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1 Introdution and main resultsIn this paper we ontinue our study of a simple random walk C(n) on the 2-dimensional omblattie C
2 that is obtained from Z

2 by removing all horizontal lines o� the x-axis (f. Csáki et al.[16℄).A formal way of desribing a simple random walk C(n) on the above 2-dimensional omb lattie
C

2 an be formulated via its transition probabilities as follows: for (x, y) ∈ Z
2

P(C(n+ 1) = (x, y ± 1) | C(n) = (x, y)) =
1

2
, if y 6= 0, (1.1)

P(C(n + 1) = (x± 1, 0) | C(n) = (x, 0)) = P(C(n+ 1) = (x,±1) | C(n) = (x, 0)) =
1

4
. (1.2)The oordinates of the just de�ned vetor valued simple random walk C(n) on C

2 are denotedby C1(n), C2(n), i.e., C(n) := (C1(n), C2(n)).A ompat way of desribing the just introdued transition probabilities for this simple randomwalk C(n) on C
2 is via de�ning

p(u,v) := P(C(n+ 1) = v | C(n) = u) =
1

deg(u)
, (1.3)for loations u and v that are neighbors on C

2, where deg(u) is the number of neighbors of u,otherwise p(u,v) := 0. Consequently, the non-zero transition probabilities are equal to 1/4 if u ison the horizontal axis and they are equal to 1/2 otherwise.This and related models have been studied intensively in the literature and have a number ofappliations in various problems in physis. See, for example, Arkhinheev [1℄, [2℄, [3℄, Cassi andRegina [12℄, Dean and Jansons [23℄, Durhuus et al. [25℄, Reynolds [38℄, Zahran [43℄, Zahran et al.[44℄, and the referenes in these papers. It was observed that the seond omponent C2(n) behaveslike ordinary Brownian motion, but the �rst omponent C1(n) exhibits some anomalous subdi�usionproperty of order n1/4. Zahran [43℄ and Zahran et al. [44℄ applied Fokker�Plank equation todesribe the properties of omb-like model. Weiss and Havlin [42℄ derived the asymptoti form forthe probability that C(n) = (x, y) by appealing to a entral limit argument. Bertahi and Zua[8℄ obtained spae-time asymptoti estimates for the n-step transition probabilities p(n)(u,v) :=
P(C(n) = v | C(0) = u), n ≥ 0, from u ∈ C

2 to v ∈ C
2, when u = (2k, 0) or (0, 2k) and

v = (0, 0). Using their estimates, they onluded that, if k/n goes to zero with a ertain speed,then p(2n)((2k, 0), (0, 0))/p(2n)((0, 2k), (0, 0)) → 0, as n → ∞, an indiation that suggests that thepartile in this random walk spends most of its time on some tooth of the omb. Bertahi [7℄ notedthat a Brownian motion is the right objet to approximate C2(·), but for the �rst omponent C1(·)the right objet is a Brownian motion time-hanged by the loal time of the seond omponent.More preisely, Bertahi [7℄ on de�ning the ontinous time proess C(nt) = (C1(nt), C2(nt)) bylinear interpolation, established the following remarkable joint weak onvergene result.2



Theorem A For the R
2 valued random elements C(nt) of C[0,∞) we have

(

C1(nt)

n1/4
,
C2(nt)

n1/2
; t ≥ 0

)

Law−→ (W1(η2(0, t)),W2(t); t ≥ 0), n→ ∞, (1.4)where W1, W2 are two independent Brownian motions and η2(0, t) is the loal time proess of W2at zero, and Law−→ denotes weak onvergene on C([0,∞),R2) endowed with the topology of uniformonvergene on ompat subsets.Here, and throughout as well, C(I,Rd), respetively D(I,Rd), stand for the spae of R
d-valued,

d = 1, 2, ontinuous, respetively àdlàg, funtions de�ned on an interval I ⊆ [0,∞). R
1 willthroughout be denoted by R.In Csáki et al. [16℄ we established the orresponding strong approximation that reads as follows.Reall that a standard Brownian motion {W (t), t ≥ 0} (alled also Wiener proess in theliterature) is a mean zero Gaussian proess with ovariane E(W (t1)W (t2)) = min(t1, t2). Itstwo-parameter loal time proess {η(x, t), x ∈ R, t ≥ 0} an be de�ned via

∫

A
η(x, t) dx = λ{s : 0 ≤ s ≤ t, W (s) ∈ A} (1.5)for any t ≥ 0 and Borel set A ⊂ R, where λ(·) is the Lebesgue measure, and η(·, ·) is frequentlyreferred to as Brownian loal time.Theorem B On an appropriate probability spae for the simple random walk

{C(n) = (C1(n), C2(n));n = 0, 1, 2, . . .} on C
2, one an onstrut two independent standard Brow-nian motions {W1(t); t ≥ 0}, {W2(t); t ≥ 0} so that, as n→ ∞, we have with any ε > 0

n−1/4|C1(n) −W1(η2(0, n))| + n−1/2|C2(n) −W2(n)| = O(n−1/8+ε) a.s.,where η2(0, ·) is the loal time proess at zero of W2(·).The strong approximation nature of Theorem B enabled us to establish some Strassen type al-most sure set of limit points for the simple random walk C(n) = (C1(n), C2(n)) on the 2-dimensionalomb lattie, as well as the Hirsh type liminf behaviour (f. Hirsh [29℄) of its omponents.Here we extend Theorem B for more general distributions along the horizontal and vertialdiretions. More preisely, let Xj(n), n = 1, 2, ..., j = 1, 2, be two independent sequenes of i.i.d.integer valued random variables having disributions P1 = {p1(k), k ∈ Z} and P2 = {p2(k), k ∈ Z}respetively, satisfying the following onditions:
• (i)

∑∞
k=−∞ kpj(k) = 0, j = 1, 2,

• (ii)
∑∞

k=−∞ |k|3pj(k) <∞, j = 1, 2,

• (iii) ψ(θ) :=
∑∞

k=−∞ eiθkpj(k) = 1, j = 1, 2, if and only if θ is an integer multiple of
2π. 3



Remark 1 Condition (iii) is equivalent to the aperiodiity of the random walks
{Sj(n) :=

∑n
l=1Xj(l);n = 1, 2, . . .}, j = 1, 2 (see Spitzer [39℄, p. 67).The loal time proess of a random walk {S(n) :=

∑n
l=1X(l); n = 0, 1, 2, . . .} with values on Z,is de�ned by

ξ(k, n) := #{i : 1 ≤ i ≤ n, S(i) = k}, k ∈ Z, n = 1, 2, . . . (1.6)Keeping our previous notation in the ontext of onditions (i), (ii) and (iii) as well, from now on
C(n) will denote a random walk on the 2-dimensional omb lattie C

2 with the following transitionprobabilities:
P(C(n + 1) = (x, y + k) | C(n) = (x, y)) = p2(k), (x, y, k) ∈ Z

3, y 6= 0, (1.7)
P(C(n + 1) = (x, k) | C(n) = (x, 0)) =

1

2
p2(k), (x, k) ∈ Z

2, (1.8)
P(C(n+ 1) = (x+ k, 0) | C(n) = (x, 0)) =

1

2
p1(k), (x, k) ∈ Z

2. (1.9)Unless otherwise stated, we assume that C(0) = 0 = (0, 0).Theorem 1.1 Suppose that the onditions (i) − (iii) are met. Assume that, on an appropriateprobability spae for two independent random walks Sj(n) =
∑n

l=1Xj(l) with their respetive loaltime proesses ξj(·, ·), j = 1, 2, one an onstrut two independent Brownian motions {Wj(t), t ≥ 0}with their respetive loal time proesses ηj(·, ·), j = 1, 2 suh that for any ε > 0

lim
n→∞

n−α−ε|Sj(n) − σjWj(n)| = 0 a.s. (1.10)and
lim

n→∞
n−β−ε sup

x∈Z

∣

∣

∣

∣

∣

ξj(x, n) − 1

σ2
j

ηj(x, nσ
2
j )

