(δ)
√

T − 1

z
exp

(
− z2

8(1− δ)

))
− exp

(
−z2

)
.

This proves Lemma 3.2. tu

Lemma 3.3. For T ≥ 2, 0 ≤ κ < 1 and δ, z > 0 we have

(3.6) P

(
sup

0≤t≤T−1
(Y (t + 1) − Y (t)) < z

)
≤ 5

T κ/2
+ exp

(
−c9T

(1−κ)/2e−(1+δ)z2/8
)

with some positive constant c9 = c9(δ).

See Csáki et al. [7], Lemma 3.1.

Lemma 3.4. For T > 1, 0 < z ≤ 1/2 we have

P

(
sup

0≤t≤T−1
sup

0≤s≤1
|Y (t + s) − Y (t)| < z

)
≥ c10√

T
exp

(
−c11

z2

)
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with some positive constants c10, c11.

Proof. Define the events

A :=

{
sup

0≤s≤1
|Y (s)| < z

4
, W (1) ≥ 4

z
, inf
1≤u≤T

W (u) ≥ 2

z

}

and

Ã :=

{
sup

0≤t≤T−1
sup

0≤s≤1
|Y (t + s)− Y (t)| < z

}
.

Then A ⊂ Ã, since if A occurs and t < 1, t + s ≤ 1, then

|Y (t + s)− Y (t)| ≤ 2 sup
0≤s≤1

|Y (s)| ≤ z

2
< z.

If A occurs and t < 1, s ≤ 1, 1 < t + s ≤ T , then

|Y (t + s) − Y (t)| ≤ Y (t + s) − Y (1) + |Y (t)− Y (1)| ≤
∫ t+s

1

du

W (u)
+

z

2
< z.

Moreover, if A occurs and 1 ≤ t, s ≤ 1, t + s ≤ T , then

|Y (t + s)− Y (t)| =

∫ t+s

t

du

W (u)
≤ z

2
< z.

Hence A ⊂ Ã as claimed. But by the Markov property of W ,

(3.8) P(A) =

∫ ∞

4/z

P

(
sup

0≤s≤1
|Y (s)| <

z

4

∣∣∣W (1) = x

)
P

(
inf

1≤u≤T
W (u) ≥ 2

z

∣∣∣W (1) = x

)
ϕ(x) dx,

where ϕ denotes the standard normal density function.

Using reflection principle and x ≥ 4/z, z ≤ 1/2, we get

(3.9)

P

(
inf

1≤u≤T
W (u) ≥ 2

z

∣∣∣W (1) = x

)
= 2Φ

(
x − 2/z√

T − 1

)
− 1

≥ 2Φ

(
2

z
√

T − 1

)
− 1 ≥ 2Φ

(
4√
T

)
− 1 ≥ c12√

T
,

with some constant c > 0, where Φ(·) is the standard normal distribution function. Hence

(3.10) P(Ã) ≥ P(A) ≥ c12√
T

P

(
sup

0≤s≤1
|Y (s)| ≤ z

4
, W (1) ≥ 4

z

)
.

To get a lower bound of the probability on the right-hand side, define g, (m(v), 0 ≤ v ≤ 1),

(B(u), 0 ≤ u ≤ 1) by (2.1), (2.2) and (2.3), respectively. Recall (see Fact 2.1 ) that these three

objects are independent, g has arc sine distribution, m is a Brownian meander and B is a Brownian
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bridge. Moreover, (g,m,B) are independent of sgn(W (1)) which is a Bernoulli variable. Observe

that

sup
0≤s≤g

|Y (s)| =
√

g sup
0≤s≤1

∣∣∣∣
∫ s

0

du

B(u)

∣∣∣∣ ,

sup
g≤s≤1

|Y (s)| = |Y (1)− Y (g)| =
√

1 − g

∫ 1

0

dv

m(v)
,

|W (1)| =
√

1 − g m(1).

