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1 Introduction

(1.a) Brownian motion is perhaps the most important object of study in probability theory;
besides its own interest, Brownian motion plays a cornerstone role in the construction of
many important stochastic processes, among which we single out, in this paper, the stable
Lévy processes on the one hand, and the fractional Brownian motions on the other hand.

We first recall some of these constructions.

i) Throughout the paper, {B;, t > 0} will denote a real-valued Brownian motion, with
a jointly continuous family of local times {¢(f, z € R, ¢ > 0}, which may be defined as
continuous versions of the densities of the Brownian occupation measure with respect to the

Lebesgue measure dz: precisely, the local times satisfy, for any Borel function f: R +— R,

[ reyas= [ rwea

It is well known (see McKean [12], Trotter [16]) that = — ¢f may be chosen to be Hélder
continuous of order 7 —n (for 0 < 1 < 3), uniformly in ¢ varying in a compact interval. This
regularity property allows to define the fractional derivatives:
t
ds
H (z 2/7, where y* := |y|*sgn(y),
t() O(Bs_m)a ||g()
for any o < 3/2. Indeed, Ht(a)(-) may be defined as the absolutely convergent integral
00 Ez—i—y o Em—y
/ t L dy.
0 Y
These (singular) integrals of Brownian local time have been considered by a number of
authors (Ezawa et al. [7], Yamada [17]-[19], Biane and Yor [4], Yor [20], Fitzsimmons and
Getoor [8], Bertoin [2], etc.) with various motivations; see in particular Bertoin [3] in relation
with the study of Bessel processes of dimension d € (0, 1), see also a presentation of a number

of results in Yor [23]. As a consequence of the scaling property of Brownian motion and of
the fact that {Ht(a)(O), t > 0} is a Brownian additive functional, if

e=inf{t >0: ¢ > ¢},  £>0,

then {Hﬁf) (0), £ > 0} is a symmetric stable Lévy process of index @ := 1/(2 — «), which

varies between 0 and 2, i.e.,
E [ exp (MH%“) (0))] = exp (—lca |A[¥).
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In particular, {%Hg)(O), ¢ > 0} is a standard Cauchy process. For these results, and related

discussions, see Biane and Yor [4].

ii) We now sketch one of the best known constructions of fractional Brownian motions
from Brownian motion. Here, it is most convenient to start with {3,, ¥ € R} a Brownian
motion indexed by R. Then it is known (see, e.g., Kahane [11], Revuz and Yor [15], Exercise
1.3.9]) that for o € (1/2,3/2), a # 1, the process

(1) 69 = [~ -, weR
R
is well defined, and satisfies
a a)) 2 a
E[ (8 = )] = kalz — I,

where & := 3 — 2a € (0,2). Thus, using Kolmogorov’s criterion, {ﬂ;(co‘), z € R} may be
chosen to be a continuous process, which is a (multiple of) fractional Brownian motion of
order a. As explained in Section 2, for & = 1, one ought to replace formula (1.1) by (2.3),

which involves logarithms, and can be obtained from (1.1) by a limiting procedure as oo — 1.

Remark. In their definition of the fractional Brownian motion, Mandelbrot and Van
Ness [13] use the positive part function instead of absolute value (as in (1.1)); indeed there
are a number of different constructions of fractional Brownian motions. See Yor [21] for such

constructions involving matrices.

(1.b) The aim of the second part of our work is to obtain strong approximation for general
additive functionals of Brownian motion. Let g be a Borel function on R, and consider
Ay = fot g(Bs)ds. The first and second order limit theorems of Papanicolaou et al. [14]
state that, as A\ — oo,

A aw _ _
S gr:/g(x)dx,
R

A aw o
i Ve sw), ifg=o,

where (g,9) = 2 [,(/7_g(u)du)®dz > 0, and B is a Brownian motion independent of
£). (These results are recalled in more details in Paragraph (2.c) of Section 2). A strong
approximation version of this result is given in Cséki et al. [5].

In case g does not belong to L'(R), or (g, g) = oo, other weak limits are available in the
literature, where the limiting processes turn out to be Ht(l)(()) and Ht(a)(O). In Subsection

3.2, we present strong approximation results for such limit theorems.
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(1.c) We now give some details on the organization of the paper.