∣

∣

∣

∣

∣

= 0 a.s. (1.11)hold simultaneously with some 0 < α, β < 1/2, as n → ∞. Then, on a possibly larger probabilityspae for {C(n) = (C1(n), C2(n));n = 0, 1, 2, . . .} on C
2, as n→ ∞, we have with any ε > 0

∣

∣

∣

∣

C1(n) − σ1W1

(

1

σ2
2

η2(0, nσ
2
2)

)∣

∣

∣

∣

= O(nϑ/2+ε) a.s.and
|C2(n) − σ2W2(n)| = O(nα∗+ε) a.s.simultaneously, where σ2

j :=
∑∞

k=−∞ k2pj(k), j = 1, 2,
α∗ := max(α, 1/4) and ϑ := max(α∗, β).4



We note in passing that under various random walk onditions the assumptions (1.10) and (1.11)hold true. A few of suh examples are listed in Setion 6.The intrinsi nature of random walks is usually highlighted by studying their loal time behaviour(f., e.g., Borodin [10℄, Révész [37℄, Csáki et al. [15℄, and referenes in these works). The study ofloal time is also of interest onerning some random walk problems in physis. In this regard werefer to Ferraro and Zaninetti [27℄, who deal with various statistis of the "number of times a siteis visited by a walker", alled "loal time" in the present paper. Building on their previous paper[26℄, in [27℄ they present a formula for the probability that a site was visited exatly r times after
n steps, and then derive all moments of this distribution. Naturally, these moments depend on thetype of random walk in hand, and spei� formulas are given in [27℄ for the mean and varianein ase of simple symmetri random walks on latties with various boundary onditions. Here weare to ontinue our exposition with studying the asymptoti loal time behavior of a walker on2-dimensional omb lattie as detailed on the next few pages of this setion.De�ne now the loal time proess Ξ(·, ·) of the random walk {C(n);n = 0, 1, . . .} on the 2-dimensional omb lattie C

2 by
Ξ(x, n) := #{0 < k ≤ n : C(k) = x}, x ∈ Z

2, n = 1, 2, . . . (1.12)The next result onludes a strong approximation of the loal time proess Ξ((x, 0), n).Theorem 1.2 On the probability spae of Theorem 1.1, as n→ ∞, we have for any δ > 0

sup
x∈Z

∣

∣

∣

∣

Ξ((x, 0), n) − 2

σ2
1

η1

(

x,
σ2

1

σ2
2

η2(0, σ
2
2n)

)∣

∣

∣

∣

= O(nβ∗/2+δ) a.s., (1.13)where β∗ = max(β, 1/4).Corollary 1.1 below establishes iterated loal time approximations for Ξ((x, 0), n) and Ξ((x, y), n)over inreasing subintervals for (x, y) ∈ Z
2 via Theorem 1.3.Theorem 1.3 On the probability spae of Theorem 1.1, as n→ ∞, we have for any 0 < ε < 1/4

max
|x|≤n1/4−ε

|Ξ((x, 0), n) − Ξ((0, 0), n)| = O(n1/4−δ) a.s. (1.14)and
max

0<|y|≤n1/4−ε
max

|x|≤n1/4−ε
|Ξ((x, y), n) − 1

2
Ξ((0, 0), n)| = O(n1/4−δ) a.s., (1.15)for any 0 < δ < ε/2, where max in (1.14) and (1.15) is taken on the integers.Corollary 1.1 On the probability spae of Theorem 1.1, as n→ ∞, we have for any 0 < ε < 1/4

max
|x|≤n1/4−ε

∣

∣

∣

∣

Ξ((x, 0), n) − 2

σ2
1

η1

(

0,
σ2

1

σ2
2

η2(0, σ
2
2n)

)∣

∣

∣

∣

= O(nβ∗/2+ε) a.s. (1.16)5



and
max

0<|y|≤n1/4−ε
max

|x|≤n1/4−ε

∣

∣

∣

∣

Ξ((x, y), n) − 1

σ2
1

η1

(

0,
σ2

1

σ2
2

η2(0, σ
2
2n)

)∣

∣

∣

∣

= O(nβ∗/2+ε) a.s. (1.17)where β∗ = max(β, 1/4) and max in (1.16) and (1.17) is taken on the integers.Remark 2We all attention to the fat that on the x-axis as in (1.16), the loal time is approximatelytwie as muh as in (1.17), where y 6= 0 (f. also (1.14) versus (1.15) in this regard).From these strong approximation results one an easily onlude almost sure limit theorems forthe path behaviour of C(·) and its loal times Ξ(·, ·) in hand. In this paper we onentrate onalmost sure loal time path behaviour, and only note that the almost sure path behaviour of therandom walk C(·) on the 2-dimensional omb lattie C
2 under the onditions of Theorem 1.1 anbe studied similarly to that of a simple random walk C(·) on C

2 as in Csáki et al. [16℄.Sine, by Theorem E below, the iterated loal time proess {η1(0, η2(0, t)); t ≥ 0} has the samedistribution as {sup0≤s≤tW1(η2(0, s)); t ≥ 0}, the following result follows from Theorem 2.2 in [19℄.Corollary 1.2 The net
{

η1(0, η2(0, zt))

25/43−3/4t1/4(log log t)3/4
; 0 ≤ z ≤ 1

}

t≥3

,as t→ ∞, is almost surely relatively ompat in the spae C([0, 1],R) of ontinuous funtions from
[0, 1] to R, and the set of its limit points is the lass of nondereasing absolutely ontinuous funtions(with respet to the Lebesgue measure) on [0, 1] for whih

f(0) = 0 and

∫ 1

0
|ḟ(x)|4/3 dx ≤ 1. (1.18)In what follows we will need the following saling properties of Brownian loal time

η(x, t)
d
=

1√
a
η(x

√
a, at), a > 0, t > 0, x ∈ R,where d

= means equality in distribution. Consequently, we also have
{

1

σ2
1

η1

(

0,
σ2

1

σ2
2

η2(0, σ
2
2t)

)

, t ≥ 0

}

d
=

{

1

σ1
√
σ2
η1(0, η2(0, t)), t ≥ 0

}

. (1.19)For the next results we onsider a ontinuous version of the loal times Ξ(·, ·) in (1.12), obtainedby linear interpolation. A ombination of Corollaries 1.1 and 1.2 yields the following onlusions.6



Corollary 1.3 Under the onditions of Theorem 1.1, for �xed (x, y) ∈ Z
2, the sequenes

{

σ1
√
σ2 Ξ((x, 0), zn)

29/43−3/4n1/4(log log n)3/4
; 0 ≤ z ≤ 1

}

n≥3

,and
{

σ1
√
σ2 Ξ((x, y), zn)

25/43−3/4n1/4(log log n)3/4
; 0 ≤ z ≤ 1

}

n≥3

, y 6= 0,as n → ∞, are almost surely relatively ompat in the spae C([0, 1],R), and the set of their limitpoints oinides with that in Corollary 1.2.In partiular, we have the following laws of the iterated logarithm for �xed (x, y) ∈ Z
2:

lim sup
t→∞

η1(0, η2(0, t))

t1/4(log log t)3/4
=

25/4

33/4
a.s., (1.20)

lim sup
n→∞

Ξ((x, 0), n)

n1/4(log log n)3/4
=

29/4

33/4σ1
√
σ2

a.s., (1.21)
lim sup

n→∞

Ξ((x, y), n)

n1/4(log log n)3/4
=

25/4

33/4σ1
√
σ2

a.s. y 6= 0. (1.22)Theorem C ([17℄)
lim sup

t→∞

supx∈R η1(x, η2(0, t))

t1/4(log log t)3/4
=

25/4

33/4
a.s.Conerning liminf results, using Theorem E below, and a Hirsh-type result of Bertoin [9℄, weonlude the following Hirsh-type law [29℄.Corollary 1.4 Let β(t) > 0, t ≥ 0, be a non-inreasing funtion. Then we have almost surely that

lim inf
t→∞

η1(0, η2(0, t))