Then

P

(
sup

0≤s≤1
|Y (s)| ≤ z

4
, W (1) ≥ 4

z

)

≥ P

(
sup

0≤s≤g
|Y (s)| ≤ z

8
, Y (1)− Y (g) ≤ z

8
, W (1) ≥ 4

z

)

≥ P

(√
g sup

0≤s≤1

∣∣∣∣
∫ s

0

du

B(u)

∣∣∣∣ ≤
z

8
,
√

1 − g

∫ 1

0

dv

m(v)
≤ z

8
,
√

1 − g m(1) ≥ 4

z
, W (1) > 0, g < z2

)

≥ P

(
sup

0≤s≤1

∣∣∣∣
∫ s

0

du

B(u)

∣∣∣∣ ≤
1

8
,

∫ 1

0

dv

m(v)
≤ z

8
, m(1) ≥ 4

z
√

1 − z2
, W (1) > 0, g < z2

)

= P

(
sup

0≤s≤1

∣∣∣∣
∫ s

0

du

B(u)

∣∣∣∣ ≤
1

8

)
P

(∫ 1

0

dv

m(v)
≤ z

8
, m(1) ≥ 4

z
√

1 − z2

)
P(W (1) > 0)P(g < z2)

≥ c13zP

(∫ 1

0

dv

m(v)
≤ z

8
, m(1) ≥ 4

z
√

1 − z2

)

= c13z

∫ ∞

4/(z
√

1−z2)

P

(∫ 1

0

dv

m(v)
≤ z

8

∣∣∣m(1) = x

)
P(m(1) ∈ dx).

It follows from Facts 2.1 and 2.2 that for x > 0, z > 0

(3.11) P

(∫ 1

0

dv

m(v)
≤ z

8

∣∣∣m(1) = x

)
≥ P

(∫ 1

0

dv

m(v)
≤ z

8

∣∣∣m(1) = 0

)
≥ c14

z3
exp

(
−c15

z2

)

and

(3.12) P

(
m(1) >

4

z
√

1 − z2

)
= exp

(
− 8

z2(1− z2)

)
.

Putting (3.10), (3.11), (3.12) together, we get (3.7). tu

Lemma 3.5. For T > 1, 0 < z ≤ 1/2, 0 < δ ≤ 1/2 we have

(3.13)

P

(
inf

0≤t≤T−1
sup

0≤s≤1
|Y (t + s) − Y (t)| < z

)

≤ c16

(
exp

(
− (1 − δ)2

2(1 + δ)2z2T

)
+ exp

(
− c5δ

4(1 + δ)2z2

)
+ exp

(
c17

z2
− c18z

2

T
ec19/z2

))
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with some positive constants c16, c17 = c17(δ), c18 = c18(δ), c19 = c19(δ).

Proof. Consider a positive integer N to be given later, h = (T −1)/N , tk = kh, k = 0, 1, 2, . . . , N .

Then for 0 < δ ≤ 1/2 we have

P

(
inf

0≤t≤T−1
sup

0≤s≤1
|Y (t + s) − Y (t)| < z

)

≤ P

(
inf

0≤k≤N
sup

0≤s≤1
|Y (tk + s) − Y (tk)| ≤ (1 + δ)z

)
+ P

(
sup

0≤t≤T−1
sup

0≤s≤h
|Y (t + s) − Y (t)| > δz

)

=: P1 + P2.

By scaling and Lemma 3.1

P2 = P

(
sup

0≤t≤(T−1)/h

sup
0≤s≤1

|Y (t + s)− Y (t)| >
δz√
h

)

≤ c6

(√
T − 1

h
+ 1 exp

(
− δ2z2

8h(1 + δ)

)
+

(
T − 1

h
+ 1

)
exp

(
− δ2z2

2h(1 + δ)

))

≤ 2c6(N + 1) exp

(
− δ2z2

8h(1 + δ)

)
.

To bound P1, we denote by d(t) := inf{s ≥ t : W (s) = 0} the first zero of W after t. Consider

those k for which sup0≤s≤1 |Y (tk + s)− Y (tk)| ≤ (1 + δ)z. If, moreover, d(tk) ≥ tk + 1 − δ, which

means that the Brownian motion W does not change sign over [tk, tk + 1 − δ), then

(1 + δ)z ≥ |Y (tk + 1 − δ) − Y (tk)| =

∫ 1−δ

0

ds

|W (tk + s)| ≥
1 − δ

sup0≤s≤T |W (s)| ,

and it follows that

P1 ≤ P

(
sup

0≤s≤T
|W (s)| >

(1 − δ)

z(1 + δ)

)

+ P

(
∃k ≤ N : sup

0≤s≤1
|Y (tk + s)− Y (tk)| ≤ (1 + δ)z; d(tk) < tk + 1 − δ

)

≤ 4 exp

(
− (1 − δ)2

2(1 + δ)2z2T

)

+
N∑

k=0

P

(
sup

0≤s≤1
|Y (tk + s) − Y (tk)| ≤ (1 + δ)z; d(tk) < tk + 1 − δ

)
.