— Section 2 contains certain preliminaries which are necessary to proceed; in particular,
we present a “duality” construction of certain Gaussian processes from Brownian mo-
tion, which will be helpful in the sequel; we also recall some well known limit theorems

for additive functionals of Brownian motion.

— In Section 3, we state our main results, some of which link asymptotically { H'* (z), = €
R} to fractional Brownian motions, while the others present strong approximation

results.

— The remaining sections consist in the details of the proofs of our results.

2 Preliminaries

(2.a) In this paragraph, we consider a one-dimensional Brownian motion {f,, y € R}, and
a linear operator K : LZ — L?*(R) where L£Z denotes the set of linear combinations of
indicators of intervals {j,(-) := 4 (-), € R}. (For 2 <0, j, = —1Lj;¢)). Then, we define

(2.1) BK = /R K(G.)(y)dB, zeR

Under some mild conditions on K, we may choose this process to be continuous in x, and
the identity

(2.2) /f )dBl /K y) dBy,

holds for every f € LZ, as follows directly from (2.1) by linear combination.

(2.b) We shall be particularly interested in the construction of 5% in the cases where K = H,
the classical Hilbert transform, or K = H® := D*~!, the fractional derivative of order (a—1);

we recall the definitions of these operators:

H(f)(z) = % p.v. A % dy,
Ha(f) (x) . Dail(f) (x) N ﬁ P R (xf—(yy))a d



We now recall some well known formulae:

H(j)(y) = llog yl t

W)y = U

As a consequence, we now obtain the following precisions as to our constructions in Paragraph
(2.a):

1
(2.3 gt =1 [0 a5,

ly — |
whereas

B = = / H () () dB,,

which agrees (up to a multiplicative constant) with our definition in the Introduction (for

fractional Brownian motion of order &).

(2.c) We now recall first and second order limit theorems about additive functionals of
{B, t > 0} with local time {¢f, t > 0, z € R}:

(i) if f € LY(R) and f := [, f(z)dz, then as n goes to infinity,
t J—
n/ f(nB,)ds — f ) a.s.;
0
(i) if f € L*(R) N L*(R), then as n goes to infinity,

(2.4) {Bt, /2 / fnB.)dB,, ¢ > o} Taw, {Bt, / F(y) d,B(y; ), > o},
0 R

where {B(y;£), y € R, £> 0} denotes a Brownian sheet indexed by R x R, , indepen-
dent of {B;, t > 0}.

Remark. In fact, we need a weaker condition than f € L'(R) for (2.4) to hold:

(iia) if f € L*(R) and lim,_,eon /2 [ |f(u)|du = 0 for all ¢ > 0, then (2.4) holds as
n — 0o.

To see this we have only to show that as n goes to infinity
) t
(n*/? / f(nBy)dBy, B)(t) = n'/? / f(nB,)ds =0,  as.
0 0
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Indeed, under the condition in (iia) we have

f nz)l; dz

—TL

2z pbn
< SUPzer b _
=12 /bn |f(u)|du = o(1), a.s.,

an )ds

where b = SUPyepo, Bs, b = infsepo,y Bs. We are grateful to the referee for this remark.

Part (ii) and (iia) should essentially be thought of as a convenient way of expressing the

Papanicolaou—Stroock—Varadhan [14] limit theorem for
t
n3/2/ g(nBy)ds, n — oo,
0

when g = 0. For more detailed presentations of these variants of the Papanicolaou—Stroock—
Varadhan theorems, we refer the reader to Chapter XIII of Revuz and Yor [15] (cf, also Hu
and Yor [10]). Nonetheless, in order to have a precise reference to B in our next discussions,

we present the following variant of (ii):

(2.5) {Bt,u €R, t>0} =5 {By, Bz: £), € R, ¢ > 0},

22

as € goes to 0.

(2.d) As an illustration of our approach, consider the asymptotics of

. d B,
Mt();—/ |B ‘a {|Bs‘>g}, as €—>0,

depending on a.

