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1. Introdu
tionLet X0 = 0, X1, X2, . . . be a Markov 
hain with
Ei := P(Xn+1 = i + 1 | Xn = i) = 1 −P(Xn+1 = i − 1 | Xn = i) (1.1)

=

{

1 if i = 0
1/2 + pi if i = 1, 2, . . . ,where −1/2 < pi < 1/2, i = 1, 2, . . ..Theorem A ([2℄, page 74) Let Xn be a Markov 
hain with transition probabilities given in(1.1). De�ne

Ui :=
1 − Ei

Ei

=
1/2 − pi

1/2 + pi

, i = 1, 2, . . . . (1.2)Then Xn is transient if and only if
∞
∑

k=1

k
∏

i=1

Ui < ∞. (1.3)In 
ase pi ≥ 0 the sequen
e {Xi} des
ribes the motion of a parti
le whi
h starts at zero,moves over the nonnegative integers and going away from 0 with a larger probability thanto the dire
tion of 0. We suppose throughout this paper that 0 ≤ pi < 1/2, i = 1, 2, . . . .In [3℄ we introdu
ed the quantities
D(m, n) :=























0 if n = m,
1 if n = m + 1,

1 +
n−m−1
∑

j=1

j
∏

i=1

Um+i if n ≥ m + 2
(1.4)and

lim
n→∞

D(m, n) =: D(m). (1.5)Clearly (1.3) implies that if the walk is transient then D(m) is �nite for all m = 1, 2, . . ..The properties of this Markov 
hain, often 
alled birth and death 
hain were extensivelystudied. Some of these results are mentioned e.g. in [3℄. Our main 
on
ern in that paperwas to study the lo
al time of {Xn}, de�ned by
ξ(x, n) := #{k : 0 ≤ k ≤ n, Xk = x}, x = 0, 1, 2, . . . , n = 1, 2, . . . (1.6)2



and
ξ(x) := lim

n→∞
ξ(x, n). (1.7)The �rst topi
 in that paper was to �nd upper 
lass results for the lo
al time.Theorem B Assume that pR → 0 as R → ∞. Then with probability 1 we have

ξ(R) ≤ 2(1 + ε)D(R) logR (1.8)for any ε > 0 if R is large enough.Moreover,
ξ(R) ≥ MD(R) i.o. a.s. (1.9)for any M > 0.The next question was how small 
an the lo
al time be. In parti
ular, we studied thenumber of sites R where ξ(R) = 1. We found that the answer heavily depends on thesequen
e {pR}

∞

R=1.We will say that the NN walk X∗

n is slower than Xn (or equivalently, Xn is qui
ker than
X∗

n) if
p∗R ≤ pR for all R = 1, 2, . . . (1.10)It is obvious that the qui
ker is Xn, the more sites with lo
al time equal to 1 will o

ur.Remark 1. In (1.10) the required inequality 
ould be relaxed to hold for all but �nitelymany R only, sin
e �nitely many pR have no e�e
t on the asymptoti
 behavior of the walk.The same remark applies throughout the paper, when we require 
ertain properties of the

{pR} system.Introdu
e the following notations:
Λ(1, i, B) =

B

i
,

Λ(2, i, B) =
1

i
+

B

i log i
,

. . . ,

Λ(K, i, B) =
1

i
+

1

i log i
+ . . . +

B

i log i log log i . . . logK−1 i
.In [3℄ we proved the followingFa
t 1 If for any K = 1, 2, . . .

pi =
Λ(K, i, B)

4
,3



then the Markov 
hain {Xn} is re
urrent if B ≤ 1 and transient if B > 1.In the spirit of Remark 1 above, it is enough if pi takes the value given above with �nitelymany ex
eptions, but assuming that 0 ≤ pi < 1/2 for all i = 1, 2, . . ..We proved in [3℄ that if pi =
Λ(1, i, B)

4
with B > 1, then we not only have in�nitely manysites with lo
al time 1, but we have in�nitely many in
reasing runs of sites ea
h having lo
altime 1. More pre
isely we haveTheorem C Let {Xn} be an NN random walk with pR =

Λ(1, R, B)

4
=

B

4R
and B > 1.Then with probability 1 there exist in�nitely many R for whi
h

ξ(R + j) = 1for ea
h j = 0, 1, 2, . . . ,

[

log log R

log 2

]

.However, if X∗

n is transient but slower than Xn in Theorem C, then one might ask whetherit still has in�nitely many sites with lo
al time 1. It turns out that this is not always true.James et al. [7℄ proved a surprising result whi
h implies the followingTheorem D If {Xn} is an NN random walk with pR =
Λ(2, R, B)

4
and B > 1, then withprobability 1 Xn has only �nitely many sites R with ξ(R) = 1.In fa
t, they formulated their results in terms of 
utpoints. Call the site R a 
utpointif for some k, we have Xk = R and {X0, X1 . . .Xk} is disjoint from {Xk+1, Xk+2 . . .}, i.e.

