
ON THE NUMBER OF CUTPOINTS OFTHE TRANSIENT NEAREST NEIGHBORRANDOM WALK ON THE LINE
Endre Csáki1Alfréd Rényi Institute of Mathematis, Hungarian Aademy of Sienes, Budapest, P.O.B.127, H-1364, Hungary. E-mail address: saki�renyi.huAntónia Földes2Department of Mathematis, College of Staten Island, CUNY, 2800 Vitory Blvd., StatenIsland, New York 10314, U.S.A. E-mail address: foldes�mail.si.uny.eduPál Révész1Institut für Statistik und Wahrsheinlihkeitstheorie, Tehnishe Universität Wien, WiednerHauptstrasse 8-10/107 A-1040 Vienna, Austria. E-mail address: reveszp�renyi.huAbstrat: We onsider transient nearest neighbor random walks on the positive partof the real line. We give riteria for the �niteness of the number of utpoints and strongutpoints. Examples and open problems are presented.AMS 2000 Subjet Classi�ation: Primary 60J10; Seondary 60F15, 60J55.Keywords: transient random walk, utpoints, strong theorems.Running head: Cutpoints of NN random walk

1Researh supported by the Hungarian National Foundation for Sientifi Researh, Grant No. K 61052and K 67961.2Researh supported by a PSC CUNY Grant, No. 61061-0039.1



1. IntrodutionLet X0 = 0, X1, X2, . . . be a Markov hain with
Ei := P(Xn+1 = i + 1 | Xn = i) = 1 −P(Xn+1 = i − 1 | Xn = i) (1.1)

=

{

1 if i = 0
1/2 + pi if i = 1, 2, . . . ,where −1/2 < pi < 1/2, i = 1, 2, . . ..Theorem A ([2℄, page 74) Let Xn be a Markov hain with transition probabilities given in(1.1). De�ne

Ui :=
1 − Ei

Ei

=
1/2 − pi

1/2 + pi

, i = 1, 2, . . . . (1.2)Then Xn is transient if and only if
∞
∑

k=1

k
∏

i=1

Ui < ∞. (1.3)In ase pi ≥ 0 the sequene {Xi} desribes the motion of a partile whih starts at zero,moves over the nonnegative integers and going away from 0 with a larger probability thanto the diretion of 0. We suppose throughout this paper that 0 ≤ pi < 1/2, i = 1, 2, . . . .In [3℄ we introdued the quantities
D(m, n) :=























0 if n = m,
1 if n = m + 1,

1 +
n−m−1
∑

j=1

j
∏

i=1

Um+i if n ≥ m + 2
(1.4)and

lim
n→∞

D(m, n) =: D(m). (1.5)Clearly (1.3) implies that if the walk is transient then D(m) is �nite for all m = 1, 2, . . ..The properties of this Markov hain, often alled birth and death hain were extensivelystudied. Some of these results are mentioned e.g. in [3℄. Our main onern in that paperwas to study the loal time of {Xn}, de�ned by
ξ(x, n) := #{k : 0 ≤ k ≤ n, Xk = x}, x = 0, 1, 2, . . . , n = 1, 2, . . . (1.6)2



and
ξ(x) := lim

n→∞
ξ(x, n). (1.7)The �rst topi in that paper was to �nd upper lass results for the loal time.Theorem B Assume that pR → 0 as R → ∞. Then with probability 1 we have

ξ(R) ≤ 2(1 + ε)D(R) logR (1.8)for any ε > 0 if R is large enough.Moreover,
ξ(R) ≥ MD(R) i.o. a.s. (1.9)for any M > 0.The next question was how small an the loal time be. In partiular, we studied thenumber of sites R where ξ(R) = 1. We found that the answer heavily depends on thesequene {pR}

∞

R=1.We will say that the NN walk X∗

n is slower than Xn (or equivalently, Xn is quiker than
X∗

n) if
p∗R ≤ pR for all R = 1, 2, . . . (1.10)It is obvious that the quiker is Xn, the more sites with loal time equal to 1 will our.Remark 1. In (1.10) the required inequality ould be relaxed to hold for all but �nitelymany R only, sine �nitely many pR have no e�et on the asymptoti behavior of the walk.The same remark applies throughout the paper, when we require ertain properties of the