(a) a < 1/2. Then

t
B;
(2.6) M - d

— e — 0,
o |Bsl®
since the stochastic integral on the right hand side is well defined. More precisely, we
can show the existence of a jointly continuous version of {Mt(s), e > 0,t > 0} thanks
to Kolmogorov’s criterion, and the following estimate:

E( sup |Ms(€) _ M§€’)|k) < Clc,t |€ _ €I|(1—2a)k/2’

0<s<t

from which one deduces that Mt(s) can be chosen Holder continuous in €, of order
% —a—n(for0<n< % — «), uniformly in ¢ on compact sets of R;. Once this choice

is made, the convergence in (2.6) holds almost surely and in LP.
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(b) a=1/2. Then
(log(1/2))~2M" 2% 21/25(80),

where {3(u), v > 0} is a Brownian motion, independent of the local time £?. This can

be seen similarly (in fact simpler) to the proof of Theorem 3.3 below.

(¢) a>1/2. Then

@ 1 92 1/2
a=1/2 () law 0
ey 2 (2 ) i)

where, as before, {#(u), v > 0} is a Brownian motion, independent of the local time
9. This can be seen by applying (2.4) (cf. (iia) in the Remark) with n = 1/¢ and

f(u) = [u|~*1jy>13- In fact, we have

2 \? 1
( ) Blu) = /R W4 B, w0,

20— 1

where B(-, -) is the Brownian sheet of (2.4).

(2.e) We now need to go back to our definitions in paragraph (2.b), and to extend them
when {3,, y € R} is replaced by {B(y;¢), y € R, £ > 0}. Thus, we define

B (s;0) — / (i) () dyB(y: 0),

B (g;0) = / He(j2) (y) d, B(y; ).

Both processes may be chosen to be jointly continuous; the first process is a Brownian sheet
indexed by RxR , while (with obvious meaning) the second process is a “fractional Brownian

motion of order « in the first variable and a Brownian motion in the second variable”.

3 Statements of results

3.1 Weak convergence

In this subsection, we state a number of convergence in law results (except for Theorem 3.4
which is a strong limit theorem); these convergences in law hold for continuous processes

indexed by (z,t) € R x R, , and it is understood that the convergence in law corresponds to
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the topology of uniform convergence on compacta which is endowed on C(R x Ry, R¥) (for
suitable k; mostly £k = 1 or k = 2). Moreover, we use constantly the notation defined in the
previous section and all these convergences in law hold jointly, although we shall not repeat

this below. In particular, £ stands for the local time at 0 of B;.

Theorem 3.1 The following convergence in law holds as € goes to 0:

(3.1 {zﬁ,fén@x)_fﬁnm)}-Eﬂ{fﬁ,m”@:@)},

7T€1/2

where B* (-, -) is a standard Brownian sheet independent of { By, t > 0}, defined in paragraphs
(2.c) and (2.e).

Theorem 3.2 Let 1/2 < o< 3/2 and o # 1. As € goes to 0,

H® (ex) — H® 0) | 1aw a
(32) {Bt, tF(Q — a) 83;2_& — {Bt, B( )(gj, Eg)} .

The case o = 1/2 is critical, while the case a < 1/2 is easier than the other cases, in
that the mode of convergence is the almost sure convergence, and the limit process is yet a

fractional derivative of local times.

Theorem 3.3 We have,

(3.3)

{ | HM(ex) — HEP(0)

e/log(1/¢)

where (3 is a standard Brownian motion independent of (B, B).

}Eg{Bu$W@”,

Theorem 3.4 Let 0 < a < 1/2. Then, as e — 0,

H (ez) — H(0) b ds
— v | —

oo gz _ p0
= (aa:)/ b4 dz, a.s.

o |20t

(3.4)




3.2 Strong approximation

Recall the following weak convergence results (see Yamada [18] and Fitzsimmons and Getoor
8]): Let f € L*(R), f = [, f(z)dz, then as A — oo,

1 At law
— (Hf)(Bs)ds —
1ﬁ//gt<%af>(3>d iy HO0)
A—a/z || s/ 48 Tl—a) t 7

R [~

H(0),

We get the strong approximation analogues of these limit theorems.

