Almost sure limit theorems for the maximum of stationary Gaussian sequences

Endre Csáki ${ }^{a, 1}$, Khurelbaatar Gonchigdanzan ${ }^{b, 2}$
${ }^{a}$ A. Rényi Institute of Mathematics, Hungarian Academy of Sciences, P.O.Box 127, H-1364, Budapest, Hungary
${ }^{b}$ Department of Mathematical Sciences, University of Cincinnati, Cincinnati, OH 45221-0025, USA

Abstract

We prove an almost sure limit theorem for the maxima of stationary Gaussian sequences with covariance r_{n} under the condition $r_{n} \log n(\log \log n)^{1+\varepsilon}=O(1)$.

Key words: almost sure central limit theorem, logarithmic average, stationary Gaussian sequence.

Introduction. The early results on the almost sure central limit theorem (ASCLT) dealt mostly with partial sums of random variables. A general pattern of these investigations is that if X_{1}, X_{2}, \ldots is a sequence of random variables with partial sums $S_{n}=\sum_{k=1}^{n} X_{k}$ satisfying $a_{n}\left(S_{n}-b_{n}\right) \xrightarrow{\mathcal{D}} G$ for some numerical sequences $\left(a_{n}\right),\left(b_{n}\right)$ and distribution function G, then under some additional mild conditions we have

$$
\lim _{n \rightarrow \infty} \frac{1}{\log n} \sum_{k=1}^{n} \frac{1}{k} \mathbf{I}\left(a_{k}\left(S_{k}-b_{k}\right)<x\right)=G(x) \quad \text { a.s. }
$$

for any continuity point x of G, where \mathbf{I} is indicator function.
For more discussions about ASCLT we refer to the survey papers by Berkes (1998), and Atlagh and Weber (2000). Recently Fahrner and Stadtmüller (1998) and Cheng et al. (1998) have extended this principle by proving ASCLT for the maxima of independent random variables.

[^0]THEOREM A. Let X_{1}, X_{2}, \ldots be i.i.d. random variables and $M_{k}=\max _{i \leq k} X_{i}$. If $a_{k}\left(M_{k}-b_{k}\right) \xrightarrow{\mathcal{D}} G$ for a nondegenerate distribution G and some numerical sequences $\left(a_{k}\right)$ and $\left(b_{k}\right)$, then we have

$$
\lim _{n \rightarrow \infty} \frac{1}{\log n} \sum_{k=1}^{n} \frac{1}{k} \mathbf{I}\left(a_{k}\left(M_{k}-b_{k}\right)<x\right)=G(x) \quad \text { a.s. }
$$

for any continuity point x of G.

Berkes and Csáki (2001) extended the ASCLT for general nonlinear functionals of independent random variables. For strong invariance principles improving Theorem A see Berkes and Horváth (2001) and Fahrner (2001).

Throughout this paper Z_{1}, Z_{2}, \ldots is a stationary Gaussian sequence and we denote its covariance function by $r_{n}=\operatorname{Cov}\left(Z_{1}, Z_{n+1}\right)$, and $M_{n}=\max _{1 \leq i \leq n} Z_{i}$ and $M_{k, n}=$ $\max _{k+1 \leq i \leq n} Z_{i}$. Here $a \ll b$ and $a \sim b$ stand for $a=O(b)$ and $a / b \rightarrow 1$ respectively. $\Phi(x)$ is the standard normal distribution function and $\phi(x)$ is its density function.

For notational convenience let $R(n)=r_{n} \log n(\log \log n)^{1+\varepsilon}$.

1. Main Result. The main result is an almost sure central limit theorem for the maximum of stationary Gaussian sequences.

THEOREM 1.1. Let Z_{1}, Z_{2}, \ldots be a standardized stationary Gaussian sequence with $R(n)=O(1)$ as $n \rightarrow \infty$. Then
(i) If $n\left(1-\Phi\left(u_{n}\right)\right) \rightarrow \tau$ for $0 \leq \tau<\infty$, then

$$
\lim _{n \rightarrow \infty} \frac{1}{\log n} \sum_{k=1}^{n} \frac{1}{k} \mathbf{I}\left(M_{k} \leq u_{k}\right)=e^{-\tau} \quad \text { a.s. }
$$

(ii) If $a_{n}=(2 \log n)^{1 / 2}$ and $b_{n}=(2 \log n)^{1 / 2}-\frac{1}{2}(2 \log n)^{-1 / 2}(\log \log n+\log 4 \pi)$, then

$$
\lim _{n \rightarrow \infty} \frac{1}{\log n} \sum_{k=1}^{n} \frac{1}{k} \mathbf{I}\left(a_{k}\left(M_{k}-b_{k}\right) \leq x\right)=\exp \left(-e^{-x}\right) \quad \text { a.s.. }
$$

2. Auxiliary Results. The main weak convergence result for the maximum of stationary Gaussian sequence is summarized in the following theorem.