{pR} system.Introdue the following notations:
Λ(1, i, B) =

B

i
,

Λ(2, i, B) =
1

i
+

B

i log i
,

. . . ,

Λ(K, i, B) =
1

i
+

1

i log i
+ . . . +

B

i log i log log i . . . logK−1 i
.In [3℄ we proved the followingFat 1 If for any K = 1, 2, . . .

pi =
Λ(K, i, B)

4
,3



then the Markov hain {Xn} is reurrent if B ≤ 1 and transient if B > 1.In the spirit of Remark 1 above, it is enough if pi takes the value given above with �nitelymany exeptions, but assuming that 0 ≤ pi < 1/2 for all i = 1, 2, . . ..We proved in [3℄ that if pi =
Λ(1, i, B)

4
with B > 1, then we not only have in�nitely manysites with loal time 1, but we have in�nitely many inreasing runs of sites eah having loaltime 1. More preisely we haveTheorem C Let {Xn} be an NN random walk with pR =

Λ(1, R, B)

4
=

B

4R
and B > 1.Then with probability 1 there exist in�nitely many R for whih

ξ(R + j) = 1for eah j = 0, 1, 2, . . . ,

[

log log R

log 2

]

.However, if X∗

n is transient but slower than Xn in Theorem C, then one might ask whetherit still has in�nitely many sites with loal time 1. It turns out that this is not always true.James et al. [7℄ proved a surprising result whih implies the followingTheorem D If {Xn} is an NN random walk with pR =
Λ(2, R, B)

4
and B > 1, then withprobability 1 Xn has only �nitely many sites R with ξ(R) = 1.In fat, they formulated their results in terms of utpoints. Call the site R a utpointif for some k, we have Xk = R and {X0, X1 . . .Xk} is disjoint from {Xk+1, Xk+2 . . .}, i.e.

Xi ≤ R, i = 0, 1, . . . , k, Xk = R and Xi > R, i = k + 1, k + 2, . . .The original version of Theorem C in [7℄ reads as follows.Theorem D∗ If {Xn} is an NN random walk with
c1

k(log k)β
≤ U1U2 . . . Uk ≤

c2

k(log k)βfor some β > 1 and positive onstants c1, c2, then {Xn} is transient and has only �nitelymany utpoints a.s.Cutpoints and related intersetion problems for more general stohasti proesses havebeen investigated extensively in the literature, starting with Dvoretzky et al. [4℄, Erd®s andTaylor [5℄. A nie summary of this topi is given by Lawler [8℄.For usual random walk (sums of i.i.d. random variables) we mention the following generalresult of James and Peres [6℄, where the de�nition of utpoint is somewhat di�erent fromabove. Sk is alled a utpoint there if p(Si, Sj) = 0 for all (i, j) suh that 0 ≤ i < k < j,where p(x, y) is the one-step transition probability from x to y.4



Theorem E Any transient random walk {Sk} with bounded inrements on the lattie Zd hasin�nitely many utpoints a.s.To formulate our main result, we introdue the following de�nitions.Call the site R a strong utpoint if for some k, we have Xk = R, Xi < R, i = 0, 1, . . . , k−1and Xi > R, i = k+1, k+2, . . .. Observe that R is a strong utpoint if and only if ξ(R) = 1.Clearly every strong utpoint is a utpoint.In this paper we give a riteria for a transient NN random walk whih determines whetherthe number of utpoints (or strong utpoints) is �nite or in�nite almost surely.Theorem 1.1. Let X0 = 0, X1, X2, . . . be a transient Markov hain with transition proba-bility Ei as in (1.1) and 0 ≤ pi < 1/2, i = 1, 2, . . . Let D(n), n = 1, 2, . . . be as in (1.5).
• If

∞
∑

n=2

1

D(n) log n
< ∞, (1.11)then {Xn} has �nitely many utpoints almost surely.