Xi ≤ R, i = 0, 1, . . . , k, Xk = R and Xi > R, i = k + 1, k + 2, . . .The original version of Theorem C in [7℄ reads as follows.Theorem D∗ If {Xn} is an NN random walk with
c1

k(log k)β
≤ U1U2 . . . Uk ≤

c2

k(log k)βfor some β > 1 and positive 
onstants c1, c2, then {Xn} is transient and has only �nitelymany 
utpoints a.s.Cutpoints and related interse
tion problems for more general sto
hasti
 pro
esses havebeen investigated extensively in the literature, starting with Dvoretzky et al. [4℄, Erd®s andTaylor [5℄. A ni
e summary of this topi
 is given by Lawler [8℄.For usual random walk (sums of i.i.d. random variables) we mention the following generalresult of James and Peres [6℄, where the de�nition of 
utpoint is somewhat di�erent fromabove. Sk is 
alled a 
utpoint there if p(Si, Sj) = 0 for all (i, j) su
h that 0 ≤ i < k < j,where p(x, y) is the one-step transition probability from x to y.4



Theorem E Any transient random walk {Sk} with bounded in
rements on the latti
e Zd hasin�nitely many 
utpoints a.s.To formulate our main result, we introdu
e the following de�nitions.Call the site R a strong 
utpoint if for some k, we have Xk = R, Xi < R, i = 0, 1, . . . , k−1and Xi > R, i = k+1, k+2, . . .. Observe that R is a strong 
utpoint if and only if ξ(R) = 1.Clearly every strong 
utpoint is a 
utpoint.In this paper we give a 
riteria for a transient NN random walk whi
h determines whetherthe number of 
utpoints (or strong 
utpoints) is �nite or in�nite almost surely.Theorem 1.1. Let X0 = 0, X1, X2, . . . be a transient Markov 
hain with transition proba-bility Ei as in (1.1) and 0 ≤ pi < 1/2, i = 1, 2, . . . Let D(n), n = 1, 2, . . . be as in (1.5).
• If

∞
∑

n=2

1

D(n) log n
< ∞, (1.11)then {Xn} has �nitely many 
utpoints almost surely.

• If D(n) ≤ δn log n (n ≥ n0) for some δ > 0 and
∞
∑

n=2

1

D(n) log n
= ∞,then {Xn} has in�nitely many strong 
utpoints almost surely.Remark 2. Observe that if the sum in (1.11) is �nite then {Xn} has �nitely many strong
utpoints. On the other hand, if the same sum is divergent and D(n) ≤ δn log n, then {Xn}has in�nitely many 
utpoints as well.Remark 3. The 
ondition D(n) ≤ δn log n of the se
ond statement is a te
hni
al one, mostprobably it 
an be removed.The above mentioned te
hni
al 
ondition prevent us to establish the followingConje
ture 1.1 The number of 
utpoints is �nite if and only if the number of strong 
ut-points is �nite.In Se
tion 2 we will present some preliminary results. Se
tions 3 and 4 are devoted toprove Theorem 1.1. In Se
tion 5 we give some examples and open problems.
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2 Preliminary resultsFor 0 ≤ a ≤ b ≤ c integers de�ne
p(a, b, c) := P(min{j : j > m, Xj = a} < min{j : j > m, Xj = c} | Xm = b),i.e. p(a, b, c) is the probability that a parti
le starting from b hits a before c.Lemma A For 0 ≤ a ≤ b ≤ c

p(a, b, c) = 1 −
D(a, b)

D(a, c)
.Espe
ially, for n = 1, 2, . . . we have

p(0, 1, n) = 1 −
1

D(0, n)
, p(n, n + 1,∞) = 1 −

1

D(n)
. (2.1)It is easy to see that

D(n) = 1 + D(n + 1)Un+1,

Un =
D(n − 1) − 1

D(n)
, pn =

1

2

D(n) − D(n − 1) + 1

D(n) + D(n − 1) − 1
, n = 1, 2, . . . (2.2)Then observe that for n ≥ m + 2

D(m, n) = 1 +
n−m−1
∑

j=1

j
∏

i=1

Um+i = D(m) −
∞
∑

j=n−m

j
∏

i=1

Um+i = D(m) − Um+1 . . . UnD(n)