t1/4β(t)
= 0 or ∞aording as the integral ∫∞

1 β(t)/t dt diverges or onverges.From Corollaries 1.1 and 1.4 we get the following results.Corollary 1.5 Let β(n), n = 1, 2, . . . be a non-inreasing sequene of positive numbers. Then, for�xed (x, y) ∈ Z
2, under the onditions of Theorem 1.1, we have almost surely that

lim inf
n→∞

Ξ((x, y), n)

n1/4β(n)
= 0 or ∞aording as the series ∑∞

1 β(n)/n diverges or onverges.7



We onlude this Setion by spelling out strong and weak onvergene results that easily followfrom Theorem 1.1, Theorem 1.2 and Corollary 1.1, respetively. To begin with, Theorem 1.1 yieldsa weak onvergene for C([nt]) on the spae D([0,∞),R2) endowed with a uniform topology thatis de�ned as follows.For funtions (f1(t), f2(t)), (g1(t), g2(t)) in the funtion spae D([0,∞),R2), and for ompatsubsets A of [0,∞), we de�ne
∆ = ∆(A, (f1, f2), (g1, g2)) := sup

t∈A
‖(f1(t) − g1(t), f2(t) − g2(t))‖,where ‖ · ‖ is a norm in R

2.We also de�ne the measurable spae (D([0,∞),R2),D), where D is the σ-�eld generated by theolletion of all ∆-open balls of D([0,∞),R2), where a ball is a subset of D([0,∞),R2) of the form
{(f1, f2) : ∆(A, (f1, f2), (g1, g2)) < r}for some (g1, g2) ∈ D([0,∞),R2), some r > 0, and some ompat interval A of [0,∞).In view of these two de�nitions, Theorem 1.1 yields a weak onvergene result in terms of afuntional onvergene in distribution, as follows.Corollary 1.6 Under the onditions of Theorem 1.1, as n→ ∞, we have

h

(

C1([nt])

n1/4
,
C2([nt])

n1/2

)

d−→h

(

σ1√
σ2
W1(η2(0, t)), σ2W2(t)

) (1.23)for all h : D([0,∞),R2) −→ R
2 that are (D([0,∞),R2),D) measurable and ∆-ontinuous, or ∆-ontinuous exept at points forming a set of measure zero on (D([0,∞),R2),D) with respet to themeasure generated by (W1(η2(0, t)),W2(t)), where W1, W2 are two independent Brownian motionsand η2(0, t) is the loal time proess of W2(·) at zero, and d−→ denotes onvergene in distribution.As an example, on taking t = 1 in Corollary 1.6, we obtain the following onvergene in distri-bution result: as n→ ∞,

(√
σ2

σ1

C1(n)

n1/4
,
C2(n)

σ2n1/2

)

d−→(W1(η2(0, 1)),W2(1)). (1.24)Conerning the joint distribution of the limiting vetor valued random variable, we have
(W1(η2(0, 1)),W2(1))

d
=(X|Y |1/2, Z),where (|Y |, Z) has the joint distribution of the vetor (η2(0, 1),W2(1)), X is equal in distributionto the random variable W1(1), and is independent of (|Y |, Z).8



As to the joint density of (|Y |, Z), we have (f. 1.3.8 on p. 127 in Borodin and Salminen [11℄)
P(|Y | ∈ dy, Z ∈ dz) =

1√
2π

(y + |z|)e−
(y+|z|)2

2 dy dz, y ≥ 0, z ∈ R.Now, on aount of the independene of X and (|Y |, Z), the joint density funtion of the randomvariables (X, |Y |, Z) reads as follows.
P(X ∈ dx, |Y | ∈ dy, Z ∈ dz) =

1

2π
(y + |z|)e−

x2+(y+|z|)2

2 dx dy dz, y ≥ 0, x, z ∈ R.By hanging variables, via alulating the joint density funtion of the random variables U :=
X|Y |1/2, Y, Z, and then integrating it out with respet to y ∈ [0,∞), we arrive at the joint densityfuntion of the random variables (U = X|Y |1/2, Z), whih reads as follows.

P(X|Y |1/2 ∈ du,Z ∈ dz) =
1

2π

∫ ∞

0

y + |z|
y1/2

e−
u2

2y
−

(y+|z|)2

2 dy du dz u, z ∈ R. (1.25)Clearly, Z is a standard normal random variable. The marginal distribution of U = X|Y |1/2is of speial interest in that this random variable �rst appeared in the onlusion of Dobrushin'slassial Theorem 2 of his fundamental paper [24℄, that was �rst to deal with the so-alled seondorder limit law for additive funtionals of a simple symmetri random walk on the real line. Inview of the above joint density funtion in (1.25), on integrating it out with respet to z over thereal line, we are now to also onlude Dobrushin's formula for the density funtion of this randomvariable.
P(U ∈ du) =

1

π

∫ ∞

0

∫ ∞

0

y + z√
y
e−

u2

2y
−

(y+z)2

2 dy dz du

=
1

π

∫ ∞

0

1√
y
e−

u2

2y
− y2

2 dy du =
2

π

∫ ∞

0
e−

u2

2v2 −
v4

2 dv du.As an immediate onsequene of Theorem 1.2 now, on hoosing δ > 0 small enough, we onludethe following strong invariane priniple.Corollary 1.7 On the probability spae of Theorem 1.1, we have almost surely, as n→ ∞,
sup
t∈A

sup
x∈Z

∣

∣

∣

∣

Ξ((x, 0), [nt]) − 2

σ2
1

η1

(

x,
σ2

1

σ2
2

η2(0, σ
2
2 nt)

)∣

∣

∣

∣

n1/4
= o(1)for all ompat subsets A of [0,∞).The next result onludes weak onvergene for Ξ(([x], 0), [nt]) via in probability nearness ofappropriate funtionals on the funtion spae D(R × [0,∞),R) with respet to the norm

∆1 = ∆1(A, f(·, ·), g(·, ·)) := sup
t∈A

sup
x∈R

|f(x, t) − g(x, t)|9



for real valued funtions f(·, ·), g(·, ·) and ompat subsets A of [0,∞). Here D(R×[0,∞),R) standsfor the spae of real-valued bivariate àdlàg funtions de�ned on R × [0,∞).In order to state our result in this regard, we de�ne the measurable spae (D(R× [0,∞),R),D),where D is the σ-�eld generated by the olletion of all ∆1-open balls of D(R × [0,∞),R), where aball is a subset of D(R × [0,∞),R) of the form
{f(·, ·) : ∆1(A, f(·, ·), g(·, ·)) < r}for some g(·, ·) ∈ D(R × [0,∞),R), some r > 0, and some ompat interval A of [0,∞).In view of these de�nitions, Corollary 1.7 yields an in probability nearness of funtionals, whihreads as follows.Corollary 1.8 On the probability spae of Theorem 1.1, as n→ ∞, we have

∣

∣

∣

∣

h

(

Ξ(([x], 0), [nt])

n1/4

)

− h

(

2

σ2
1

η1

(

x√
n
,
σ2

1

σ2
2

η2(0, σ
2
2 t

))∣

∣

∣

∣

= op(1) (1.26)for all h : D(R× [0,∞),R) −→ R that are (D(R× [0,∞),R),D) measurable and ∆1-ontinuous, or
∆1-ontinuous exept at points forming a set of measure zero on (D(R × [0,∞),R),D) with respetto the measure generated by 2

σ2
1

η1

(

x,
σ2

1

σ2
2

η2(0, σ
2
2 t)

) on this spae, where η1(·, ·), η2(·, ·) are twoindependent Brownian loal time proesses.Taking funtionals of interest, orresponding onvergene in distribution results an be easilydedued from (1.26). For example, for all h as in Corollary 1.8, as n→ ∞, we have
h

(

supx∈Z Ξ((x, 0), [nt])

n1/4

)

d−→h

(

2

σ2
1

sup
x∈R

η1

(

x,
σ2

1

σ2
2

η2(0, σ
2
2 t)

))