• If D(n) ≤ δn log n (n ≥ n0) for some δ > 0 and
∞
∑

n=2

1

D(n) log n
= ∞,then {Xn} has in�nitely many strong utpoints almost surely.Remark 2. Observe that if the sum in (1.11) is �nite then {Xn} has �nitely many strongutpoints. On the other hand, if the same sum is divergent and D(n) ≤ δn log n, then {Xn}has in�nitely many utpoints as well.Remark 3. The ondition D(n) ≤ δn log n of the seond statement is a tehnial one, mostprobably it an be removed.The above mentioned tehnial ondition prevent us to establish the followingConjeture 1.1 The number of utpoints is �nite if and only if the number of strong ut-points is �nite.In Setion 2 we will present some preliminary results. Setions 3 and 4 are devoted toprove Theorem 1.1. In Setion 5 we give some examples and open problems.
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2 Preliminary resultsFor 0 ≤ a ≤ b ≤ c integers de�ne
p(a, b, c) := P(min{j : j > m, Xj = a} < min{j : j > m, Xj = c} | Xm = b),i.e. p(a, b, c) is the probability that a partile starting from b hits a before c.Lemma A For 0 ≤ a ≤ b ≤ c

p(a, b, c) = 1 −
D(a, b)

D(a, c)
.Espeially, for n = 1, 2, . . . we have

p(0, 1, n) = 1 −
1

D(0, n)
, p(n, n + 1,∞) = 1 −

1

D(n)
. (2.1)It is easy to see that

D(n) = 1 + D(n + 1)Un+1,

Un =
D(n − 1) − 1

D(n)
, pn =

1

2

D(n) − D(n − 1) + 1

D(n) + D(n − 1) − 1
, n = 1, 2, . . . (2.2)Then observe that for n ≥ m + 2

D(m, n) = 1 +
n−m−1
∑

j=1

j
∏

i=1

Um+i = D(m) −
∞
∑

j=n−m

j
∏

i=1

Um+i = D(m) − Um+1 . . . UnD(n)

= D(m) −
(D(m) − 1) . . . (D(n − 1) − 1)

D(m + 1) . . .D(n − 1)
= D(m)

(

1 −
n−1
∏

i=m

(

1 −
1

D(i)

))

.(2.3)We also de�ne the number of uprossings by
ξ(R, n, ↑) := #{k : 0 ≤ k ≤ n, Xk = R, Xk+1 = R + 1}. (2.4)

ξ(R, ↑) := lim
n→∞

ξ(R, n, ↑). (2.5)It was shown in [3℄ thatLemma B For R = 0, 1, 2, . . .

P(ξ(R) = L) =
1 + 2pR

2D(R)

(

1 −
1 + 2pR

2D(R)

)L−1

, L = 1, 2, . . . (2.6)6



P(ξ(R, ↑) = L) =
1

D(R)

(

1 −
1

D(R)

)L−1

, L = 1, 2, . . . (2.7)It is easy to see that R is a utpoint if and only if ξ(R, ↑) = 1. Reall that R is a strongutpoint if and only if ξ(R) = 1.Denote the (random) set of
• utpoints by C

• strong utpoints by CSObserve that
CS ⊆ C. (2.8)We present the following exat probabilities.Lemma 2.1. For k = 1, 2, . . . we have

P(k ∈ C) = 1 − p(k, k + 1,∞) =
1

D(k)
, (2.9)

P(k ∈ CS) =
1 + 2pk

2D(k)
, (2.10)

P(j ∈ C, k ∈ C) =
1

D(j, k + 1)D(k)
, j < k, (2.11)

P(j ∈ CS, k ∈ CS) =
(

1

2
+ pj

)(

1

2
+ pk

)

1

D(j, k)D(k)
, j < k. (2.12)Proof. The statements (2.9) and (2.10) follow from Lemma B.To show (2.11), we have to observe that after the �rst arrival to j + 1 the walk has toarrive to k + 1 without hitting j, and from k + 1 it must not return to k at all. Formally, byLemma A

P(j ∈ C, k ∈ C) = (1 − p(j, j + 1, k + 1))(1 − p(k, k + 1,∞)) =
1

D(j, k + 1)D(k)
.To show (2.12), observe that after the �rst hit of j the walk has to go to j + 1. Thenfrom j + 1 it has to hit k before it goes bak to j. From k it has to go to k + 1, and from

k + 1 it must not return to k at all. Hene again by Lemma A,
P(j ∈ CS, k ∈ CS) =

(

1

2
+ pj

)