THEOREM 2.1. (Theorem 4.3.3 in Leadbetter et al. (1983)). Let Z_{1}, Z_{2}, \ldots be a standardized stationary Gaussian sequence with $r_{n} \log n \rightarrow 0$. Then
(i) For $0 \leq \tau<\infty, \mathbf{P}\left(M_{n} \leq u_{n}\right) \rightarrow e^{-\tau}$ if and only if $n\left(1-\Phi\left(u_{n}\right)\right) \rightarrow \tau$
(ii) $\mathbf{P}\left(a_{n}\left(M_{n}-b_{n}\right) \leq x\right) \rightarrow \exp \left(-e^{-x}\right)$,
where $a_{n}=(2 \log n)^{1 / 2}$ and $b_{n}=(2 \log n)^{1 / 2}-\frac{1}{2}(2 \log n)^{-1 / 2}(\log \log n+\log 4 \pi)$.

We need the following lemmas for the proof of our main result.
LEMMA 2.1. Let Z_{1}, Z_{2}, \ldots be a standardized stationary Gaussian sequence. Assume that $R(n)=O(1)$ and $n\left(1-\Phi\left(u_{n}\right)\right)$ is bounded. Then

$$
\sup _{1 \leq k \leq n} k \sum_{j=1}^{n}\left|r_{j}\right| \exp \left(-\frac{u_{k}^{2}+u_{n}^{2}}{2\left(1+\left|r_{j}\right|\right)}\right) \ll(\log \log n)^{-(1+\varepsilon)} .
$$

PROOF OF LEMMA 2.1: Under the condition $r_{n} \rightarrow 0$ we have $\sup _{n \geq 1}\left|r_{n}\right|=\sigma<1$ (cf., Leadbetter et al., 1983). By assumption, $n\left(1-\Phi\left(u_{n}\right)\right) \leq K$. Let the sequence $\left(v_{n}\right)$ be defined by $v_{n}=u_{n}$ if $n \leq K$ and $n\left(1-\Phi\left(v_{n}\right)\right)=K$, if $n>K$. Then clearly $u_{n} \geq v_{n}$ and hence

$$
k \sum_{j=1}^{n}\left|r_{j}\right| \exp \left(-\frac{u_{k}^{2}+u_{n}^{2}}{2\left(1+\left|r_{j}\right|\right)}\right) \leq k \sum_{j=1}^{n}\left|r_{j}\right| \exp \left(-\frac{v_{k}^{2}+v_{n}^{2}}{2\left(1+\left|r_{j}\right|\right)}\right) .
$$

Thus it would be enough to prove the lemma for the sequence $\left(v_{n}\right)$. By the well known fact

$$
1-\Phi(x) \sim \frac{\phi(x)}{x}, \quad x \rightarrow \infty
$$

we can see that

$$
\begin{equation*}
\exp \left(-\frac{v_{n}^{2}}{2}\right) \sim \frac{K \sqrt{2 \pi} v_{n}}{n}, \quad v_{n} \sim(2 \log n)^{1 / 2} \tag{2.1}
\end{equation*}
$$

Define α to be $0<\alpha<(1-\sigma) /(1+\sigma)$. Note that

$$
\begin{aligned}
& k \sum_{j=1}^{n}\left|r_{j}\right| \exp \left(-\frac{v_{k}^{2}+v_{n}^{2}}{2\left(1+\left|r_{j}\right|\right)}\right)= \\
& \quad=k \sum_{1 \leq j \leq n^{\alpha}}\left|r_{j}\right| \exp \left(-\frac{v_{k}^{2}+v_{n}^{2}}{2\left(1+\left|r_{j}\right|\right)}\right)+k \sum_{n^{\alpha}<j \leq n}\left|r_{j}\right| \exp \left(-\frac{v_{k}^{2}+v_{n}^{2}}{2\left(1+\left|r_{j}\right|\right)}\right)= \\
& \quad=: T_{1}+T_{2}
\end{aligned}
$$