Theorem 3.5 Let f be a Borel function on R such that

(3.5) /Rx'"”\f(x)\ dz < o0,

for some k > 0. Then for all sufficiently small € > 0, when t — o0,

HD(0) + o(t77%),  as.

3 |~

(3.6) / (HF)(B,) ds =

Theorem 3.6 Let f be a Borel function satisfying (3.5), and 0 < o < 3/2 (with o # 1).
For all sufficiently small € > 0, when t — oo,
' f (a) 1—a/2
3.7 ) (B,)ds = ——H(0) + o(t!~/2~5), s.
(3.7 | DBy as = SO0 + ot =), s
Remark. (i) It is possible to get more precision for (3.6) and (3.7). In fact, our proofs in

Section 5 reveal that, for any € > 0,

[onwias = Lapo+oe),  as,
0
t _
/O(HQf)(Bs)dS = ﬁﬂt‘“)(mw(ﬂﬂf),
where
_ 1+k
n 2(1 + 25)’



1 (1- 3/2—a—(1-
Ny = _+( 04)+_|_ /2—a—( 04)+’
4 2 2(1 + 2k)

and (1 — o)y = max(l — «,0) denotes the positive part of (1 — a). Since 7; < 1/2 and
2 < 1 — /2, we immediately get (3.6) and (3.7).
(ii) As a consequence of Theorem 3.5, the law of the iterated logarithm (LIL) of Hu and

Shi [9] proved for H{”(0) remains true for the additive functional in (3.6), i.e., we have

poo LN (B)ds _ 2f
im sup =,
tsoo  (2tloglogt)/?2

a.s.

Similarly, Theorem 3.6 and the LIL of Cséki et al. [6] for Ht(a) (0) together imply that there

exists a constant c(«) € (0, 00), depending only on «, such that

i sup o (L) (B) ds
oo t172/2(log log t)@/2

= ¢(w), a.s.

The explicit value of ¢(«) remains unknown.

4 Proofs of Theorems 3.1-3.4

4.1 Proofs of Theorems 3.1 and 3.2

The arguments in the proofs of Theorems 3.1 and 3.2 are quite classical, and rely upon the
use of Itd’s formula, applied as follows: for a sufficiently regular function ¢, we consider
d(¢) = fog é(z) dz and we write

t 3/2 pt
(4.1) n~Y2®(nB,) = n*/? / ¢(nB,)dB, + nT / ¢'(nB,) ds.
0 0

In our applications, we shall take

for some particular f’s, precisely,

fi(z) = log ||, and fo(z) = |z|'7@ (% <a< g, a # 1) .
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Step 1. For the functions ¢, associated with the f,’s, the asymptotic result (2.4) holds,
for any given x € R (cf. also the Remark following (2.4)). Thus, in order to conclude the
convergence in law (as continuous processes in (x,t)), we still need to prove the tightness of

the laws of the processes

¢
M(a,0) = [ (fnB, ~ ) - f(nB)) dB.
0
For this purpose, we use the following inequalities

B | sup [M(0,5) - 20,9

0<s<t (/Ot(f(nBs — 1) — f(nB, — y))? ds)pﬂ]

< o ( [(e=a)- e =) df)p/2 |

< ¢ nP’E

where, for the first inequality, we have used the Burkholder-Davis-Gundy inequalities (see
for example Theorem IV.4.1 of Revuz and Yor [15]), and for the second, we have used the
fact that

E [sup(éf)k} < 00,
£eR

for any k£ and ¢ (see e.g. Barlow and Yor [1]). Thus, for any f such that there exists € > 0
satisfying
42) [ =)= se=nrag < Cla -y

R

we can deduce the tightness of the laws of {MJ(x,t), x € R, t > 0}.

In particular, for f;, we get ¢ =1 and for f,, e =3 — 2a.