(1 − p(j, j + 1, k))
(

1

2
+ pk

)

(1 − p(k, k + 1,∞))7



=
(

1

2
+ pj

)(

1

2
+ pk

)

1

D(j, k)D(k)
.This ompletes the proof of the Lemma. 2Lemma 2.2. For any positive non-dereasing funtion G(x), x ≥ 0, the following two sums

∞
∑

n=2

1

G(n) log n

∞
∑

n=2

1

G([n log n])are equionvergent.Proof. Under the ondition of the Lemma we have
∫ n+1

n

dx

G(x) log x
≤

1

G(n) log n
≤
∫ n

n−1

dx

G(x) log x
,onsequently

∫

∞

2

dx

G(x) log x
≤

∞
∑

n=2

1

G(n) log n
≤

1

G(2) log 2
+
∫

∞

2

dx

G(x) log x
.Similarly,

∫

∞

2

dx

G(x log x)
≤

∞
∑

n=2

1

G([n log n])
≤

1

G(1)
+

1

G(3)
+
∫

∞

2

dx

G(x log x)
.It remains to show that the integrals

∫

∞ dx

G(x) log x
and

∫

∞ dx

G(x log x)are equionvergent. This an be shown by using the substitution x = y log y in the �rstintegral above to get
∫

∞ dx

G(x) log x
=
∫

∞ 1 + log y

log y + log log y

dy

G(y log y)
.Clearly we have

c1

∫

∞ dy

G(y log y)
≤
∫

∞ 1 + log y

log y + log log y

dy

G(y log y)
≤ c2

∫

∞ dy

G(y log y)with some 0 < c1 < c2, hene the Lemma. 2 8



Lemma 2.3. If Xn and X∗

n are two NN random walks suh that X∗

n is slower than Xn then
D(n) ≤ D∗(n).Proof. If X∗

n is slower than Xn then
Ui =

1/2 − pi

1/2 + pi

≤
1/2 − p∗i
1/2 + p∗i

= U∗

iHene from the de�nition of D(n) we get that
D(n) ≤ D∗(n), (2.13)proving our Lemma. 2We will need the following Lemma from Polfeldt [9℄, whih is a partiular ase of histheorem.Lemma C Let S(x) be a slowly varying funtion suh that

lim
x→∞

(log S(x))′

(log log x)′
= −∞and

lim
x→∞

(log S(x))′

(log x)′
log L(x) = −1for some normalized di�erentiable slowly varying funtion L(x). Then

∫

∞

x

S(t)

t
dt ∼ S(x) log L(x), as x → ∞.Reall (see Bingham et al. [1℄ page 12-15) that a slowly varying funtion H(x) an berepresented as

H(x) = a(x) exp

(

∫ x

b

ε(t)

t
dt

)

,where a(x) → a 6= 0, ε(x) → 0 as x → ∞. If a(x) = a, then H is normalized.Moreover, a di�erentiable slowly varying funtion is normalized if and only if
xH ′(x)

H(x)
→ 0 as x → ∞.9



3 Proof of the onvergent partWe follow the ideas of [7℄. We have P(j ∈ C|k ∈ C) = 1/D(j, k + 1) for j < k. Observe thatit is also the probability that
P(j ∈ C|k ∈ C, Fk+1) j < k, (3.1)where Fk+1 is any event determined by the future of the walk after it reahes k+1 for the �rsttime. Let Cj,k be the set of utpoints in (2j, 2k] and Aj,k := |Cj,k| the number of utpointsin (2j, 2k]. De�ne

am := P(Am,m+1 > 0) (3.2)and
bm := min

k∈(2m,2m+1]

2m−1
∑

i=1

1

D(k − i, k + 1)
(3.3)On the event that Am,m+1 > 0, let ℓm be the largest utpoint in Cm,m+1. We want to givea lower bound for the expeted number of utpoints in (2m−1, 2m+1] by onditioning on thelast utpoint in (2m, 2m+1], if there is one:

2m+1
∑

j=2m−1+1

P(j ∈ C) = E(Am−1,m+1) (3.4)
≥ amE(Am−1,m+1|Am,m+1 > 0)

= amE(E(Am−1,m+1|Am,m+1 > 0, ℓm))

≥ am bm.It is readily seen that if pi ≥ 0, i = 1, 2, . . ., then Ui ≤ 1, i = 1, 2, . . . and hene
D(m, n) ≤ n − m,and so

bm ≥
2m−1
∑

i=1

1

i + 1
≥ c m (3.5)with some c > 0.Hene with onstants c not neessarily the same on eah appearane,

∞
∑

m=1

P(Am,m+1) =
∞
∑

m=1

am ≤
∞
∑

m=1

1

bm

2m+1
∑

j=2m−1+1

P(j ∈ C)10



≤
∞
∑

m=1

c

m

2m+1
∑

j=2m−1+1

1

D(j)
≤ c

∞
∑

m=1

2m+1
∑

j=2m−1+1

1

D(j) log j
≤ c

∞
∑

n=2

1

D(n) log n
< ∞,and by Borel-Cantelli lemma only �nitely many of the events Am,m+1 ours with probability1, whih proves the onvergent part of Theorem 1.1. 24 Proof of the divergent partLet mk = [k log k] and

Ak = {ξ(mk) = 1}.We prove that P(Ak i.o.) = 1 whih implies the divergent part of Theorem 1.1. By Lemma2.1
P(Ak) =

1 + 2pmk

2D(mk)
≥

1

2D([k log k])
,so by Lemma 2.2,

∑

k

P(Ak) = ∞.For n > m we have
P(ξ(m) = 1, ξ(n) = 1) =

(

1

2
+ pm

)

1

D(m, n)

(

1

2
+ pn

)

1

D(n)
≤

1

D(m)D(n)H(m, n)with
H(m, n) =

D(m, n)

D(m)
.It follows from (2.3) that

H(m, n) = 1 −

(

1 −
1

D(m)

)

. . .

(

1 −
1

D(n − 1)

)

≥ 1 − exp

(

−
1

D(m)
− . . . −

1

D(n − 1)

)

.Let ε > 0 and for given k we split the set {ℓ > k} into 2 parts. Let
ℓ1 = min







ℓ > k :
mℓ−1
∑

i=mk

1

D(i)
≥ log

1 + ε

ε







. (4.1)11



• (1) ℓ ≥ ℓ1,
• (2) k < ℓ < ℓ1.In ase (1), using that H(m, n) is inreasing in n for �xed m, we have for ℓ ≥ ℓ1

P(Ak Aℓ) =
P(Ak)P(Aℓ)

H(mk, mℓ)
≤

P(Ak)P(Aℓ)

H(mk, mℓ1)
≤ (1 + ε)P(Ak)P(Aℓ).In the ase ℓ ∈ (2) we use the inequality 1 − e−u ≥ cu for 0 ≤ u ≤ log((1 + ε)/ε) withsome c > 0 to get

P(Ak Aℓ) ≤
P(Ak)P(Aℓ)

H(mk, mℓ)
≤

P(Ak)P(Aℓ)

c
∑mℓ−1

i=mk

1
D(i)

≤ cP(Ak)P(Aℓ)
D(mℓ)

mℓ − mk

.Here and in what follows c, ci denote some positive onstants, the values of whih mighthange from line to line.So we have for ℓ ∈ (2)
P(Ak Aℓ) ≤

cP(Ak)