Let Ŵ (s) = W (d(tk) + s) for s ≥ 0 and Ŷ (s) be the associated principal values. Observe

that on {sup0≤s≤1 |Y (tk + s) − Y (tk)| ≤ (1 + δ)z; d(tk) < tk + 1 − δ}, we have sup0≤u≤δ |Ŷ (u) +

(Y (d(tk)) − Y (tk))| < (1 + δ)z, and |Y (d(tk)) − Y (tk)| ≤ (1 + δ)z which implies that

sup
0≤u≤δ

|Ŷ (u)| < 2(1 + δ)z.

-- 12 --



By scaling and Fact 2.3 we have

P

(
sup

0≤u≤δ
|Ŷ (u)| < 2(1 + δ)z

)
≤ c4 exp

(
− c5δ

4(1 + δ)2z2

)
.

Therefore, we obtain:

P1 ≤ 4 exp

(
− (1 − δ)2

2(1 + δ)2z2T

)
+ c4(N + 1) exp

(
− c5δ

4(1 + δ)2z2

)
.

Hence

P1 + P2 ≤ 4 exp

(
− (1 − δ)2

2(1 + δ)2z2T

)
+ c4(N + 1) exp

(
− c5δ

4(1 + δ)2z2

)

+2c6(N + 1) exp

(
− δ2z2

8h(1 + δ)

)
.

By taking N = [ec5δ/(4(1+δ)2z2)] + 1, we get

P1 + P2

≤ c16

(
exp

(
− (1− δ)2

2(1 + δ)2z2T

)
+ exp

(
− c5δ

4(1 + δ)2z2

)
+ exp

(
c17

z2
− c18z

2

T
ec19/z2

))

with relevant constants c16, c17, c18, c19, proving (3.13). tu

4. Proof of Theorem 1.1(i)

The upper estimation, i.e.

(4.1) lim sup
T→∞

sup0≤t≤T−aT
sup0≤s≤aT

|Y (t + s) − Y (t)|√
8aT

(
log
√

T/aT + log log T
) ≤ 1, a.s.

follows easily from Wen’s Theorem E.

Now we prove the lower bound, i.e.

(4.2) lim sup
T→∞

sup0≤t≤T−aT
sup0≤s≤aT

|Y (t + s) − Y (t)|√
8aT

(
log
√

T/aT + log log T
) ≥ 1, a.s.

In the case when aT = T , (4.2) follows from the law of the iterated logarithm (1.3) of Theorem

A. Now we assume that aT /T ≤ ρ < 1, with some constant ρ for all T > 0.

By scaling, (3.2) of Lemma 3.2 is equivalent to

(4.3)

P

(
sup

0≤t≤T−a
(Y (t + a) − Y (t)) ≥ z

√
a

)

≥ min

(
1

2
,

c7

√
T/a − 1

z
exp

(
− z2

8(1− δ)

))
− exp

(
−z2

)
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for 0 < a < T , 0 < δ < 1/2, z > 1.

Define the sequences

(4.4) tk := e7k log k, k = 1, 2, . . .

and θ0 := 0,

(4.5) θk := inf{t > Tk : W (t) = 0}, k = 1, 2, . . . ,

where Tk := θk−1 + tk. For 0 < δ < min(1/2, 1− ρ) define the events

Ak :=

{
sup

0≤t≤tk(1−δ)−atk

(Y (θk−1 + t + atk
) − Y (θk−1 + t)) ≥ (1 − δ)βk

}
, k = 1, 2, . . .

with

βk :=

√√√√8atk

(
log

√
tk
atk

+ log log tk

)
.

Applying (4.3) with T = tk(1 − δ), a = atk
, z = (1 − δ)

√
8(log

√
tk/atk

+ log log tk), we have

for k large

P(Ak) = P

(
sup

0≤t≤tk(1−δ)−atk

(Y (t + atk
) − Y (t)) ≥ (1− δ)βk

)

≥ min

(
1

2
,

bk

(log tk)1−δ

)
− 1

(log tk)8(1−δ)2

with

bk =
c7

√
tk(1− δ)/atk

− 1

(tk/atk
)(1−δ)/2

√
log
√

tk/atk
+ log log tk

≥ c20√
log k

.