= D(m) −
(D(m) − 1) . . . (D(n − 1) − 1)

D(m + 1) . . .D(n − 1)
= D(m)

(

1 −
n−1
∏

i=m

(

1 −
1

D(i)

))

.(2.3)We also de�ne the number of up
rossings by
ξ(R, n, ↑) := #{k : 0 ≤ k ≤ n, Xk = R, Xk+1 = R + 1}. (2.4)

ξ(R, ↑) := lim
n→∞

ξ(R, n, ↑). (2.5)It was shown in [3℄ thatLemma B For R = 0, 1, 2, . . .

P(ξ(R) = L) =
1 + 2pR

2D(R)

(

1 −
1 + 2pR

2D(R)

)L−1

, L = 1, 2, . . . (2.6)6



P(ξ(R, ↑) = L) =
1

D(R)

(

1 −
1

D(R)

)L−1

, L = 1, 2, . . . (2.7)It is easy to see that R is a 
utpoint if and only if ξ(R, ↑) = 1. Re
all that R is a strong
utpoint if and only if ξ(R) = 1.Denote the (random) set of
• 
utpoints by C

• strong 
utpoints by CSObserve that
CS ⊆ C. (2.8)We present the following exa
t probabilities.Lemma 2.1. For k = 1, 2, . . . we have

P(k ∈ C) = 1 − p(k, k + 1,∞) =
1

D(k)
, (2.9)

P(k ∈ CS) =
1 + 2pk

2D(k)
, (2.10)

P(j ∈ C, k ∈ C) =
1

D(j, k + 1)D(k)
, j < k, (2.11)

P(j ∈ CS, k ∈ CS) =
(

1

2
+ pj

)(

1

2
+ pk

)

1

D(j, k)D(k)
, j < k. (2.12)Proof. The statements (2.9) and (2.10) follow from Lemma B.To show (2.11), we have to observe that after the �rst arrival to j + 1 the walk has toarrive to k + 1 without hitting j, and from k + 1 it must not return to k at all. Formally, byLemma A

P(j ∈ C, k ∈ C) = (1 − p(j, j + 1, k + 1))(1 − p(k, k + 1,∞)) =
1

D(j, k + 1)D(k)
.To show (2.12), observe that after the �rst hit of j the walk has to go to j + 1. Thenfrom j + 1 it has to hit k before it goes ba
k to j. From k it has to go to k + 1, and from

k + 1 it must not return to k at all. Hen
e again by Lemma A,
P(j ∈ CS, k ∈ CS) =

(

1

2
+ pj

)

(1 − p(j, j + 1, k))
(

1

2
+ pk

)

(1 − p(k, k + 1,∞))7



=
(

1

2
+ pj

)(

1

2
+ pk

)

1

D(j, k)D(k)
.This 
ompletes the proof of the Lemma. 2Lemma 2.2. For any positive non-de
reasing fun
tion G(x), x ≥ 0, the following two sums

∞
∑

n=2

1

G(n) log n

∞
∑

n=2

1

G([n log n])are equi
onvergent.Proof. Under the 
ondition of the Lemma we have
∫ n+1

n

dx

G(x) log x
≤

1

G(n) log n
≤
∫ n

n−1

dx

G(x) log x
,
onsequently

∫

∞

2

dx

G(x) log x
≤

∞
∑

n=2

1

G(n) log n
≤

1

G(2) log 2
+
∫

∞

2

dx

G(x) log x
.Similarly,

∫

∞

2

dx

G(x log x)
≤

∞
∑

n=2

1

G([n log n])
≤

1

G(1)
+

1

G(3)
+
∫

∞

2

dx

G(x log x)
.It remains to show that the integrals

∫

∞ dx

G(x) log x
and

∫

∞ dx

G(x log x)are equi
onvergent. This 
an be shown by using the substitution x = y log y in the �rstintegral above to get
∫