Using (2.1)

$$
\begin{aligned}
T_{1} & \leq k n^{\alpha} \exp \left(-\frac{v_{k}^{2}+v_{n}^{2}}{2(1+\sigma)}\right)=k n^{\alpha}\left(\exp \left(-\frac{v_{k}^{2}+v_{n}^{2}}{2}\right)\right)^{1 /(1+\sigma)} \ll \\
& \ll k n^{\alpha}\left(\frac{v_{k} v_{n}}{k n}\right)^{1 /(1+\sigma)} \ll k^{1-1 /(1+\sigma)} n^{\alpha-1 /(1+\sigma)}(\log k \log n)^{1 / 2(1+\sigma)} \leq \\
& \leq n^{1+\alpha-2 /(1+\sigma)}(\log n)^{1 /(1+\sigma)} .
\end{aligned}
$$

Since $1+\alpha-2 /(1+\sigma)<0$, we get $T_{1} \leq n^{-\delta}$ for some $\delta>0$, uniformly for $1 \leq k \leq n$. Now we estimate the second term T_{2}. Setting $\sigma_{n}=\sup _{j \geq n}\left|r_{j}\right|$ and counting on $R(n)=O(1)$ as $n \rightarrow \infty$

$$
\begin{equation*}
\sigma_{n} \log n(\log \log n)^{1+\varepsilon} \leq \sup _{j \geq n}\left|r_{j}\right| \log j(\log \log j)^{1+\varepsilon}=O(1), \quad n \rightarrow \infty \tag{2.2}
\end{equation*}
$$

Set $p=\left[n^{\alpha}\right]$. By (2.1) and (2.2) we have

$$
\begin{align*}
\sigma_{p} v_{k} v_{n} & \ll \sigma_{\left[n^{\alpha}\right]}(\log k \log n)^{1 / 2} \ll \sigma_{\left[n^{\alpha}\right]} \log n^{\alpha} \ll \\
& \ll\left(\log \log n^{\alpha}\right)^{-(1+\varepsilon)} \sim(\log \log n)^{-(1+\varepsilon)} \tag{2.3}
\end{align*}
$$

and similarly, for $1 \leq k \leq n$

$$
\begin{equation*}
\sigma_{p} v_{k}^{2} \ll(\log \log n)^{-(1+\varepsilon)} . \tag{2.4}
\end{equation*}
$$

Hence using (2.1), (2.3) and (2.4)

$$
\begin{aligned}
T_{2} & \leq k \sigma_{p} \exp \left(-\frac{v_{k}^{2}+v_{n}^{2}}{2}\right) \sum_{p \leq j \leq n} \exp \left(\frac{\left(v_{k}^{2}+v_{n}^{2}\right)\left|r_{j}\right|}{2\left(1+\left|r_{j}\right|\right)}\right) \leq \\
& \leq k n \sigma_{p} \exp \left(-\frac{v_{k}^{2}+v_{n}^{2}}{2}\right) \exp \left(\frac{\left(v_{k}^{2}+v_{n}^{2}\right) \sigma_{p}}{2}\right) \ll(\log \log n)^{-(1+\varepsilon)}
\end{aligned}
$$

The proof is completed.

LEMMA 2.2. Let Z_{1}, Z_{2}, \ldots be a standard stationary Gaussian sequence. Suppose that $\sup _{n \geq 1}\left|r_{n}\right|<1$. Then for $k<n$

$$
\begin{aligned}
\mid P\left(M_{k} \leq u_{k}, M_{k, n} \leq u_{n}\right) & -P\left(M_{k} \leq u_{k}\right) P\left(M_{k, n} \leq u_{n}\right) \mid \ll \\
& \ll k \sum_{j=1}^{n}\left|r_{j}\right| \exp \left(-\frac{u_{k}^{2}+u_{n}^{2}}{2\left(1+\left|r_{j}\right|\right)}\right) .
\end{aligned}
$$