Hence
∑

k P(Ak) = ∞ and since Ak are independent, Borel-Cantelli lemma yields

P(Ak i.o.) = 1.

It follows that

(4.6) lim sup
k→∞

sup0≤t≤tk(1−δ)−atk

(Y (θk−1 + t + atk
)− Y (θk−1 + t))

√
8atk

(
log
√

tk

atk

+ log log tk

) ≥ 1 − δ, a.s.

It can be seen (cf. [9]) that we have almost surely for large enough k

tk ≤ Tk ≤ tk

(
1 +

1

k

)
,

-- 14 --



consequently

(4.7) lim
k→∞

tk
Tk

= 1, a.s.

Since by our assumptions
tk
Tk

≤ atk

aTk

≤ 1,

we have also

(4.8) lim
k→∞

atk

aTk

= 1, a.s.

On the other hand, for any δ > 0 small enough we have almost surely for large k

aTk
≤ (1 + δ)atk

≤ tkδ + atk
,

thus

Tk − aTk
≥ Tk − tkδ − atk

,

consequently

(4.9)

sup
0≤t≤Tk−aTk

sup
0≤s≤aTk

|Y (t + s)− Y (t)|

≥ sup
0≤t≤tk(1−δ)−atk

(Y (θk−1 + t + atk
) − Y (θk−1 + t)),

hence we have also

(4.10) lim sup
k→∞

sup0≤t≤Tk−aTk

sup0≤s≤aTk

|Y (t + s)− Y (t)|
√

8atk

(
log
√

tk

atk

+ log log tk

) ≥ 1 − δ, a.s.

and since δ > 0 can be arbitrary small, (4.2) follows by combining (4.7), (4.8), (4.9) and (4.10). tu

5. Proof of Theorem 1.1(ii)

First assume that

(5.1) aT >
T

(logT )α
for some α < 2.

By Theorem C,

(5.2)

lim inf
T→∞

√
log log T

aT
sup

0≤t≤T−aT

sup
0≤s≤aT

|Y (t + s) − Y (t)|

≥ lim inf
T→∞

√
log log aT

aT
sup

0≤s≤aT

|Y (s)| ≥ K1, a.s.,
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proving the lower bound in (1.12).

To get an upper bound, note that by scaling, (3.7) of Lemma 3.4 is equivalent to

(5.3) P

(
sup

0≤t≤T−a
sup

0≤s≤a
|Y (s + t) − Y (t)| < z

√
a

)
≥ c10

√
a

T
exp

(
−c11

z2

)

for T ≥ a, 0 < z ≤ 1/2.

Let tk and θk be defined by (4.4) and (4.5), resp., as in the proof of Theorem 1.1(i) and for

any ε > 0 and for δ > 0 such that α/2 + c11/δ2 < 1, define the events

Ek :=

{
sup

0≤t≤(1+ε)tk−atk(1+ε)

sup
0≤s≤at

k
(1+ε)

|Y (θk−1 + t + s) − Y (θk−1 + t)| ≤ δ

√
atk

log log tk

}
.

Then putting T = (1 + ε)tk, a = a(1+ε)tk
, z = δ/

√
log log tk, into (5.3), we get

P(Ek) = P

(
sup

0≤t≤(1+ε)tk−atk(1+ε)

sup
0≤s≤atk(1+ε)

|Y (t + s)− Y (t)| ≤ δ

√
atk

log log tk

)

≥ c10

√
atk

tk
exp(−(c11/δ2) log log((1 + ε)tk)) ≥ c10

(log tk)α/2+c11/δ2 ,

hence
∑

k P(Ek) = ∞, and since Ek are independent, we have P(Ek i.o.) = 1, i.e.

(5.4) lim inf
k→∞

√
log log tk

atk

sup
0≤t≤(1+ε)tk−atk(1+ε)

sup
0≤s≤atk(1+ε)

|Y (θk−1 + t+ s)−Y (θk−1 + t)| ≤ δ, a.s.

for any ε. Put, as before, Tk = θk−1 + tk. For large enough k by (4.7) and (4.8) we have

aTk
≤ (1 + ε)atk

, a.s. and Tk − aTk
≤ θk−1 + (1 + ε)tk − (1 + ε)atk

, a.s. Thus given any ε > 0, we

have for large k

(5.5)

sup
0≤t≤Tk−aT

k

sup
0≤s≤aT

k

|Y (t + s)− Y (t)|

≤ 2 sup
0≤t≤θk−1

|Y (t)|+ sup
0≤t≤(1+ε)tk−atk(1+ε)

sup
0≤s≤atk(1+ε)

|Y (θk−1 + t + s) − Y (θk−1 + t)|.