∞ dx

G(x) log x
=
∫

∞ 1 + log y

log y + log log y

dy

G(y log y)
.Clearly we have

c1

∫

∞ dy

G(y log y)
≤
∫

∞ 1 + log y

log y + log log y

dy

G(y log y)
≤ c2

∫

∞ dy

G(y log y)with some 0 < c1 < c2, hen
e the Lemma. 2 8



Lemma 2.3. If Xn and X∗

n are two NN random walks su
h that X∗

n is slower than Xn then
D(n) ≤ D∗(n).Proof. If X∗

n is slower than Xn then
Ui =

1/2 − pi

1/2 + pi

≤
1/2 − p∗i
1/2 + p∗i

= U∗

iHen
e from the de�nition of D(n) we get that
D(n) ≤ D∗(n), (2.13)proving our Lemma. 2We will need the following Lemma from Polfeldt [9℄, whi
h is a parti
ular 
ase of histheorem.Lemma C Let S(x) be a slowly varying fun
tion su
h that

lim
x→∞

(log S(x))′

(log log x)′
= −∞and

lim
x→∞

(log S(x))′

(log x)′
log L(x) = −1for some normalized di�erentiable slowly varying fun
tion L(x). Then

∫

∞

x

S(t)

t
dt ∼ S(x) log L(x), as x → ∞.Re
all (see Bingham et al. [1℄ page 12-15) that a slowly varying fun
tion H(x) 
an berepresented as

H(x) = a(x) exp

(

∫ x

b

ε(t)

t
dt

)

,where a(x) → a 6= 0, ε(x) → 0 as x → ∞. If a(x) = a, then H is normalized.Moreover, a di�erentiable slowly varying fun
tion is normalized if and only if
xH ′(x)

H(x)
→ 0 as x → ∞.9



3 Proof of the 
onvergent partWe follow the ideas of [7℄. We have P(j ∈ C|k ∈ C) = 1/D(j, k + 1) for j < k. Observe thatit is also the probability that
P(j ∈ C|k ∈ C, Fk+1) j < k, (3.1)where Fk+1 is any event determined by the future of the walk after it rea
hes k+1 for the �rsttime. Let Cj,k be the set of 
utpoints in (2j, 2k] and Aj,k := |Cj,k| the number of 
utpointsin (2j, 2k]. De�ne

am := P(Am,m+1 > 0) (3.2)and
bm := min

k∈(2m,2m+1]

2m−1
∑

i=1

1

D(k − i, k + 1)
(3.3)On the event that Am,m+1 > 0, let ℓm be the largest 
utpoint in Cm,m+1. We want to givea lower bound for the expe
ted number of 
utpoints in (2m−1, 2m+1] by 
onditioning on thelast 
utpoint in (2m, 2m+1], if there is one:

2m+1
∑

j=2m−1+1

P(j ∈ C) = E(Am−1,m+1) (3.4)
≥ amE(Am−1,m+1|Am,m+1 > 0)

= amE(E(Am−1,m+1|Am,m+1 > 0, ℓm))

≥ am bm.It is readily seen that if pi ≥ 0, i = 1, 2, . . ., then Ui ≤ 1, i = 1, 2, . . . and hen
e
D(m, n) ≤ n − m,and so

bm ≥
2m−1
∑

i=1

1

i + 1
≥ c m (3.5)with some c > 0.Hen
e with 
onstants c not ne
essarily the same on ea
h appearan
e,

∞
∑

m=1

P(Am,m+1) =
∞
∑

m=1

am ≤
∞
∑

m=1

1

bm

2m+1
∑

j=2m−1+1

P(j ∈ C)10



≤
∞
∑

m=1

c

m

2m+1
∑

j=2m−1+1

1

D(j)
≤ c

∞
∑

m=1

2m+1
∑

j=2m−1+1

1

D(j) log j
≤ c

∞
∑

n=2

1

D(n) log n
< ∞,and by Borel-Cantelli lemma only �nitely many of the events Am,m+1 o

urs with probability1, whi
h proves the 
onvergent part of Theorem 1.1. 24 Proof of the divergent partLet mk = [k log k] and

Ak = {ξ(mk) = 1}.We prove that P(Ak i.o.) = 1 whi
h implies the divergent part of Theorem 1.1. By Lemma2.1
P(Ak) =

1 + 2pmk

2D(mk)
≥

1

2D([k log k])
,so by Lemma 2.2,

∑

k

P(Ak) = ∞.For n > m we have
P(ξ(m) = 1, ξ(n) = 1) =

(

1

2
+ pm

)

1

D(m, n)

(

1

2
+ pn

)

1

D(n)
≤

1

D(m)D(n)H(m, n)with
H(m, n) =

D(m, n)

D(m)
.It follows from (2.3) that

H(m, n) = 1 −

(

1 −
1

D(m)

)

. . .