PROOF OF LEMMA 2.2. We use the following

THEOREM 2.2. (Theorem 4.2.1, Normal Comparison Lemma in Leadbetter et al. (1983)). Suppose ξ_{1}, \ldots, ξ_{n} are standard normal variables with covariance matrix $\Lambda^{1}=$ $\left(\Lambda_{i j}^{1}\right)$, and $\eta_{1}, \ldots, \eta_{n}$ with covariance matrix $\Lambda^{0}=\left(\Lambda_{i j}^{0}\right)$, and let $\rho_{i j}=\max \left(\left|\Lambda_{i j}^{1}\right|,\left|\Lambda_{i j}^{0}\right|\right)$. Further, let u_{1}, \ldots, u_{n} be real numbers. Then

$$
\begin{aligned}
\mid P\left(\xi_{j} \leq u_{j}, j=1, \ldots, n\right) & -P\left(\eta_{j} \leq u_{j}, j=1, \ldots, n\right) \mid \leq \\
& \leq K \sum_{1 \leq i<j \leq n}\left|\Lambda_{i j}^{1}-\Lambda_{i j}^{0}\right| \exp \left(-\frac{u_{i}^{2}+u_{j}^{2}}{2\left(1+\rho_{i j}\right)}\right) .
\end{aligned}
$$

Apply this Theorem with $\left(\xi_{i}=Z_{i}, i=1, \ldots, n\right),\left(\eta_{j}=Z_{j}, j=1, \ldots, k ; \eta_{j}=\tilde{Z}_{j}, j=\right.$ $k+1, \ldots, n)$, where $\left(\tilde{Z}_{k+1}, \ldots, \tilde{Z}_{n}\right)$ has the same distribution as $\left(Z_{k+1}, \ldots, Z_{n}\right)$, but it is independent of $\left(Z_{1}, \ldots, Z_{k}\right)$. Further, $u_{i}=u_{k}, i=1, \ldots, k$ and $u_{i}=u_{n}, i=k+1, \ldots, n$. Then $\Lambda_{i j}^{1}=\Lambda_{i j}^{0}=r_{j-i}$ if either $1 \leq i<j \leq k$, or $k+1 \leq i<j \leq n$. Otherwise $\Lambda_{i j}^{1}=r_{j-i}, \Lambda_{i j}^{0}=0$. Hence we have

$$
\begin{aligned}
& \left|P\left(M_{k} \leq u_{k}, M_{k, n} \leq u_{n}\right)-P\left(M_{k} \leq u_{k}\right) P\left(M_{k, n} \leq u_{n}\right)\right| \ll \\
& \quad \ll \sum_{i=1}^{k} \sum_{j=k+1}^{n}\left|r_{j-i}\right| \exp \left(-\frac{u_{k}^{2}+u_{n}^{2}}{2\left(1+\left|r_{j-i}\right|\right)}\right) \leq k \sum_{m=1}^{n}\left|r_{m}\right| \exp \left(-\frac{u_{k}^{2}+u_{n}^{2}}{2\left(1+\left|r_{m}\right|\right)}\right) .
\end{aligned}
$$

This completes the proof of LEMMA 2.2.

LEMMA 2.3. Let Z_{1}, Z_{2}, \ldots be a standardized stationary Gaussian sequence. Assume that $R(n)=O(1)$ and $n\left(1-\Phi\left(u_{n}\right)\right)$ is bounded. Then for $1 \leq k<n$

$$
\operatorname{Cov}\left(\mathbf{I}\left(M_{k} \leq u_{k}\right), \mathbf{I}\left(M_{k, n} \leq u_{n}\right)\right) \ll(\log \log n)^{-(1+\varepsilon)} .
$$

PROOF OF LEMMA 2.3: It follows simply from LEMMA 2.1 and LEMMA 2.2.

LEMMA 2.4. Let Z_{1}, Z_{2}, \ldots be a standardized stationary Gaussian sequence. Assume that $R(n)=O(1)$ and $n\left(1-\Phi\left(u_{n}\right)\right)$ is bounded, then

$$
\mathbf{E}\left|\mathbf{I}\left(M_{n} \leq u_{n}\right)-\mathbf{I}\left(M_{k, n} \leq u_{n}\right)\right| \ll \frac{k}{n}+(\log \log n)^{-(1+\varepsilon)} .
$$