, (1.27)where d−→ denotes onvergene in distribution.We note in passing that taking supx∈R instead of supx∈Z on the right hand side in (1.27) isallowed in the limit, due to the modulus of ontinuity of Brownian loal time in its spae parameter(f. Trotter [41℄, MKean [33℄ and Ray [35℄ as ited in Csáki et al. [13℄).In view of Corollary 1.1, on hoosing ε > 0 small enough, we arrive at the following stronginvariane priniples.Corollary 1.9 On the probability spae of Theorem 1.1, we have almost surely, as n→ ∞,
sup
t∈A

max
|x|≤n1/4−ε

∣

∣

∣

∣

Ξ((x, 0), [nt]) − 2

σ2
1

η1

(

0,
σ2

1

σ2
2

η2(0, σ
2
2 nt)

)∣

∣

∣

∣

n1/4
= o(1),10



and
sup
t∈A

max
0<|y|≤n1/4−ε

max
|x|≤n1/4−ε

∣

∣

∣

∣

Ξ((x, y), [nt]) − 1

σ2
1

η1

(

0,
σ2

1

σ2
2

η2(0, σ
2
2 nt)

)∣

∣

∣

∣

n1/4
= o(1),for all ompat subsets A of [0,∞), where max is taken on the integers.Corollary 1.9 yields a weak onvergene for Ξ((x, y), [nt]) with (x, y) ∈ Z

2 �xed, on the funtionspae D([0,∞),R) with respet to the usual sup norm
∆2 = ∆2(A, f(·), g(·)) := sup

t∈A
|f(t) − g(t)|for real valued funtions f(·), g(·) and ompat subsets A of [0,∞).In order to state our result in this regard, we de�ne the usual measurable spae (D([0,∞),R),D),where D now is the σ-�eld generated by the olletion of all ∆2-open balls of D([0,∞),R), wherea ball now is a subset of D([0,∞),R) of the form

{f(·) : ∆2(A, f(·), g(·)) < r}for some g(·) ∈ D([0,∞),R), some r > 0, and some ompat interval A of [0,∞).In view of these de�nitions, Corollary 1.9, ombined with (1.19), yields weak onvergene resultsin terms of funtional onvergene in distribution as follows.Corollary 1.10 Under the onditions of Theorem 1.1, with (x, y) ∈ Z
2 �xed, as n→ ∞, we have

h

(

Ξ((x, 0), [nt])

n1/4

)

d−→h

(

2

σ1
√
σ2
η1(0, η2(0, t))

)

, (1.28)and, when y 6= 0,
h

(

Ξ((x, y), [nt])

n1/4

)

d−→h

(

1

σ1
√
σ2
η1(0, η2(0, t))

)

, (1.29)for all h : D([0,∞),R) −→ R that are (D([0,∞),R),D) measurable and ∆2-ontinuous, or ∆2-ontinuous exept at points forming a set of measure zero on (D([0,∞),R),D) with respet to themeasure generated by η1(0, η2(0, t)), where η1(0, ·), η2(0, ·) are two independent Brownian loal timeproesses, and d−→ denotes onvergene in distribution.On taking h to be the identity map, and t = 1 in (1.28) and, respetively, in (1.29), as n→ ∞,we obtain for (x, y) ∈ Z
2

Ξ((x, 0), n)

n1/4

d−→ 2

σ1
√
σ2
η1(0, η2(0, 1))

d
=

2

σ1
√
σ2

|X|
√

|Y | (1.30)11



and, when y 6= 0, then
Ξ((x, y), n)

n1/4

d−→ 1

σ1
√
σ2
η1(0, η2(0, 1))

d
=

1

σ1
√
σ2

|X|
√

|Y |, (1.31)where X and Y are independent standard normal random variables.We note that the statement of (1.30) an also be obtained from (1.26) in a similar way if we �x
x ∈ Z in (1.26) as well. On the other hand, we emphasize that statements like (1.27) do not followfrom the �rst statement of Corollary 1.9.The struture of this paper from now on is as follows. In Setion 2 we give preliminary fats andresults, and in Setions 3-5 we prove our Theorems 1.1-1.3. In Setion 6 we illustrate the generalnature of our results by disussing several spei� examples of simultaneous invariane priniples forrandom walks and their loal times that, in turn, yield our Theorems 1.2, 1.3 and Corollary 1.1 withexpliit rates of onvergene. We onlude this paper in Setion 7 by making further omments,and remarks on our results, inluding that of Proposition 7.1 in there, and those of the examples ofSetion 6.2 PreliminariesLet

ρ(0) := 0, ρ(N) := min{k > ρ(N − 1) : S(k) = 0}, N = 1, 2, . . . (2.1)be the reurrene times of an integer valued random walk proess {S(n); n = 0, 1, 2, . . .}.De�ne the inverse loal time proess of a standard Brownian motion W (·) by
τ(t) := inf{s : η(0, s) ≥ t}, t ≥ 0. (2.2)In ase of the simple symmetri random walk on Z, denote the reurrene time ρ(·) by ρ∗(·).Wequote from Révész ([37℄, p. 119), the following result.Lemma A For any 0 < ε < 1, with probability 1 for all large N,

(1 − ε)
N2

2 log logN
≤ ρ∗(N) ≤ N2(logN)2+ε.Lemma B (f. [14℄) On an appropriate probability spae for the random walk {S(n); n = 0, 1, 2, . . .}satisfying onditions (i)-(iii), as N → ∞, we have

|σ2ρ(N) − τ(Nσ2)| = O(N5/3) a.s.From Lemmas A and B, we onlude the following result.12



Lemma C For any 0 < ε < 1, we have with probability 1 for all large enough N that
(1 − ε)

N2

2 log logN
≤ τ(N) ≤ N2(logN)2+ε.From Lemmas B and C now, we arrive at the following onlusion for the reurrene times ofour walks.Theorem D Suppose that the random walks {Sj(n); n = 0, 1, 2, . . .}, j = 1, 2, satisfy onditions(i)-(iii). Then for any 0 < ε < 1, we have with probability 1 for all large enough N that

(1 − ε)
σ2

jN
2

2 log logN
≤ ρj(N) ≤ σ2

jN
2(logN)2+ε,where ρj(·), j = 1, 2 are the reurrene times of Sj(·) as de�ned in (2.1).A well-known result of Lévy [32℄ reads as follows.Theorem E Let W (·) be a standard Brownian motion with loal time proess η(·, ·). The followingequality in distribution holds:

{η(0, t), t ≥ 0} d
={ sup

0≤s≤t
W (s), t ≥ 0}.As to the random walk C(n), n = 0, 1, 2, . . . , it an be onstruted as follows (f. [16℄). Considertwo independent integer valued random walks {Sj(n); n = 1, 2, . . .}, j = 1, 2, with respetive one-step distributions Pj = {pj(k), k ∈ Z}, j = 1, 2. We may assume that, on the probability spaeof these random walks, we have an i.i.d. sequene G1, G2, . . . of geometri random variables withdistribution

P(G1 = k) =
1

2k+1
, k = 0, 1, 2, . . . ,independent of the random walks Sj(·), j = 1, 2.On the just desribed probability spae we may also onstrut the random walk C(n) on the2-dimensional omb lattie C

2 as follows. Put TN = G1+G2+ · · ·+GN , N = 1, 2, . . . , and let ρ2(N)denote the time of the N -th return to 0 of the random walk S2(·). For n = 0, . . . , T1, let C1(n) =
S1(n) and C2(n) = 0. For n = T1 + 1, . . . , T1 + ρ2(1), let C1(n) = C1(T1), C2(n) = S2(n − T1). Ingeneral, for TN + ρ2(N) < n ≤ TN+1 + ρ2(N), let

C1(n) = S1(n− ρ2(N)),

C2(n) = 0,and, for TN+1 + ρ2(N) < n ≤ TN+1 + ρ2(N + 1), let
C1(n) = C1(TN+1 + ρ2(N)) = S1(TN+1),