(

1 −
1

D(n − 1)

)

≥ 1 − exp

(

−
1

D(m)
− . . . −

1

D(n − 1)

)

.Let ε > 0 and for given k we split the set {ℓ > k} into 2 parts. Let
ℓ1 = min







ℓ > k :
mℓ−1
∑

i=mk

1

D(i)
≥ log

1 + ε

ε







. (4.1)11



• (1) ℓ ≥ ℓ1,
• (2) k < ℓ < ℓ1.In 
ase (1), using that H(m, n) is in
reasing in n for �xed m, we have for ℓ ≥ ℓ1

P(Ak Aℓ) =
P(Ak)P(Aℓ)

H(mk, mℓ)
≤

P(Ak)P(Aℓ)

H(mk, mℓ1)
≤ (1 + ε)P(Ak)P(Aℓ).In the 
ase ℓ ∈ (2) we use the inequality 1 − e−u ≥ cu for 0 ≤ u ≤ log((1 + ε)/ε) withsome c > 0 to get

P(Ak Aℓ) ≤
P(Ak)P(Aℓ)

H(mk, mℓ)
≤

P(Ak)P(Aℓ)

c
∑mℓ−1

i=mk

1
D(i)

≤ cP(Ak)P(Aℓ)
D(mℓ)

mℓ − mk

.Here and in what follows c, ci denote some positive 
onstants, the values of whi
h might
hange from line to line.So we have for ℓ ∈ (2)
P(Ak Aℓ) ≤

cP(Ak)

ℓ log ℓ − k log k
,

ℓ1−1
∑

ℓ=k+1

P(Ak Aℓ) ≤ cP(Ak)
ℓ1−1
∑

ℓ=k+1

1

ℓ log ℓ − k log k

≤ cP(Ak)
1

log k

ℓ1−1
∑

ℓ=k+1

1

ℓ − k
≤ cP(Ak)

log ℓ1

log k
.Now we show that

log ℓ1

log k
≤ γ (4.2)with some positive 
onstant γ depending only on ε. We know from (4.1) that for ℓ ∈ (2) wehave

mℓ−1
∑

i=mk

1

D(i)
< log

1 + ε

ε
. (4.3)We show that this implies that for large k we have ℓ < kγ with γ > (1 + ε/ε)δ. If we assumethe 
ontrary that ℓ ≥ kγ, then

mℓ−1
∑

i=mk

1

D(i)
≥

1

δ

mℓ−1
∑

i=mk

1

i log i
∼

1

δ
(log log(mℓ − 1) − log log mk)12



∼
1

δ
log

log(ℓ log ℓ)

log(k log k)
≥

1

δ
log γ > log

1 + ε

εwhi
h 
ontradi
ts to (4.3). Hen
e ℓ1 − 1 ≤ kγ , implying (4.2).Consequently,
∑

ℓ∈(2)

P(Ak Aℓ) ≤ cP(Ak)Assembling these estimations, we have
N
∑

k=1

N
∑

ℓ=k+1

P(Ak Aℓ) ≤ (1 + ε)
N
∑

k=1

N
∑

ℓ=k+1

P(Ak)P(Aℓ) + c
N
∑

k=1

P(Ak)Sin
e ε > 0 is arbitrary, Borel-Cantelli lemma implies P(Ak i.o.) = 1. 25 Con
lusions and open problemsOur results are formulated in terms of the sequen
e {D(·)} but it would be mu
h morenatural to formulate them in terms of the sequen
e {pi}. Even though we have an expli
itexpression of D(·) in terms of {pi}, usually it is not easy to see the asymptoti
s of D(·)and whether the sum in Theorem 1.1 is 
onvergent or divergent by looking at {pi} only.Therefore we want to give some examples.In [3℄ we have shownExample 1. If pk = B/4k with B > 1, then
D(i) ∼

i

B − 1as i → ∞. Consequently, by Theorem 1.1 there are in�nitely many strong 
utpoints a.s.It was shown also in [3℄Example 2. If pk = Λ(K, k, B)/4 with K ≥ 2 and B > 1, then
D(i) ∼

i log i log log i . . . logK−1 i

B − 1as i → ∞. Consequently, by Theorem 1.1 we have �nitely many 
utpoints a.s.Re
all that the 
ase K = 2 
orresponds to Theorem D.Of 
ourse, if the NN walk is qui
ker than the walk in Example 1, (e.g. pk = ck−α with
α < 1), then we have in�nitely many strong 
utpoints a.s. On the other hand, if the NNwalk is slower than the walk in Example 2, then we have �nitely many 
utpoints a.s.13