By Theorem A, Fact 2.8, (4.7), (5.1) and simple calculation,

(5.6)

sup
0≤t≤θk−1

|Y (t)| = O(θk−1 log log θk−1)
1/2

= O(tk−1(log tk−1)
3 log log tk−1)

1/2 = o

(
atk

log log tk

)1/2

, a.s.

as k → ∞. Assembling (5.4), (5.5) and (5.6), we get

lim inf
k→∞

√
log log tk

atk

sup
0≤t≤Tk−aTk

sup
0≤s≤aTk

|Y (t + s)− Y (t)|

-- 16 --



= lim inf
k→∞

√
log log Tk

aTk

sup
0≤t≤Tk−aTk

sup
0≤s≤aTk

|Y (t + s)− Y (t)| ≤ δ, a.s.

which together with (5.2) yields (1.12).

Now assume that

(5.7) aT ≤ T

(logT )α
for some α > 2.

By Theorem 1.1(i),

(5.8)

lim inf
T→∞

sup0≤t≤T−aT
sup0≤s≤aT

|Y (t + s) − Y (t)|√
aT log(T/aT )

≤ lim sup
T→∞

sup0≤t≤T−aT
sup0≤s≤aT

|Y (t + s) − Y (t)|√
aT log(T/aT )

≤ lim sup
T→∞

sup0≤t≤T−aT
sup0≤s≤aT

|Y (t + s) − Y (t)|√
2αaT

α+2

(
log
√

T/aT + log log T
) ≤ 2

√
α + 2

α
,

i.e., an upper bound in (1.13) follows.

To get a lower bound under (5.7), observe that by scaling, (3.6) of Lemma 3.3 is equivalent to

P

(
sup

0≤t≤T−a
(Y (t + a) − Y (t)) < z

√
a

)
≤ 5

( a

T

)κ/2

+ exp

(
−c9

(
T

a

)(1−κ)/2

e−(1+δ)z2/8

)

for a ≤ T , 0 ≤ κ < 1, 0 < δ, 0 < z. Using (5.7) we get further

(5.9)

P

(
sup

0≤t≤T−a
(Y (t + a) − Y (t)) < z

√
a

)

≤ 5

(log T )ακ/2
+ exp

(
−c9

(
log T )α(1−κ)/2

)
e−(1+δ)z2/8

)
.

In the case when (1.7) holds, (1.13) was proved in [7]. In other cases the proof is similar. Let

Tk = ek and define the events

Fk =

{
sup

0≤t≤Tk−aTk

(Y (t + aTk
)− Y (t)) ≤ C1

√
aTk

log
Tk

aTk

}

with some constant C1 to be given later. By (5.9)

P(Fk) ≤ 5

kακ/2
+ exp

(
−c9k

α((1−κ)/2−(1+δ)C2
1/8)

)
.

For given α > 2, choose small ε > 0, κ = 2/α + ε,

C1 = 2

√
α − 2 − 2ε(1 + α)

(1 + ε)α
.
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One can easily see that with these choices
∑

k P(Fk) < ∞, consequently

lim inf
k→∞

sup0≤t≤Tk−aTk

(Y (t + aTk
) − Y (t))

√
aTk

log Tk

aTk

≥ C1, a.s.,

implying also

lim inf
k→∞

sup0≤t≤Tk−aTk

sup0≤s≤aTk

|Y (t + s) − Y (t)|
√

aTk
log Tk

aTk

≥ 2

√
α − 2

α
, a.s.,

for ε can be choosen arbitrary small.

Since sup0≤t≤T−aT
sup0≤s≤aT

|Y (t + s) − Y (t)| is increasing in T , we obtain a lower bound

in (1.13). This together with the 0-1 law for Brownian motion complete the proof of Theorem

1.1(ii). tu

6. Proof of Theorem 1.2(i)

If aT = T , then (1.14) is equivalent to Theorem C. Now assume that ρ := limT→∞ aT /T < 1.

First we prove the lower bound, i.e.

(6.1) lim inf
T→∞

√
T log log T

aT
inf

0≤t≤T−aT

sup
0≤s≤aT

|Y (t + s) − Y (t)| ≥ c, a.s.