Step 2. To finish the proofs of Theorems 3.1 and 3.2, we need to show that for the
functions @, associated with the functions f,, as indicated in the beginning of this subsection,
the left hand side of (4.1) is negligible as n — co. More precisely, we shall show that, as n

goes to infinity,

—-1/2

[t ra@rae] 0, as

sup n
s€[0,t], z€[—A,A]

Indeed, we have,

(4.3) sup n~ /2
yE[—C,C},wE[—A,A]

e - st ds\ o,
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In the particular case of f;, this boils down to

nC A
n_1/2/ log (1 =+ g) dé — 0,
0

which is obviously satisfied since the integral (without the n=*/2 term) is O(logn). In the
general case of f, (with 1/2 < o < 3/2 and « # 1),

/0" fale—2) — fal)|dE = /0 fall = 2) — ful(€)] de

nC
1—a _z
Hf, erlo-g

The first integral on the right hand side is bounded, whereas the second is O( Xc £-2dg) =
O(n'~® + 1), uniformly for z € [— A, A]. This yields (4.3).

) — 1‘ d¢.

4.2 Proof of Theorem 3.3

Similar discussions as in Subsection 4.1 in view of (4.1) reveal that we only need to prove

nl/2

(B — ) — (nB)?) dB, = T (e
(1.4 7 [ (0B=a) = (uB)'") 4B, 2% (),

(logn)
To check (4.4), consider the sequence of continuous local martingales {M?},>o defined
by

nl/2 ¢
M*(t) = ——— B, — 2)'/?2 — (nB,)/?) dB, t > 0.
H0) = ooy [ (8= ) = (0B)'?) 4B, 1>
By the Dambis-Dubins-Schwarz theorem (see Theorem V.1.6 of Revuz and Yor [15]), there

exists a sequence of standard Brownian motions {3} },>2, such that

M(t) = Br((M7)(2),

where

(4.5) (M2)(t) = — /0 ((nB, — z)'/> — (nB,)"/?)” ds,

~ logn

is the associated increasing process of M*. Let us also look at (M?, B), the so-called bracket

process of M? and B:

n'/? ! 1/2 1/2
4.6 M7, B)(t) = ——% B, — — (nB; ds.
(16) (ME.B)() = o || (0Be=2)' = (nB.)17) ds
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We shall show that, as n goes to infinity, (uniformly for (¢, z) in all compacta of R, x R),

(4.7) (MEY(t) — %eg, a.s.
(4.8) (M7,B)(t) — 0, a.s.
(4.9) (M* —xM!)(t) — 0, a.s.

Then, an asymptotic version of Knight’s theorem (see Theorem XIII.2.3 of Revuz and Yor
[15]) implies the asymptotic independence of 3F and (MZ)(t), so that we have

W, 4
Mx()la ﬂiﬁ(—t),
4
where (3 is a standard Brownian motion independent of £?. This yields (4.4) by scaling.

The rest of this subsection is devoted to the proof of (4.7)—(4.9).
Let us first check (4.7). By (4.5) and the occupation time formula,

© [ (=0 - ) ) ey
/ 1/2 1/2)2£§/n dz,

by a change of variables z = ny. Write b = b(t) = sup B, and b = b(t) = inf¢o4 Bs-
5€[0,t] (0,2]

(M;)(t) =

logn

log

Since £¢ = 0 for any a ¢ [b, b], we arrive at:

1 2
M*\(#) = a2 12 gz/nd
MO = [ (0
(4.10) = I+1I,
where
1
b= logn/ ey (G @ - ) d
4 7 1/2 1/2\2
I = ((z — z)"? = 2'%)" d=.
1087 /. /nefs,5]

It is known (see McKean [12]) that  — ¢7 is Holder continuous of any order v < 1/2,
uniformly for ¢ in all compacta. Therefore, as n goes to infinity,

s B (R NN
z/ne

(4.11) _ o( ! >;o(1).

logn

13



To estimate II, observe that a deterministic argument gives

2
/ ((z—x)l/2—21/2)2 dz ~ x—logn, n — 0o,
/nelb,5] 4

which yields
2
I — ZE?, a.S.

This, jointly considered with (4.11) and (4.10), yields (4.7).
The proofs of (4.8) and (4.9) are very similar, and a lot easier. Indeed, by (4.6) and the

occupation time formula,
(M, B)E) = logn (logn)'/2 / ((ny — 2)"/% = (ny)'7?) €7 dy

_ 1/2 S1/2 z/n
= nlognl/Q/R )Et dz

_ _oN1/2 172y p2/n
= 7(n10gn)1/2/z/ne[bb] z — ) z )ft dz.