The above two examples show that the jump from �nitely many to in�nitely many 
ut-points is for
pk =

1

4

(

1

k
+

1

kf(k)

)with some f(k) → ∞. It is not hard to show that if f(k) = (log k)α with 0 < α < 1, thenwe still have �nitely many 
utpoints a.s. Now we show a more pre
ise result whi
h impliesthis one.Theorem 5.1. Let {Xn} be an NN random walk with
pk =

1

4

(

1

k
+

1

k(log log k)β

)

,then we have �nitely many 
utpoints a.s. if β > 1 and in�nitely many strong 
utpoints a.s.if β ≤ 1.Proof. Let
rk =

k
∏

i=1

Ui, tk =
∞
∑

i=k

ri, k = 1, 2, . . .Then it is easy to see that D(k) = tk/rk.For k → ∞ we obtain
Uk =

1 − 2pk

1 + 2pk

= exp(−4pk + O(p2
k))and

rk = exp(−4
k
∑

i=1

pi + O(
k
∑

i=1

p2
i )) = exp

(

−
k
∑

i=3

(

1

i
+

1

i(log log i)β

)

+ O(1)

)

= exp

(

−
∫ k

3

(

1

u
+

1

u(log log u)β

)

du + O(1)

)

.Hen
e
c1

k
exp

(

−
∫ k

3

du

u(log log u)β

)

≤ rk ≤
c2

k
exp

(

−
∫ k

3

du

u(log log u)β

) (5.1)with some positive 
onstants c1, c2. Consequently,
c1

∞
∑

j=k

1

j
exp

(

−
∫ j

3

du

u(log log u)β

)

≤ tk ≤ c2

∞
∑

j=k

1

j
exp

(

−
∫ j

3

du

u(log log u)β

)

. (5.2)14



Moreover,
∞
∑

j=k

1

j
exp

(

−
∫ j

3

du

u(log log u)β

)

=
∫

∞

k

1

y
exp

(

−
∫ y

3

du

u(log log u)β

)

+ O(1).To �nd the asymptoti
s of the above integral, we will apply Lemma C, with
S(y) = exp

(

−
∫ y

3

du

u(log log u)β

)and
L(x) = e(log log x)β

.Choosing S(·) and L(·) as above, all the 
onditions of Lemma C are met and we 
on
ludethat
∫

∞

k

1

y
exp

(

−
∫ y

3

du

u(log log u)β

)

∼ (log log k)β exp

(

−
∫ k

3

du

u(log log u)β

)

.From (5.1) and (5.2) we obtain
c1 k (log log k)β ≤ D(k) =

tk
rk

≤ c2 k (log log k)β.This 
ombined with Theorem 1.1 proves Theorem 5.1. 2Lemma 2.4 easily implies the followingCorollary 5.1 If {Xn} is an NN random walk with
pk ≤

1

4

(

1

k
+

1

k(log log k)β

)and β > 1, then Xn has �nitely many 
utpoints a.s.On the other hand, if {Xn} is an NN random walk with
pk ≥

1

4

(

1

k
+

1

k(log log k)β

)and β ≤ 1, then Xn has in�nitely many strong 
utpoints a.s.Now we present some related open problems.15



• (1) It would be interesting to know whether Theorem 1.1 also holds for the number ofsites with ξ(R) = a or ξ(R, ↑) = a for any �xed integer a > 1, i.e. whether we have thesame 
riteria for {ξ(R) = a} and {ξ(R, ↑) = a} to o

ur in�nitely often almost surelyfor any positive integer a.
• (2) Call the site R a weak 
utpoint if for some k, we have Xk = R, Xi ≤ R, i =

0, 1, . . . , k − 1 and Xi ≥ R, i = k + 1, k + 2, . . .. One would like to know whetherTheorem 1.1 
an be extended for the number of weak 
utpoints.
• (3) It would be interesting to know whether Theorem 1.1 holds for 
utpoints with agiven lo
al time, i.e. for {ξ(R) = a, ξ(R, ↑) = 1}, or in general {ξ(R) = a, ξ(R, ↑) = b}in�nitely often almost surely, with positive integers a, b.
• (4) Theorem B gives limsup behavior of the lo
al time. One might ask how does it
hange if we want to 
onsider the limsup of the lo
al time restri
ted to the 
utpoints.Referen
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