C2(n) = S2(n− TN+1).13



Then, in terms of these de�nitions for C1(n) and C2(n), it an be seen that C(n) = (C1(n), C2(n))is a random walk on the 2-dimensional omb lattie C
2 with transition probabilities as in (1.7)-(1.9).Consider now an arbitrary random walk {S(n) =
∑n

l=1X(l); n ≥ 0}, on Z. De�ne its potentialkernel a(·) by
a(x) :=

∞
∑

n=0

(P(S(n) = 0) − P(S(n) = −x)), x ∈ Z.Introdue
γ(x) :=

1

a(x) + a(−x) . (2.3)Then, for every one-dimensional aperiodi reurrent random walk S(n), for x = ±1,±2, . . ., onsimply writing ρ for ρ(1), we have (f. Kesten and Spitzer, [31℄)
P(ξ(x, ρ) = 0) = 1 − γ(x),

P(ξ(x, ρ) = k) = γ2(x)(1 − γ(x))k−1, k = 1, 2, . . . (2.4)
Eξ(x, ρ) = 1, Varξ(x, ρ) = 2(a(x) + a(−x) − 1),

lim
x→∞

a(x) + a(−x)
x

=
2

σ2
, (2.5)where σ2 = Var(X(1)).Lemma 2.1 Let θ(x, 1) be the time between the �rst visit and the �rst return of C(·) to (x, 0). Thenfor x = ±1,±2, . . . , y = ±1,±2, . . ., we have

P(Ξ((x, y), θ(x, 1)) = 0) = 1 − γ2(y)

2
, (2.6)

P(Ξ((x, y), θ(x, 1)) = k) =
γ2
2(y)

2
(1 − γ2(y))

k−1, k = 1, 2..., (2.7)
E(Ξ((x, y), θ(x, 1)) =

1

2
. (2.8)Furthermore, for

g(λ) := E exp(λΞ((x, y), θ(x, 1))) = 1 +
1

2

1 − e−λ

1 − 1

γ2(y)
(1 − e−λ)

, (2.9)we have
g(λ) ≤ exp

(

λ

2

(

1 +
2λ

γ2(y)

)) (2.10)if 2λ < γ2(y), where γ2(·) is de�ned à la γ(·) in (2.3) assoiated with the random walk S2(·).14



Proof. De�ne the indiator variable I as P(I = 0) = P(I = 1) = 1
2 , that is independent from thesequene X2(k), k = 1, 2, . . . Observe that, with this notation,

Ξ((x, y), θ(x, 1)) = Iξ2(y, ρ2), |y| > 0,where I = 1 if the �rst step from (x, 0) is vertial, and 0 if it is horizontal, and ρ2 is the time of the�rst return to 0 of the random walk S2(·). Using now (2.4), we get (2.6) and (2.7). As regards (2.9),it follows by straightforward alulations, from whih we an onlude (2.10) as well, via some morealulations.We make use of the following almost sure properties of the inrements for a Brownian motion(Csörg® and Révész [22℄), Brownian loal time (Csáki et al. [13℄), and random walk loal time(Csáki and Földes [18℄, Jain and Pruitt [30℄).Theorem F Let 0 < aT ≤ T be a non-dereasing funtion of T . Then, as T → ∞, we have almostsurely
sup

0≤t≤T−aT

sup
s≤aT

|W (t+ s) −W (t)| = O(a
1/2
T (log(T/aT ) + log log T )1/2), (2.11)

sup
x∈R

sup
0≤t≤T−aT

(η(x, t+ aT ) − η(x, t)) = O(a
1/2
T (log(T/aT ) + log log T )1/2), (2.12)and, under the onditions (i)-(iii) for a random walk loal time ξ(0, ·), as N → ∞, we have almostsurely

max
0≤n≤N−aN

(ξ(0, n + aN ) − ξ(0, n)) = O(a
1/2
N (log(N/aN ) + log logN)1/2). (2.13)Remark 3 We note that for (2.13) of Theorem F to hold, instead of ondition (ii), we only needthe existene of two moments.In the proofs we also need inrement results for ξ(x, ·), uniformly in x. Suh results are notfound in the ited papers, but ombining (2.12) and (2.13) with the assumed rate (1.11), we anobtain the following result.Corollary A Under the onditions of Theorem 1.1, for any ε > 0, we have almost surely, as

N → ∞,
sup
x∈Z

sup
0≤n≤N−aN

(ξj(x, n+ aN ) − ξj(x, n)) = O(a
1/2+ε
N ) +O(Nβ+ε), j = 1, 2. (2.14)The following theorem is a version of Hoe�ding's inequality, whih is expliitly stated in [40℄.Theorem G Let Gi be i.i.d.random variables with the ommon geometri distribution P(Gi = k) =

2−k−1, k = 0, 1, 2... Then
P

(

max
1≤j≤n

∣

∣

∣

∣

∣

j
∑

i=1

(Gi − 1)

∣

∣

∣

∣

∣

> λ

)

≤ 2 exp(−λ2/8n)for 0 < λ < na with some a > 0. 15



3 Proof of Theorem 1.1The proof is based on the following result.Lemma 3.1 Suppose that onditions (i)-(iii) are met. If TN + ρ2(N) ≤ n < TN+1 + ρ2(N + 1),then, as n→ ∞, we have for any ε > 0

N = O(n1/2+ε) a.s.and
ξ2(0, n) = N +O(n1/4+ε) a.s.On using Theorem D and Theorem F, the proof of this lemma goes exatly the same way asthat of the orresponding Lemma 2.1 in [16℄.As to the proof of our Theorem 1.1, it goes along the lines of Theorem 1.1 in [16℄, but we presentit for the sake of ompleteness. In what follows we use several times the assumptions (1.10) and(1.11), as well as inrement results for the Brownian motion (see Theorem F).If TN + ρ2(N) ≤ n < TN+1 + ρ2(N), then

C1(n) = S1(n− ρ2(N)) = σ1W1(n− ρ2(N)) +O(T α+ε
N ) = σ1W1(TN ) +O(N α+ε)

= σ1W1(N)+O(N α∗+ε) = σ1W1(ξ2(0, n))+O(nα∗/2+ε) = σ1W1

(

1

σ2
2

η2(0, nσ
2
2)

)

+O(nϑ/2+ε) a.s.Sine C2(n) = 0 if TN + ρ2(N) ≤ n < TN+1 + ρ2(N), we only have to estimate W2(n). We have
|W2(n)| ≤ |W2(ρ2(N))| + sup

0≤t≤TN+1

|W2(ρ2(N) + t) −W2(ρ2(N))|

= |W2(ρ2(N))| +O(N1/2+ε) =
1

σ2
S2(ρ2(N)) +O(nα∗+ε) = O(nα∗+ε),as S2(ρ2(N)) = 0, i.e.,

0 = C2(n) = σ2W2(n) +O(nα∗+ε).In the ase when TN+1 + ρ2(N) ≤ n < TN+1 + ρ2(N + 1), then, for any ε > 0, we have almostsurely
C1(n) = S1(TN+1) = σ1W1(N) +O(Nα∗+ε) = σ1W1(ξ2(0, n)) +O(nα∗/2+ε)

= σ1W1

(

1

σ2
2

η2(0, nσ
2
2)

)

+O(nϑ/2+ε),and
C2(n) = S2(n− TN+1) = σ2W2(n − TN+1) +O(nα+ε) = σ2W2(n) +O(nα∗+ε).This ompletes the proof of Theorem 1.1. 2 16



4 Proof of Theorem 1.2Reall the de�nitions and onstrutions in Setion 2. For TN + ρ2(N) < n ≤ TN+1 + ρ2(N) thenumber of horizontal steps, out of the �rst n steps, is equal to n− ρ2(N), and for TN+1 + ρ2(N) <
n ≤ TN+1 + ρ2(N + 1) it is equal to TN+1. So we may de�ne the number of horizontal visits to
(x, 0) ∈ Z2 up to time n by

H((x, 0), n) :=

{

ξ1(x, n − ρ2(N)) if TN + ρ2(N) < n ≤ TN+1 + ρ2(N),
ξ1(x, TN+1) if TN+1 + ρ2(N) < n ≤ TN+1 + ρ2(N + 1),