Accordingly,

(M, B)(1)]

IN

SUPaeRE? 1/2 1/2
W// €[ ]|(Z_$)/ - | =

X b
- of———
()
which implies (4.8).

Finally, to check (4.9), we observe that

(M? —x M) (t) = logn /Ot ((nBS — )2 Zg(nBy — 1)Y2 4 (- 1)(nBS)1/2)2 ds
= lo;n /IR (2= )2 = 2(z = )2 + (2 — 1)21/2)265/” &
< %/}R((z—m)m_z(z_1)1/2+(x_1)21/2)2 &
_ 0 (IO;l) |
This yields (4.9), and completes the proof of Theorem 3.3. 0
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4.3 Proof of Theorem 3.4

Observe that

f&%@—ﬂ%@::1/W%“Lﬁ%%—%—@%®
13 € Jo ya
N T PR
€ Jo ye € Jo y*
We only have to check that
9] £5+y ey _ EO
(4.12) —/ 7td -« / L dz, a.s.

To this end, let us write M = M(t) := 1 + sup,c[o 4 Bs to see that for small ¢,

l/mﬁw—ﬁw ZE/Mﬁﬂ @d_l/Mﬂ & 4,
€Jo ye €Jo . ye ) eo ye .
= l/ bt dz—l/ gf_gtdz
e J, (z —g)> e Jo 2
I 1 1 o — 0
= —/ (Ef—ﬁ?)( ——)dz——/ Lt 4z
e/, (z—g)x 2= ety 2
1 [Mre gz g0
+ [ dz.
eJu (z—¢e)®
The first term on the right hand side converges almost surely to

M-
a/o g dz,

the second term to 0, and the third term, which is = f Mre Z_Z; dz, converges almost surely
to
S
“Me =, e O
This implies (4.12). Theorem (3.4) is proved. O

5 Proofs of Theorems 3.5 and 3.6

Our aim is to estimate

[ oen@yas— s mo o)
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where H®f = D! f denotes the fractional derivative of f, and f = [, f(z)dz (which is
finite thanks to (3.5)).
By Fubini’s theorem,
¢ 7
| oenwyas - gt

a)

- i L mo f w)ee

(5.1) = ﬁ(un).

I = /DW(/O:(BSZ_SW—/OZ%‘?)f(x)dx,
= /|x|<tﬂ</o ﬁ_/o B;j“)f(x)dx’

for some 3 € (0,1/2] whose value is to be determined later. Observe that the same identity
holds for fot(’Hf)(Bs) ds — %Ht(l) (0) when taking o = 1, except that instead of 1/I'(1 — «)

we get 1/7 for the normalizing constant.

H(

]
=

where

Assume for the moment that we could prove the following: for ¢ > 0 and 0 < f < 1/2,
almost surely, when ¢ goes to infinity,

(5.2) su ‘ /t _ds o(t=a/2+e)
. ze]g 0 (Bs - Z)a B ’
00 £y+z iy
(5.3) sup ‘ / ottt dy — 0(t73+ﬁ/2+5)’
z<8 1 ye
1 £y+z o £7y+z
zeR 0 ya
where
_1+(1—a)+_ 3/4—af2, if 0<a<]l,
B=7 2\ 1/4, if 1<a<3/2

By (5.2) and (3.5),
1-a/2+e
0 o) [ )

< ottt / 2l £ (z)| da

jo|>¢8
(5.5) = o(ti/2reRb),
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Now let us look at II. By the occupation time formula,

/t ds B /t E B /oo gié/-l-w _ Et—?ﬁ-w _ E? +£t_y dy
o (Bs—x)~ o B¢ 0 Yy .

Since f is integrable, we have

‘/oo Zij-}—m . Et—y—l—z . ggt/ +£t—y dy |
0

III| < const x sup
ya

|z| <t

which, in view of (5.3) and (5.4), implies
I = O(tvs+ﬁ/2+s) + O(t1/4+s) — 0(t73+,3/2+6), a.s.