By scaling, (3.13) of Lemma 3.5 is equivalent to

(6.2)

P

(
inf

0≤t≤T−a
sup

0≤s≤a
|Y (t + s)− Y (t)| < z

)

≤ c16

(
exp

(
− a(1 − δ)2

2(1 + δ)2z2T

)
+ exp

(
− c5δ

4(1 + δ)2z2

)
+ exp

(
c17

z2
− c18az2

T
ec19/z2

))

for a < T , 0 < z ≤ 1/2, 0 < δ ≤ 1/2.

Define the events

Gk =

{
inf

0≤t≤Tk+1−aTk

sup
0≤s≤aTk

|Y (t + s)− Y (t)| < zk

}
k = 1, 2, . . .

Let Tk = ek and put T = Tk+1, a = aTk
,

z = zk = C2

√
aTk

Tk+1 log log Tk+1

into (6.2). The constant C2 will be choosen later. Denoting the terms on the right-hand side of

(6.2) by I1, I2, I3, resp., we have

P(Gk) ≤ c16(I
(k)
1 + I

(k)
2 + I

(k)
3 ),
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where

I
(k)
1 = exp

(
−c21

C2
2

log log Tk+1

)
,

I
(k)
2 = exp

(
− c22Tk

C2
2aTk

log log Tk+1

)
,

I
(k)
3 = exp

(
c23Tk log log Tk+1

C2
2aTk

−
c24C

2
2a2

Tk

T 2
k log log Tk+1

(log Tk+1)
c25Tk

C2
2

aTk

)

with some constants c21 = c21(δ), c22 = c22(δ), c23, c24, c25.

One can see easily that for any choice of positive C2 and for all possible aT (satisfying our

conditions) we have
∑

k I
(k)
3 < ∞. So we show that for appropriate choice of C2 we have also

∑
k I

(k)
j < ∞, j = 1, 2.

First consider the case 0 < ρ > 0. Choosing a positive δ one can select C2 < min(
√

c21,
√

c22

ρ )

and it is easy to verify that
∑

k I
(k)
j < ∞, j = 1, 2, hence also

∑
k P(Gk) < ∞.

In the case ρ = 0 choose C2 < (1 − δ)/((1 + δ)
√

2). With this choice we have
∑

k I
(k)
1 < ∞

for arbitrary δ > 0. Since limk→∞(Tk/aTk
) = ∞, we have also

∑
k I

(k)
2 < ∞ and

∑
k P(Gk) < ∞.

Borell-Cantelli lemma and interpolation between Tk’s finish the proof of (6.1). We have also verified

that in the case ρ = 0 one can choose C2 = 1/
√

2, since δ can be choosen arbitrary small.

Now we turn to the proof of the upper bound, i.e.

(6.3) lim inf
T→∞

√
T log log T

aT
inf

0≤t≤T−aT

sup
0≤s≤aT

|Y (t + s) − Y (t)| ≤ C3, a.s.

with some constant C3.

If ρ > 0, then

inf
0≤t≤T−aT

sup
0≤s≤aT

|Y (t + s) − Y (t)| ≤ sup
0≤s≤aT

|Y (s)| ≤ sup
0≤s≤T

|Y (s)|

and hence (6.3) with some positive constant C3 follows from Theorem C.

If ρ = 0, then let for any ε > 0

(6.4) λT := inf{t : |W (t)| = sup
0≤s≤T (1−ε)

|W (s)|}.

According to the law of the iterated logarithm, with probability one there exists a sequence {Ti, i ≥
1} such that limi→∞ Ti = ∞ and

(6.5) |W (λTi
)| ≥

√
2Ti(1− ε) log log Ti.

-- 19 --



But Fact 2.4 implies that for ε > 0

(6.6) |W (λTi
) − W (s)| ≤

√
2(1 + ε)εTi log log Ti, λTi

≤ s ≤ λTi
+ εTi, i ≥ 1.

Now assume that W (λTi
) > 0. The case when W (λTi

) < 0 is similar. Then (6.5) and (6.6) imply

(6.7) W (s) ≥
(√

1 − ε −
√

ε(1 + ε)
)√

2Ti log log Ti, λTi
≤ s ≤ λTi

+ εTi.

ρ = 0 implies that aT ≤ εT for any ε > 0 and large enough T , hence we have from (6.7) for large i

sup
0≤s≤aTi

(Y (λTi
+ s) − Y (λTi

)) = Y (λTi
+ aTi

) − Y (λTi
) =

∫ λTi
+aTi

λTi

ds

W (s)

≤ aTi(√
1 − ε −

√
ε(1 + ε)

)√
2Ti log log Ti

.