(4.1)and the number of vertial visits to (x, 0) up to time n is de�ned by
V ((x, 0), n) := Ξ((x, 0), n) −H((x, 0), n). (4.2)For TN , as a sum of i.i.d. geometri random variables, we have
TN = N +O((N log logN)1/2) a.s.as N → ∞. Therefore, using Corollary A, we easily obtain for any δ > 0 that, as N → ∞, we havealmost surely
ξ1(x, TN ) = ξ1(x,N) +O(Nβ∗+δ), (4.3)and

ξ1(x, TN+1) = ξ1(x,N + 1) +O(Nβ∗+δ) = ξ1(x,N) +O(Nβ∗+δ),where β∗ is as in Theorem 1.2.If TN + ρ2(N) ≤ n < TN+1 + ρ2(N + 1), then
ξ1(x, TN ) ≤ ξ1(x, n − ρ2(N)) ≤ ξ1(x, TN+1). (4.4)Hene, if TN + ρ2(N) ≤ n < TN+1 + ρ2(N + 1), then, by (4.3) and (4.4), we have almost surelyfor any δ > 0, as n→ ∞,

H((x, 0), n) = ξ1(x,N) +O(Nβ∗+δ)

= ξ1(x, ξ2(0, n)) +O(nβ∗/2+δ)

=
1

σ2
1

η1

(

x, σ2
1ξ2(0, n)

)

+O(nβ∗/2+δ)

=
1

σ2
1

η1

(

x,
σ2

1

σ2
2

η2(0, σ
2
2n)

)

+O(nβ∗/2+δ), (4.5)where we used the assumed approximation rates, Lemma 3.1 and Theorem F.In the following lemma we show that the number of horizontal and vertial visits are very loseto eah other. 17



Lemma 4.1 For any δ > 0, as n→ ∞, we have
sup
x∈Z

|H((x, 0), n) − V ((x, 0), n)| = O(n1/8+δ) a.s. (4.6)Proof. It follows from Theorem 1.1 that C1(n) ≤ n1/4+δ almost surely for any δ > 0 and su�ientlylarge n. Hene it su�es to show that
max

|x|≤n1/4+δ
|H((x, 0), n) − V ((x, 0), n)| = O(n1/8+δ) a.s. (4.7)as n→ ∞. Here and throughout the proof max is taken on the integers.Let κ(x, 0) be the time of the �rst visit of C(·) to (x, 0), and for ℓ ≥ 1 let κ(x, ℓ) be the time ofthe ℓ-th horizontal visit to (x, 0). Then

V ((x, 0), κ(x, ℓ)) =

ℓ
∑

j=1

(V ((x, 0), κ(x, j)) − V ((x, 0), κ(x, j − 1))) ,whih is a sum of i.i.d. random variables with geometri distribution, with parameter 1/2. Then wehave by Theorem G that
P(max

|x|≤m
max
ℓ≤m

|V ((x, 0), κ(x, ℓ) − ℓ| > u) ≤ m exp

(

− u2

8m

)

.Putting u = m1/2+δ, Borel-Cantelli lemma implies
max
|x|≤m

max
ℓ≤m

|V ((x, 0), κ(x, ℓ)) − ℓ| = O(m1/2+δ) a.s.as m→ ∞.It follows from (4.5) that
sup
x∈Z

H((x, 0), n) ≤ n1/4+δalmost surely for any δ > 0 and large n. Hene putting m = n1/4+δ, we obtain
max

|x|≤n1/4+δ
|V ((x, 0), n) −H((x, 0), n)|

≤ max
|x|≤n1/4+δ

max
ℓ≤n1/4+δ

|V ((x, 0), κ(x, ℓ)) − ℓ| = O(n1/8+δ) a.s.as n→ ∞. This veri�es the lemma and ompletes the proof of Theorem 1.2. 2
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5 Proof of Theorem 1.3The proof of this theorem onsists of establishing the next two lemmas. Note that as before,throughout this proof max is taken on the integers, even for Brownian loal time η(x, ·) as well.Lemma 5.1 On the probability spae of Theorem 1.1, for any 0 < ε < 1/4 and su�iently small
0 < δ < ε/2, as n→ ∞, we have

max
|x|≤n1/4−ε

|H((x, 0), n) −H((0, 0), n)| = O(n1/4−δ) a.s. (5.1)Proof. First we prove for a Brownian loal time η(·, ·) that, as t→ ∞,
max

|x|≤t1/2−ε
|η(x, t) − η(0, t)| = O(t1/2−δ) a.s. (5.2)Reall that τ(·) stands for the inverse loal time of W (·). Then (f. Perkins [34℄, Bass and Gri�n[4℄)

E

(

eλη(x,τ(r))
)

= exp

(

λr

1 − 2λ|x|

)

, λ < 1/(2|x|).Hene, with λ = u/(4r|x|) and some c > 0,

P(η(x, τ(r)) − r > u) ≤ exp

(

2λ2r|x|
1 − 2λ|x| − uλ

)

≤ exp

(

−c u
2

r|x|

)

,as long as u ≤ r/2. Similarly,
P(r − η(x, τ(r)) > u) ≤ exp

(

2λ2r|x|
1 + 2λ|x| − uλ

)

≤ exp

(

−c u
2

r|x|

)

.Consequently,
P( max

|x|≤r1−ε
|η(x, τ(r)) − r| > r1−δ) ≤ c1r

1−ε exp
(

−crε−2δ
)for some c1 > 0. Hene, if ε > 2δ, then by Borel-Cantelli lemma

max
|x|≤r1−ε

|η(x, τ(r)) − r| = O(r1−δ) a.s., r → ∞. (5.3)Putting r = η(0, t), we obtain
max

|x|≤(η(0,t))1−ε
|η(x, τ(η(0, t))) − η(0, t)| = O((η(0, t))1−δ) a.s., t→ ∞. (5.4)Consequently, we have also 19



max
|x|≤t1/2−ε

|η(x, τ(η(0, t))) − η(0, t)| = O(t1/2−δ) a.s. (5.5)as t→ ∞. Observe that
η(x, t) − η(0, t) = (η(x, t) − η(x, τ(η(0, t))))

+(η(x, τ(η(0, t))) − η(0, τ(η(0, t)))) + (η(0, τ(η(0, t))) − η(0, t)). (5.6)The �rst term in (5.6) being non-negative, and the last one being zero, we an onlude that
η(x, t) − η(0, t) ≥ η(x, τ(η(0, t))) − η(0, τ(η(0, t))). (5.7)Similarly,
η(x, t) − η(0, t) = (η(x, t) − η(x, τ(η(0, t) + 1)))

+(η(x, τ(η(0, t) + 1)) − η(0, τ(η(0, t) + 1))) + (η(0, τ(η(0, t) + 1)) − η(0, t)). (5.8)Here the �rst term being non-positive, and the last term being 1, we arrive at
η(x, t) − η(0, t) ≤ η(x, τ(η(0, t) + 1)) − η(0, τ(η(0, t) + 1)) + 1. (5.9)Taking maximums in (5.7) and (5.9), we obtain (5.2).It follows from the assumed nearness (1.11) and applying the inrement result (5.2) for η1(x, t),that for any 0 < ε < 1/4 and su�iently small 0 < δ < ε/2, we have also
max

|x|≤n1/2−ε
|ξ1(x, n) − ξ1(0, n)| ≤ max

|x|≤n1/2−ε

∣

∣

∣

∣

ξ1(x, n) − 1

σ2
1

η1(x, nσ
2
1)

∣

∣

∣

∣

+ max
|x|≤n1/2−ε

∣

∣

∣

∣

1

σ2
1

η1(x, nσ
2
1) −

1

σ2
1

η1(0, nσ
2
1)

∣

∣

∣

∣

+

∣

∣

∣

∣

1

σ2
1

η1(0, nσ
2
1) − ξ1(0, n)