ℓ log ℓ − k log k
,

ℓ1−1
∑

ℓ=k+1

P(Ak Aℓ) ≤ cP(Ak)
ℓ1−1
∑

ℓ=k+1

1

ℓ log ℓ − k log k

≤ cP(Ak)
1

log k

ℓ1−1
∑

ℓ=k+1

1

ℓ − k
≤ cP(Ak)

log ℓ1

log k
.Now we show that

log ℓ1

log k
≤ γ (4.2)with some positive onstant γ depending only on ε. We know from (4.1) that for ℓ ∈ (2) wehave

mℓ−1
∑

i=mk

1

D(i)
< log

1 + ε

ε
. (4.3)We show that this implies that for large k we have ℓ < kγ with γ > (1 + ε/ε)δ. If we assumethe ontrary that ℓ ≥ kγ, then

mℓ−1
∑

i=mk

1

D(i)
≥

1

δ

mℓ−1
∑

i=mk

1

i log i
∼

1

δ
(log log(mℓ − 1) − log log mk)12



∼
1

δ
log

log(ℓ log ℓ)

log(k log k)
≥

1

δ
log γ > log

1 + ε

εwhih ontradits to (4.3). Hene ℓ1 − 1 ≤ kγ , implying (4.2).Consequently,
∑

ℓ∈(2)

P(Ak Aℓ) ≤ cP(Ak)Assembling these estimations, we have
N
∑

k=1

N
∑

ℓ=k+1

P(Ak Aℓ) ≤ (1 + ε)
N
∑

k=1

N
∑

ℓ=k+1

P(Ak)P(Aℓ) + c
N
∑

k=1

P(Ak)Sine ε > 0 is arbitrary, Borel-Cantelli lemma implies P(Ak i.o.) = 1. 25 Conlusions and open problemsOur results are formulated in terms of the sequene {D(·)} but it would be muh morenatural to formulate them in terms of the sequene {pi}. Even though we have an expliitexpression of D(·) in terms of {pi}, usually it is not easy to see the asymptotis of D(·)and whether the sum in Theorem 1.1 is onvergent or divergent by looking at {pi} only.Therefore we want to give some examples.In [3℄ we have shownExample 1. If pk = B/4k with B > 1, then
D(i) ∼

i

B − 1as i → ∞. Consequently, by Theorem 1.1 there are in�nitely many strong utpoints a.s.It was shown also in [3℄Example 2. If pk = Λ(K, k, B)/4 with K ≥ 2 and B > 1, then
D(i) ∼

i log i log log i . . . logK−1 i

B − 1as i → ∞. Consequently, by Theorem 1.1 we have �nitely many utpoints a.s.Reall that the ase K = 2 orresponds to Theorem D.Of ourse, if the NN walk is quiker than the walk in Example 1, (e.g. pk = ck−α with
α < 1), then we have in�nitely many strong utpoints a.s. On the other hand, if the NNwalk is slower than the walk in Example 2, then we have �nitely many utpoints a.s.13



The above two examples show that the jump from �nitely many to in�nitely many ut-points is for
pk =

1

4

(

1

k
+

1

kf(k)

)with some f(k) → ∞. It is not hard to show that if f(k) = (log k)α with 0 < α < 1, thenwe still have �nitely many utpoints a.s. Now we show a more preise result whih impliesthis one.Theorem 5.1. Let {Xn} be an NN random walk with
pk =

1

4

(

1

k
+

1

k(log log k)β

)

,then we have �nitely many utpoints a.s. if β > 1 and in�nitely many strong utpoints a.s.if β ≤ 1.Proof. Let
rk =

k
∏

i=1

Ui, tk =
∞
∑

i=k

ri, k = 1, 2, . . .Then it is easy to see that D(k) = tk/rk.For k → ∞ we obtain
Uk =

1 − 2pk

1 + 2pk

= exp(−4pk + O(p2
k))and

rk = exp(−4
k
∑

i=1

pi + O(
k
∑

i=1

p2
i )) = exp

(

−
k
∑

i=3

(

1

i
+

1

i(log log i)β

)

+ O(1)

)

= exp

(

−
∫ k

3

(

1

u
+

1

u(log log u)β

)

du + O(1)

)

.Hene
c1

k
exp

(

−
∫ k

3

du

u(log log u)β

)

≤ rk ≤
c2

k
exp

(

−
∫ k

3

du

u(log log u)β

) (5.1)with some positive onstants c1, c2. Consequently,
c1

∞
∑

j=k

1

j
exp

(

−
∫ j

3

du

u(log log u)β

)

≤ tk ≤ c2

∞
∑

j=k

1

j
exp

(

−
∫ j

3

du

u(log log u)β

)