Since ε > 0 is arbitrary, (6.3) follows with C3 = 1/
√

2. This completes the proof of Theorem 1.2(i).

tu

7. Proof of Theorem 1.2(ii)

If ρ = 1, then (1.15) is equivalent to (1.3) of Theorem A. So we may assume that 0 < ρ < 1.

First we prove the upper bound

(7.1) lim sup
T→∞

inf0≤t≤T−ρT sup0≤s≤ρT |Y (t + s) − Y (t)|√
8T log log T

≤ ρ, a.s.

Let k be the largest integer for which kρ < 1 and put xi = iρ, i = 0, 1, . . . , k, xk+1 = 1. It suffices

to show that if f ∈ S defined by (1.5), then

min
1≤i≤k+1

|f(xi) − f(xi−1)| ≤ ρ.

Assume on the contrary that

|f(xi) − f(xi−1)| > ρ, ∀i = 1, 2, . . . , k + 1.

Then
k+1∑

i=1

(f(xi) − f(xi−1))
2

xi − xi−1
>

k∑

i=1

ρ2

ρ
+

ρ2

1 − kρ
= kρ +

ρ2

1 − kρ
≥ 1,

contradicting (2.12) of Fact 2.5. This proves (7.1).
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The lower bound

(7.2) lim sup
T→∞

inf0≤t≤T−ρT sup0≤s≤ρT |Y (t + s) − Y (t)|√
8T log log T

≥ ρ, a.s.

follows from the fact that by Theorem B the function f(x) = x, 0 ≤ x ≤ 1 is a limit point of

Y (xt)√
8T log log T

and for this function

min
0≤x≤1−ρ

|f(x + ρ) − f(x)| = ρ.

This completes the proof of Theorem 1.2(iia). tu
Now assume that

(7.3) lim
T→∞

aT (log log T )2

T
= 0.

Define λT as in (6.4). Then according to Chung’s LIL (cf. Fact 2.6)

(7.4) |W (λT )| ≥ π√
8
(1 − ε)

√
T

log log T

for every T sufficiently large. But according to Fact 2.4,

sup
0≤s≤aT

|W (λT + s) − W (λT )|

≤
√

(2 + ε)aT (log(T/aT ) + log log T ) ≤
√

(2 + ε)εT

log log T
.

Assuming W (λT ) > 0, we get

W (λT + s) ≥ W (λT ) −
√

(2 + ε)εT

log log T
≥ c

√
T

log log T
.

Hence

inf
0≤t≤T−aT

sup
0≤s≤aT

|Y (t + s) − Y (t)| ≤ Y (λT + aT ) − Y (λT )

=

∫ aT

0

ds

W (λT + s)
≤ aT

c

√
log log T

T

for all large T .

The case when W (λT ) < 0 is similar. This shows the upper bound in (1.16).
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For the lower bound we use Fact 2.6: with probability one

(7.5) gT ≤ T

(log log T )2
, max

0≤u≤T
|W (u)| ≤ π√

2

√
T

log log T
i.o.

According to Theorem 1.2(i) for every large T we have for any ε > 0 and sufficiently large T

(7.6)

inf
0≤t≤T (log log T )−2

sup
0≤s≤aT

|Y (t + s) − Y (t)|

≥ (K4 − ε)aT√(
T

(log log T )2
+ aT

)
log log T

≤ (K4 − ε)aT√
(1 + ε)T log log T

.

On the other hand, if T (log log T )−2 ≤ t ≤ T − aT , then by (7.5)

|Y (t + aT ) − Y (t)| =
∫ t+aT

t

ds

|W (s)| ≥
aT

√
2 log log T

π
√

T
.

Combining (7.6) and (7.7) we get for ε > 0 and all large T

inf
0≤t≤T−aT

sup
0≤s≤aT

|Y (t + s)− Y (t)| ≥ min

(
K4 − ε√

1 + ε
,

√
2

π

)
aT

√
log log T

T
.

This shows the lower bound in (1.16). The proof of Theorem 1.2(iib) is complete by applying

the 0-1 law for Brownian motion. tu
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119 (1995), 147–156.

[3] Bertoin, J.: Cauchy’s principal value of local times of Lévy processes with no negative jumps
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