∣

∣

∣

∣

= O(n1/2−δ) a.s.as n→ ∞.Now if TN + ρ2(N) ≤ n < TN + ρ2(N + 1), then
H((x, 0), n) = ξ1(x, TN ).Hene, we have almost surely, as n→ ∞,

max
|x|≤n1/4−ε

|H((x, 0), n) −H((0, 0), n)| ≤ max
|x|≤n1/4−ε

|ξ1(x, TN ) − ξ1(0, TN )| = O(T
1/2−δ
N ) = O(n1/4−δ).(5.10)Sine TN+1 − TN = O(logN) a.s. for large N, we onlude

sup
x∈Z

|ξ1(x, TN+1) − ξ1(x, TN )| = O(logN) a.s., N → ∞.Consequently, we have (5.10) for TN + ρ2(N + 1) ≤ n < TN+1 + ρ2(N + 1) as well. This also provesLemma 5.1. 2 20



Lemma 5.2 On the probability spae of Theorem 1.1, for any 0 < ε < 1/4 and su�iently small
0 < δ < ε/2, as n→ ∞, we have

max
|x|≤n1/4−ε

max
0<|y|≤n1/4−ε

|Ξ((x, y), n) − V ((x, 0), n)| = O(n1/4−δ) a.s. (5.11)Proof. Let θ(x, 0) be the time of the �rst visit of C(·) to (x, 0), and for ℓ ≥ 1 let θ(x, ℓ) be thetime of the ℓ-th return of C(·) to (x, 0). Then
Ξ((x, y), θ(x, ℓ)) =

ℓ
∑

i=1

(Ξ((x, y), θ(x, i)) − Ξ((x, y), θ(x, i − 1))),a sum of i.i.d. random variables with distribution given in Lemma 2.1, with expetation 1/2.Estimating the ommon moment generating funtion, we get by exponential Markov inequality
P(max

ℓ≤L
|Ξ((x, y), θ(x, ℓ)) − ℓ/2| ≥ u) ≤ L exp

(

Lλ2

γ2(y)
− λu

)

.By seleting λ =
uγ2(y)

2L
and applying (2.5), for u < L and some c > 0, we get

P(max
ℓ≤L

|Ξ((x, y), θ(x, ℓ)) − ℓ/2| ≥ u) ≤ L exp

(

−c u
2

|y|L

)

.Putting u = L1−δ, we obtain
P( max

|x|≤L1−ε
max

0<|y|≤L1−ε
max
ℓ≤L

(Ξ((x, y), θ(x, ℓ)) − ℓ/2) ≥ L1−δ) ≤ c1L
3 exp

(

−cLε−2δ
)

,with some c1 > 0. Hene, seleting δ < ε/2, by Borel-Cantelli lemma we arrive at
max

|x|≤L1−ε
max

0<|y|≤L1−ε
max
ℓ≤L

|Ξ((x, y), θ(x, ℓ)) − ℓ/2|

= max
|x|≤L1−ε

max
0<|y|≤L1−ε

max
ℓ≤L

|Ξ((x, y), θ(x, ℓ)) − 1

2
Ξ((x, 0), θ(x, ℓ))| = O(L1−δ) a.s. (5.12)as L→ ∞.We will now use (5.12) via letting

L = sup
x∈Z

Ξ((x, 0), n).By Theorem 1.2 and Theorem C we have that for any ε1 > 0, as n→ ∞,

sup
x∈Z

Ξ((x, 0), n) = O(n1/4+ε1) a.s.21



On hoosing δ and ε1 small enough, we onlude
max

|x|≤n1/4−ε
max

0<|y|≤n1/4−ε
max

ℓ≤n1/4+ε1

|Ξ((x, y), θ(x, ℓ)) − 1

2
Ξ((x, 0), θ(x, ℓ))| = O(n1/4−ε2) a.s.as n→ ∞. Consequently, by Lemma 4.1, we also have

max
|x|≤n1/4−ε

max
0<|y|≤n1/4−ε

max
ℓ≤n1/4+ε1

|Ξ((x, y), θ(x, ℓ)) − V ((x, 0), θ(x, ℓ))| = O(n1/4−ε2) a.s. (5.13)as n→ ∞.For eah n ≥ 1, let θn ≤ n be the last visit of C(n) on the x−axis before time n, and let θ∗n > nbe its �rst visit on the x−axis after time n.Observe that if C(n) = (x, y) with y 6= 0, then C1(θn) = C1(n) = C1(θ
∗
n) = x, thus for any

x′ 6= x the loal times Ξ((x′, y), ·) and V ((x′, 0), ·) do not hange in the interval [θn, θ
∗
n). Furthermore,if C(n) = (x, 0), then θn = n. Consequently, we only have to deal with the ase of x = C1(n) when

y = C2(n) 6= 0. We have
V ((x, 0), n) − Ξ((x, y), n) =

(V ((x, 0), θn) − Ξ((x, y), θn)) + (V ((x, 0), n) − V ((x, 0), θn)) + (Ξ((x, y), θn) − Ξ((x, y), n)) (5.14)
≤ V ((x, 0), θn) − Ξ((x, y), θn),as the seond term of the three summands in (5.14) is zero and the last one is non-positive.We have also
V ((x, 0), n) − Ξ((x, y), n) =

(V ((x, 0), θ∗n) − Ξ((x, y), θ∗n)) + (V ((x, 0), n) − V ((x, 0), θ∗n)) + (Ξ((x, y), θ∗n) − Ξ((x, y), n)) (5.15)
≥ (V ((x, 0), θ∗n) − Ξ((x, y), θ∗n)) − 1,as the seond term of the three summands in (5.15) is equal to −1, and the last one is non-negative.Combining (5.13)-(5.15), we get Lemma 5.2. 2This also ompletes the proof of Theorem 1.3. 26 ExamplesIn this setion we disuss a number of works, as examples, that deal with various joint stronginvariane priniples for integer valued random walks and their loal times. Naturally, our spei�set of examples may not be exhaustive. Also, the original onditions of these invariane priniplesare kept unhanged or, on oasions, are replaed by equivalent ones. However, we have not madeany attempt to improve them. 22



Example 1. In 1981 Révész in [36℄ proved that for simple symmetri walk (whih learly satis�esonditions (i)-(iii)), (1.10) and (1.11) hold simultaneously with α = β = 1/4. Thus, for simplesymmetri random walk, our Theorems 1.1 and 1.2 and Corollary 1.1 hold with α = α∗ = β = β∗ =
ϑ = 1/4.Example 2. In 1983 Csáki and Révész [20℄ proved that under onditions (i) and (iii), if we have
m + 1 moments with m > 6, then (1.10) holds with α = 1/4, simultaneously with (1.11) with
β = β∗ = 1/4 + 3/(2m). Thus, under these onditions, our Theorems 1.1 and 1.2 and Corollary 1.1hold with α∗ = 1/4, ϑ = 1/4 + 3/(2m).Example 3. In 1989 Borodin [10℄ proved that under ondition (i) with eight moments, and with

• (iii)∗ |ψ(θ)| = |∑∞
k=−∞ eiθkpj(k)| = 1 if and only if θ is an integer multiple of 2π,instead of (iii), (1.10) and (1.11) hold simultaneously with α = β = 1/4. Thus, under these ondi-tions, our Theorems 1.1 and 1.2 and Corollary 1.1 hold with α∗ = β∗ = ϑ = 1