This, combined with (5.5) and (5.1), yields that, almost surely,
. _
f (@) 1—a/2+e—
) (B,)ds — H — oft\—/2+e—~rB fr3tB/2+ey
[ o) as - mr s 10 = o )+ oft0/75)
e expression on the left hand side should be s s—1 if =1). Choosing
Th i he left hand side should be [}(#f)(B,) ds—LH(0)if @ = 1). Ch
ﬂ _ 1- 06/2 — 73
 k+1/2 7

(which lies in (0, 1/2)) completes the proof of Theorems 3.5 and 3.6.
The rest of the section is devoted to verification of (5.2)—(5.4). We first recall the following
useful inequality due to Barlow and Yor [1]: for any ¢t > 0, £ € (0,1/2] and v > 1,

RS (142¢)7/4
(5.6) E|{ sup sup —"——72— <ect e
0<s<t ay [T —y|'/*E
where ¢; = ¢1(7, €).
Inequality (5.6) allows us to control the almost sure asymptotics (when ¢ is large) of
expressions like sup,, [¢¢ — ¢/|/|z — y|'/?>7¢. Indeed, let v € [0,1/2) and let ¢ > 0. By
Chebyshev’s inequality and (5.6), for any v > 1 and n > 1,

|€:; — €g| (1-v)/2+e —ve
P|{ sup sup—=—= >n < ey, v,e)n "
0<s<n oy |T — Y|

Take v = 2/¢ and use the Borel-Cantelli lemma to see that

-
sup sup‘ s s| — (n(l—u)/2+s)’ a.s.

0<s<n z#y |T — Y[”
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Since t > SUPg<s<; SUPLpy (65 — £Y|/|7 — y[” is non-decreasing, and since € > 0 can be

arbitrarily small, we have proved that, for any v € [0,1/2) and € > 0, when ¢t — oo,

(5.7) sup —— 1= 4l _

o(t—1)/2+e), a.s.
sty |T— y‘,,

Now we prove (5.2)—(5.4) separately.

Proof of (5.2). By the triangular inequality and the usual LIL, when ¢ goes to infinity,

t ds ‘ t ds
—— | < sup / = o(t'~%/?), a.s.
/0 @ | = 5% ) Gy - o)

To treat the case |z| < t1+9)/2 note that by the usual LIL, for large ¢,

/t ds _ /oo Ei/—i—z _ gt—y+z dy
o (Bs—2)® 0 Y

2t(1+e)/2 +z —y+z
gy _ g Y
(5.9) = / 2t dy.
0 ye

(5.8) sup

|z|>t(1+e)/2

Let v € [0,1/2) satisfying a — v < 1. Then by (5.7),

ot(1+e)/2 Ky—i—z N E—y—i—z |€y—|—z E y+z| 2t(1+e)/2
sup / LT dy sup /
2€R | Jo y“ y€R, z€R TV
— (t(l u)/2+s) O (t (1—a+v)(1+e¢) /2)
o (tl—a/2—|—25)
which, jointly considered with (5.8) and (5.9), yields
sup ‘/ = o(t1mo/2+2%), a.s.,
z€R
as desired. 0

Proof of (5.3). Let 0 < 3 < 1/2. By the usual LIL, for |z| < 7,

00 gty+z o t1/2+e gy—i-z —
/1 T /1 T

Using (5.7), we have

sup sup |47 — Y| = o(tY/4+A/2HE), a.s.
|z|<t8 yeR
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As a consequence, with probability one,

00 Ey—l—z V4 tl/2+e d
/ gdy‘ o(tH/4+8/2+<) / 4

sup
ye 1 ye

2|<tP

This implies (5.3). a

Proof of (5.4). Let v € [0,1/2) be such that & — v < 1. By (5.7), almost surely,

1 py+z —y+z y+z y+z
e -0 o=t
sup / A S dy‘ < sup sup | | / = o(t1=1)/2+¢),
zeR |Jo ye 2€R 0<y<1 TV
Since v can be as close to 1/2 as possible, this yields (5.4). O
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