PROOF OF LEMMA 2.4: Note that

$$
\begin{aligned}
\mathbf{E} \mid \mathbf{I}\left(M_{n}\right. & \left.\leq u_{n}\right)-\mathbf{I}\left(M_{k, n} \leq u_{n}\right) \mid=\mathbf{P}\left(M_{k, n} \leq u_{n}\right)-\mathbf{P}\left(M_{n} \leq u_{n}\right) \leq \\
& \leq\left|\mathbf{P}\left(M_{k, n} \leq u_{n}\right)-\Phi^{n-k}\left(u_{n}\right)\right|+\left|\mathbf{P}\left(M_{n} \leq u_{n}\right)-\Phi^{n}\left(u_{n}\right)\right|+ \\
& +\left|\Phi^{n-k}\left(u_{n}\right)-\Phi^{n}\left(u_{n}\right)\right|=: D_{1}+D_{2}+D_{3}
\end{aligned}
$$

From the elementary fact that

$$
x^{n-k}-x^{n} \leq \frac{k}{n}, \quad 0 \leq x \leq 1
$$

we have $D_{3} \leq(k / n)$. By Corollary 4.2.4 in Leadbetter et al. (1983), p. 84

$$
D_{i} \ll n \sum_{j=1}^{n}\left|r_{j}\right| \exp \left(-\frac{u_{n}^{2}}{1+\left|r_{j}\right|}\right) \quad i=1,2 .
$$

Thus by LEMMA 2.1 we have $D_{i} \ll(\log \log n)^{-(1+\varepsilon)}, i=1,2$.
3. Proof of Main Result. We now give the proof of THEOREM 1.1. We need the following lemma for the proof.

LEMMA 3.1. Let $\eta_{1}, \eta_{2}, \ldots$ be a sequence of bounded random variables. If

$$
\operatorname{Var}\left(\sum_{k=1}^{n} \frac{1}{k} \eta_{k}\right) \ll \log ^{2} n(\log \log n)^{-(1+\varepsilon)} \quad \text { for some } \quad \varepsilon>0
$$

then

$$
\lim _{n \rightarrow \infty} \frac{1}{\log n} \sum_{k=1}^{n} \frac{1}{k}\left(\eta_{k}-\mathbf{E} \eta_{k}\right)=0 \quad \text { a.s.. }
$$

PROOF OF LEMMA 3.1: Setting

$$
\mu_{n}=\frac{1}{\log n} \sum_{k=1}^{n} \frac{1}{k}\left(\eta_{k}-\mathbf{E} \eta_{k}\right)
$$

and $n_{k}=\exp \left(\exp \left(k^{\nu}\right)\right)$ for some $\frac{1}{1+\epsilon}<\nu<1$, we have

$$
\sum_{k=3}^{\infty} \mathbf{E} \mu_{n_{k}}^{2} \ll \sum_{k=3}^{\infty}\left(\log \log n_{k}\right)^{-(1+\epsilon)} \ll \sum_{k=3}^{\infty} k^{-\nu(1+\epsilon)}<\infty
$$

implying $\sum_{k=3}^{\infty} \mu_{n_{k}}^{2}<\infty$ a.s. Thus

$$
\mu_{n_{k}} \rightarrow 0 \quad \text { a.s.. }
$$

Since

$$
(k+1)^{\nu}-k^{\nu} \rightarrow 0 \quad \text { as } \quad k \rightarrow \infty \quad \text { if } \quad \nu<1
$$

we have

$$
\frac{\log n_{k+1}}{\log n_{k}}=e^{(k+1)^{\nu}-k^{\nu}} \rightarrow 1 \quad \text { as } \quad k \rightarrow \infty
$$

Obviously for any given n there is an integer k such that $n_{k}<n \leq n_{k+1}$. Therefore

$$
\begin{aligned}
\left|\mu_{n}\right| & \leq \frac{1}{\log n}\left|\sum_{j=1}^{n} \frac{1}{j}\left(\eta_{j}-\mathbf{E} \eta_{j}\right)\right| \leq \\
& \leq \frac{1}{\log n_{k}}\left|\sum_{j=1}^{n_{k}} \frac{1}{j}\left(\eta_{j}-\mathbf{E} \eta_{j}\right)\right|+\frac{1}{\log n_{k}} \sum_{j=n_{k}+1}^{n_{k+1}} \frac{1}{j}\left|\eta_{j}-\mathbf{E} \eta_{j}\right| \ll \\
& \ll\left|\mu_{n_{k}}\right|+\frac{1}{\log n_{k}}\left(\log n_{k+1}-\log n_{k}\right) \ll\left|\mu_{n_{k}}\right|+\left(\frac{\log n_{k+1}}{\log n_{k}}-1\right)
\end{aligned}
$$

and thus

$$
\lim _{n \rightarrow \infty} \mu_{n}=0 \quad \text { a.s.. }
$$

PROOF OF THEOREM 1.1: First, we claim that under the assumptions that $R(n)=O(1)$ and $n\left(1-\Phi\left(u_{n}\right)\right)$ is bounded, we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{1}{\log n} \sum_{k=1}^{n} \frac{1}{k}\left(\mathbf{I}\left(M_{k} \leq u_{k}\right)-\mathbf{P}\left(M_{k} \leq u_{k}\right)\right)=0 \quad \text { a.s.. } \tag{3.1}
\end{equation*}
$$