4 . We note in passingthat ondition (iii)∗ is equivalent to saying that the random walk in hand is strongly aperiodi (f.Spitzer [39℄, p.75).Example 4. In 1993 Bass and Khoshnevisan [5℄ proved that under onditions (i) and (iii)∗, andassuming more than �ve moments in ase of σ1 = σ2 = 1, (1.10) and (1.11) hold simultaneously,respetively with α = 1/4 and β = 1/4. Thus under these onditions our Theorems 1.1 and 1.2 andCorollary 1.1 hold with α = α∗ = β = β∗ = ϑ = 1/4.Example 5. A further result of Bass and Khoshnevisan in 1993, namely Theorem 3.2 in [6℄,implies that, under the onditions (i)-(iii)∗ with σ1 = σ2 = 1, and m ≥ 3 moments, (1.10) and(1.11) hold simultaneously, respetively with α = 1/m and β = β∗ = 3/10. Thus, under theseonditions, our Theorems 1.1 and 1.2 and Corollary 1.1 hold with α = 1/m, α∗ = max(1/m, 1/4),and ϑ = max(1/m, 3/10).7 Further omments, results and remarksFirst we note that, in the ase of Example 1 that is based on the simultaneous strong approximationresult of Révész [36℄ for a simple symmetri random walk and that of its loal time, the obtainedrates are nearly best possible (f. Csörg® and Horváth [21℄). As of the other examples, theirassumptions may very well be improvable for obtaining their strong approximations. This howeverremains an open problem.The weak onvergene onlusions that are spelled out in Setion 1 are based on the strongapproximation results of Theorems 1.1, 1.2 and Corollary 1.1. We note however that in probabilitynearness versions of these approximations would su�e for our approah to proving funtional limittheorems, i.e., weak onvergene, for the various proesses in hand. Moreover, these in probability23



nearnesses in various sup norm metris may very well be provable under weaker onditions thanthose used for their present strong versions. This again remains an open problem in general, andalso in the ase of Examples 2�5 in partiular, for dealing with weak onvergene in their ontext.A few more remarks in view of Theorem 1.2. It follows from (1.13) that our random walk C(·)on the 2-dimensional omb lattie C2 spends about n1/2 portion of its time up to n on the x-axis.The rest of its time is spent away from this axis. It is of interest to explore how far away it maygo vertially from any partiular value of x, as well as from a olletion of x values, on the x-axis.More preisely, we are interested in establishing lower and upper bounds for
max

k≤n:C1(k)=x
|C2(k)| and max

k≤n: |C1(k)|≤xn

|C2(k)|. (7.1)In the latter of these two quantities, the magnitude of the size xn is of speial interest on its own,and also in terms of the size of its possible ontribution to the desired seond set of upper and lowerbounds, as ompared to those of the �rst set.First we note that, in view of the approximation of Theorem 1.1 for C2(n) by a standardBrownian motion, for an unrestrited maximal behaviour of C2(n), as ompared to the restritedones in (7.1), with any ε > 0, we have the following immediate almost sure upper and lower boundsfor large n.
n1/2−ε ≤ max

0≤k≤n
|C2(k)| ≤ n1/2+ε. (7.2)On the other hand, for the restrited maximal quantities in (7.1), we are now to establish thefollowing bounds.Proposition 7.1 Under the onditions of Theorem 1.1, with any ε > 0, we have almost surely forlarge n

n1/4−ε ≤ max
k≤n:C1(k)=x

|C2(k)| ≤ n1/4+ε (7.3)with any �xed x ∈ Z, and
xnn

1/4−ε ≤ max
k≤n: |C1(k)|≤xn

|C2(k)| ≤ xnn
1/4+ε, (7.4)where xn ≤ n1/4−δ with some δ ≥ 0.Remark 4 First we note that the upper bound in (7.4) is valid without any restrition on xn. Theassumption that xn ≤ n1/4−δ, with δ ≥ 0, is to have a orret lower bound as well. In partiular,with xn = n1/4−δ, δ > 0, (7.4) reads as follows,

n1/2−δ−ε ≤ max
k≤n: |C1(k)|≤n1/4−δ

|C2(k)| ≤ n1/2−δ+ε. (7.5)Thus, on taking ε > 0 small enough, both bounds in (7.5) are seen to �utuate around the value
n1/2−δ for any δ > 0, i.e., unlike in the unrestrited maximal path behaviour of C2(·) as in (7.2),24



with δ > 0, the bound n1/2−ε annot be reahed in (7.5) on taking ε > 0 small enough. In the samevein, we have also
lim inf
n→∞

max{k≤n: |C1(k)|≤n1/4−δ} |C2(k)|
n1/2

= 0 a.s.,and
lim sup

n→∞

max{k≤n: |C1(k)|≤n1/4−δ} |C2(k)|
n1/2

= 0 a.s.On the other hand, the assertion in (7.5) ontinues to hold true with δ = 0 as well, i.e., in this ase,the bounds in (7.2) and (7.5) oinide. Moreover, in this ase,
lim inf
n→∞

max{k≤n: |C1(k)|≤n1/4} |C2(k)|
n1/2

= 0 a.s.,just like before, however, we now have that
lim sup

n→∞

max{k≤n: |C1(k)|≤n1/4} |C2(k)|
n1/2

= ∞ a.s.Remark 5 We are to ompare now the two assertions of Proposition 7.1. First, for eah �xed x asin (7.3), like for example on the y-axis, C2(·) does almost surely exeed the bound n1/4−ε, howeverthe bound n1/4+ε annot be reahed. In view of this, (7.4) via (7.5) tells us that for a large enougholletion of x values on the x-axis, C2(·) does get away more and more from this axis as the distane
xn of C1(·) from zero inreases, so that, eventually, for any δ ≥ 0, it exeeds the bound n1/2−δ−εwith any ε > 0.Proof of Proposition 7.1 It follows from Theorems 1 and 3 of Földes [28℄ that, for a standardBrownian motion W (·) and large T , we have almost surely

T 1−ε ≤ sup
0≤s≤τ(T )

|W (s)| ≤ T 1+εwith any 0 < ε < 1, where τ(·) is the inverse loal time proess as in (2.2). Using now the assumption(1.10) in ombination with Lemma B and Theorem F, we obtain the almost sure bounds with any
0 < ε < 1

N1−ε ≤ max
i≤ρ(N)

|S(i)| ≤ N1+ε (7.6)for large N .Now reall that V ((x, 0), n) =: V (x) as in (4.2) is the number of vertial returns of C(·) to
(x, 0) up to time n whih, in turn, equals the number of exursions of S2(·), orresponding to thesevertial returns, up to time n, 25



Then, with any 0 < ε < 1, we an also onlude from (7.6) that
V (x)1−ε ≤ max

k≤n:C1(k)=x
|C2(k)| ≤ V (x)1+ε. (7.7)To estimate V (x) now, we ombine Lemma 4.1 with the law of the iterated logarithm as statedin (1.21) and, on using also Corollary 1.5, we get

n1/4−ε1 ≤ V ((x, 0), n) ≤ n1/4+ε1 (7.8)with any 0 < ε1 < 1/4, almost surely for large n. Now, the statements of (7.7) and (7.8) togetherresult in (7.3).In order to prove (7.4), we apply (7.6) with
N =

∑

|x|≤xn

V ((x, 0), n),that is the total number of vertial returns to x in the interval −xn ≤ x ≤ xn, whih is also thenumber N of orresponding exursions of S2(·). Consequently, with any 0 < ε < 1, we an alsoonlude




∑

|x|≤xn

V ((x, 0), n)





1−ε

≤ max
k≤n:|C1(k)|≤xn

|C2(k)| ≤





∑

|x|≤xn

V ((x, 0), n)





1+ε

, (7.9)and, learly,
xn min

|x|≤xn

V ((x, 0), n) ≤
∑

|x|≤xn

V ((x, 0), n) ≤ (2xn + 1) max
|x|≤xn

V ((x, 0), n). (7.10)We also note that the estimate of V ((x, 0), n) as in (7.8) also holds true uniformly in x over theinterval (−xn, xn), on aount of the very same information that was already used in arguing (7.8)itself. Consequently, with the latter in mind, in view of (7.10) and (7.9), we arrive at (7.4) as well.This also ompletes the proof of Proposition 7.1. 2AknowledgementsThe authors are indebted to, and wish to thank, the referee for insightful remarks and forproposing to study instead of the Markov hain of transition probabilities (1.7), (1.8), (1.9), theMarkov hain whose transition probabilities are haraterized as follows: replae
• the fator 1/2 of the right hand side of (1.8) by χ (0 < χ < 1)

• the fator 1/2 of the right hand side of (1.9) by 1 − χ.We fully agree with him/her saying that this replaement would not make too muh di�ulties,and that the same results would ontinue to hold with appropriate hanges in their orrespondingonstants. Indeed, this is so. For example, the fator 1/2 on the left hand side of (1.15) would behanged to χ, as well as some other onstants along these lines.26
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