. (5.2)14



Moreover,
∞
∑

j=k

1

j
exp

(

−
∫ j

3

du

u(log log u)β

)

=
∫

∞

k

1

y
exp

(

−
∫ y

3

du

u(log log u)β

)

+ O(1).To �nd the asymptotis of the above integral, we will apply Lemma C, with
S(y) = exp

(

−
∫ y

3

du

u(log log u)β

)and
L(x) = e(log log x)β

.Choosing S(·) and L(·) as above, all the onditions of Lemma C are met and we onludethat
∫

∞

k

1

y
exp

(

−
∫ y

3

du

u(log log u)β

)

∼ (log log k)β exp

(

−
∫ k

3

du

u(log log u)β

)

.From (5.1) and (5.2) we obtain
c1 k (log log k)β ≤ D(k) =

tk
rk

≤ c2 k (log log k)β.This ombined with Theorem 1.1 proves Theorem 5.1. 2Lemma 2.4 easily implies the followingCorollary 5.1 If {Xn} is an NN random walk with
pk ≤

1

4

(

1

k
+

1

k(log log k)β

)and β > 1, then Xn has �nitely many utpoints a.s.On the other hand, if {Xn} is an NN random walk with
pk ≥

1

4

(

1

k
+

1

k(log log k)β

)and β ≤ 1, then Xn has in�nitely many strong utpoints a.s.Now we present some related open problems.15



• (1) It would be interesting to know whether Theorem 1.1 also holds for the number ofsites with ξ(R) = a or ξ(R, ↑) = a for any �xed integer a > 1, i.e. whether we have thesame riteria for {ξ(R) = a} and {ξ(R, ↑) = a} to our in�nitely often almost surelyfor any positive integer a.
• (2) Call the site R a weak utpoint if for some k, we have Xk = R, Xi ≤ R, i =

0, 1, . . . , k − 1 and Xi ≥ R, i = k + 1, k + 2, . . .. One would like to know whetherTheorem 1.1 an be extended for the number of weak utpoints.
• (3) It would be interesting to know whether Theorem 1.1 holds for utpoints with agiven loal time, i.e. for {ξ(R) = a, ξ(R, ↑) = 1}, or in general {ξ(R) = a, ξ(R, ↑) = b}in�nitely often almost surely, with positive integers a, b.
• (4) Theorem B gives limsup behavior of the loal time. One might ask how does ithange if we want to onsider the limsup of the loal time restrited to the utpoints.Referenes[1℄ BINGHAM, N., GOLDIE, C. M. and TEUGELS, J. L.: Regular Variation. CambridgeUnversity Press, New York, 1987.[2℄ CHUNG, K. L.: Markov Chains with Stationary Transition Probabilities. 2nd ed.Springer-Verlag, New York, 1967.[3℄ CSÁKI, E., FÖLDES, A. and RÉVÉSZ, P.: Transient nearest neighbor random walkon the line. J.Theor. Probab., to appear.[4℄ DVORETZKY, A., ERD�S, P. and KAKUTANI, S.: Double points of paths of Brow-nian motions in n-spae. Ata Si. Math. Szeged 12 (1950) 75�81.[5℄ ERD�S, P. and TAYLOR, S. J.: Some intersetion properties of random walk paths.Ata Math. Si. Hung. 11 (1960), 231�248.[6℄ JAMES, N. and PERES, Y.: Cutpoints and exhangeable events for random walks.Theory Probab. Appl. 41 (1996), 666�677.[7℄ JAMES, N., LYONS, R. and PERES, Y.: A transient Markov hain with �nitely manyutpoints. IMS Colletions Probability and Statistis: Essays in Honor of David A.Freedman, Vol. 2 (2008), 24�29. Institute of Mathematial Statistis, 2008.16



[8℄ LAWLER, G. F.: Cut times for Brownian motion and random walk. Paul Erd®s andhis Mathematis, I. Bolyai Mathematial Studies 11 (2002), 411�421.[9℄ POLFELDT, T.: Integrating regularly varying funtions with exponents -1. SIAM J.Appl Math. 17 (1969), 904�908.
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