In order to show this, by LEMMA 3.1 it is sufficient to show

$$
\begin{equation*}
\operatorname{Var}\left(\sum_{k=1}^{n} \frac{1}{k} \mathbf{I}\left(M_{k} \leq u_{k}\right)\right) \ll(\log \log n)^{-(1+\varepsilon)} \log ^{2} n \quad \text { for some } \quad \varepsilon>0 \tag{3.2}
\end{equation*}
$$

Let $\eta_{k}=\mathbf{I}\left(M_{k} \leq u_{k}\right)-\mathbf{P}\left(M_{k} \leq u_{k}\right)$. Then

$$
\begin{align*}
& \operatorname{Var}\left(\sum_{k=1}^{n} \frac{1}{k} \mathbf{I}\left(M_{k} \leq u_{k}\right)\right)=\mathbf{E}\left(\sum_{k=1}^{n} \frac{1}{k} \eta_{k}\right)^{2}= \\
& =\sum_{k=1}^{n} \frac{1}{k^{2}} \mathbf{E}\left|\eta_{k}\right|^{2}+2 \sum_{1 \leq k<l \leq n} \frac{\left|\mathbf{E}\left(\eta_{k} \eta_{l}\right)\right|}{k l}=: \mathbf{L}_{1}+\mathbf{L}_{2} \tag{3.3}
\end{align*}
$$

Since $\left|\eta_{k}\right| \leq 2$, it follows that

$$
\begin{equation*}
\mathbf{L}_{1} \ll \sum_{k=1}^{\infty} \frac{1}{k^{2}}<\infty \tag{3.4}
\end{equation*}
$$

To estimate \mathbf{L}_{2}, note that for $l>k$

$$
\begin{align*}
\left|\mathbf{E}\left(\eta_{k} \eta_{l}\right)\right| & =\left|\operatorname{Cov}\left(\mathbf{I}\left(M_{k} \leq u_{k}\right), \mathbf{I}\left(M_{l} \leq u_{l}\right)\right)\right| \leq \mid \operatorname{Cov}\left(\mathbf{I}\left(M_{k} \leq u_{k}\right), \mathbf{I}\left(M_{l} \leq u_{l}\right)-\right. \\
& \left.-\mathbf{I}\left(M_{k, l} \leq u_{l}\right)\right)\left|+\left|\operatorname{Cov}\left(\mathbf{I}\left(M_{k} \leq u_{k}\right), \mathbf{I}\left(M_{k, l} \leq u_{l}\right)\right)\right| \ll\right. \\
& \ll \mathbf{E}\left|\mathbf{I}\left(M_{l} \leq u_{l}\right)-\mathbf{I}\left(M_{k, l} \leq u_{l}\right)\right|+\left|\operatorname{Cov}\left(\mathbf{I}\left(M_{k} \leq u_{k}\right), \mathbf{I}\left(M_{k, l} \leq u_{l}\right)\right)\right| . \tag{3.5}
\end{align*}
$$

By LEMMA 2.3 and LEMMA 2.4 we get

$$
\left|\operatorname{Cov}\left(\mathbf{I}\left(M_{k} \leq u_{k}\right), \mathbf{I}\left(M_{k, l} \leq u_{l}\right)\right)\right| \ll(\log \log l)^{-(1+\varepsilon)}
$$

and

$$
\mathbf{E}\left|\mathbf{I}\left(M_{l} \leq u_{l}\right)-\mathbf{I}\left(M_{k, l} \leq u_{l}\right)\right| \ll \frac{k}{l}+(\log \log l)^{-(1+\varepsilon)}
$$

Hence for $l>k$

$$
\begin{equation*}
\left|\mathbf{E}\left(\eta_{k} \eta_{l}\right)\right| \ll \frac{k}{l}+(\log \log l)^{-(1+\varepsilon)} \tag{3.6}
\end{equation*}
$$

and consequently

$$
\begin{align*}
\mathbf{L}_{2} \ll & \sum_{\substack{1 \leq k<l \leq n}} \frac{1}{k l}\left(\frac{k}{l}\right)+\sum_{1 \leq k<l \leq n} \frac{1}{k l(\log \log l)^{1+\varepsilon}}= \\
& =: \mathbf{L}_{21}+\mathbf{L}_{22} . \tag{3.7}
\end{align*}
$$

For \mathbf{L}_{21} and \mathbf{L}_{22} we have the following estimates:

$$
\begin{align*}
\mathbf{L}_{22} & \ll \sum_{l=3}^{n} \frac{1}{l(\log \log l)^{1+\varepsilon}} \sum_{k=1}^{l-1} \frac{1}{k} \ll \sum_{l=3}^{n} \frac{\log l}{l(\log \log l)^{1+\varepsilon}} \ll \\
& \ll \log n \sum_{l=3}^{n} \frac{1}{l(\log \log l)^{1+\varepsilon}} \ll \log ^{2} n(\log \log n)^{-(1+\varepsilon)} \tag{3.8}
\end{align*}
$$

and

$$
\begin{equation*}
\mathbf{L}_{21} \leq \sum_{1 \leq k<l \leq n} \frac{1}{k l}\left(\frac{k}{l}\right) \ll \log n \tag{3.9}
\end{equation*}
$$

Thus (3.3)-(3.9) together establish (3.1).
PROOF OF (i): Note that $R(n)=O(1)$ implies $r_{n} \log n \rightarrow 0$. By THEOREM 4.3.3(i) in Leadbetter et al. (1983), we have $P\left(M_{n} \leq u_{n}\right) \rightarrow e^{-\tau}$. Clearly this implies

$$
\lim _{n \rightarrow \infty} \frac{1}{\log n} \sum_{k=1}^{n} \frac{1}{k} \mathbf{P}\left(M_{k} \leq u_{k}\right)=e^{-\tau}
$$

which is, by (3.1), equivalent to

$$
\lim _{n \rightarrow \infty} \frac{1}{\log n} \sum_{k=1}^{n} \frac{1}{k} \mathbf{I}\left(M_{k} \leq u_{k}\right)=e^{-\tau} \quad \text { a.s.. }
$$

PROOF OF (ii): By THEOREM 2.1 we have $n\left(1-\Phi\left(u_{n}\right)\right) \rightarrow e^{-x}$ for $u_{n}=x / a_{n}+b_{n}$. Thus the statement of (ii) is a special case of (i).

Acknowledgement

We thank a referee for some useful comments.

REFERENCES

1. Atlagh, M. and Weber, M. (2000), Le théorème central limite presque sûr. Expositiones Mathematicae 18, 097-126.
2. Berkes, I. (1998), Results and problems related to the pointwise central limit theorem. Asymptotic results in Probability and Statistics, (A volume in honour of Miklós Csörgő), 59-60, Elsevier, Amsterdam.
3. Berkes, I. and Csáki, E. (2001), A universal result in almost sure central limit theory. Stoch. Process. Appl. 94, 105-134.
4. Berkes, I. and Horváth, L. (2001), The logarithmic average of sample extremes is asymptotically normal. Stoch. Process. Appl. 91, 77-98.
5. Cheng, S., Peng, L. and Qi, Y. (1998), Almost sure convergence in extreme value theory. Math. Nachr. 190, 43-50.
6. Fahrner, I. and Stadtmüller, U. (1998), On almost sure max-limit theorems. Stat. Prob. Letters 37, 229-236.
7. Fahrner, I. (2001), A strong invariance principle for the logarithmic average of sample maxima. Stoch. Process. Appl. 93, 317-337.
8. Hurelbaatar, G. (1997), Almost sure limit theorems for dependent random variables. Studia Sci. Math. Hung. 33, 167-175.
9. Leadbetter, M. R., Lindgren, G., and Rootzén, H. (1983), Extremes and Related Properties of Random Sequences and Processes. Springer-Verlag, New York.

[^0]: ${ }^{1}$ Supported by the Hungarian National Foundation for Scientific Research Grant No. T 029621
 ${ }^{2}$ Supported by a TAFT Fellowship at the University of Cincinnati

