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Abstract

The discovery of the almost sure central limit theorem (Brosamler, 1988; Schatte,
1988) revealed a new phenomenon in classical central limit theory and has led to an ex-
tensive literature in the past decade. In particular, a.s. central limit theorems and various
related ‘logarithmic’ limit theorems have been obtained for several classes of independent
and dependent random variables. In this paper we extend this theory and show that not
only the central limit theorem, but every weak limit theorem for independent random
variables, subject to minor technical conditions, has an analogous almost sure version.
For many classical limit theorems this involves logarithmic averaging, as in the case of the
CLT, but we need radically different averaging processes for ‘more sensitive’ limit theorems.
Several examples of such a.s. limit theorems are discussed.
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1. Introduction

Starting with Brosamler (1988) and Schatte (1988), in the past decade several authors
investigated the almost sure central limit theorem and related ‘logarithmic’ limit theorems
for partial sums of independent random variables. The simplest form of the a.s. central
limit theorem (Brosamler, 1988; Schatte, 1988; Lacey and Philipp, 1990; Fisher, 1989)
states that if X, Xo,... are i.i.d. random variables with mean 0, variance 1 and partial
sums S,, then

1 1 S
Nli_r)nOO Tog N Z EI {\/—% < x} = &(x) a.s. for any z (1.1)

k<N
where I denotes indicator function. Relation (1.1) is a weighted strong law for the events

Ay = {S/VE < z}; note that the ordinary strong law

.1 Sk
]\}E)nwﬁ’;vl{ﬁ <a:} = ®&(x) a.s. for any z

fails even for x = 0 by the arc sine law. This means that the relative frequencies of the
events Ay = {S/Vk < z} fluctuate without a limit, but an a.s. limit exists if we replace
the counting measure with the logarithmic measure u(A4) = >, ., 1/k, A C N. This
remarkable property of the logarithmic measure has been studied intensively in recent years
and many extensions and variants of (1.1) have been obtained. Several papers investigated
the general ASCLT

1 1 —
A}i_r)noo log N Z EI { S b I < a:} = ®(z) a.s. for any z (1.2)

k<N

for independent r.v.’s; see e.g. Atlagh (1993), Atlagh and Weber (1992, 1996), Berkes
(1995), Berkes and Dehling (1993, 1994), Ibragimov (1996), Ibragimov and Lifshits (1998,
1999), Lifshits (2000a, 2000b), Mdéri (1993), Peligrad and Révész (1991), Rodzik and Rych-
lik (1994, 1996) and the references in the survey paper Berkes (1998). As it turned out,
under mild moment conditions relation (1.2) follows from the the ordinary (weak) CLT

(Sp — an)/bn = N(0,1) (1.3)
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but in general the validity of (1.2) is a delicate question of a totally different character as
(1.3). (See e.g. the counterexample in Lifshits, 2000a.) Starting with Weigl (1989) and
Csorgé and Horvéath (1992), several papers dealt with the fine asymptotic properties of

) % (I{Skb_kak <x}—q)(x)>.

k<N

the sum

See Section 4 of Berkes (1998) for detailed references. For further results in the field (higher
dimensions, local theorems, large deviations, weakly dependent sequences, etc.) we also
refer to Berkes (1998).

All the above results are related to the central limit theorem, but there also exist a few
results of the type (1.2) in connection with other classical weak limit theorems. Marcus and
Rosen (1995), Cséki and Foldes (1995) and Horvath and Khoshnevisan (1995) obtained
analogues of (1.2) for local times and Fahrner and Stadtmiiller (1998) and Cheng et al.
(1998) proved a similar result for extreme order statistics. In fact, they showed that if
X1, X, ... are iid.r.v.’s with M, = maxg<, Xj and for some numerical sequences (ax),
(br) we have

(Mk —ak)/bk 2) G

for a nondegenerate distribution G, then

. 1 1 Mk — ag
| —I ——— = 8. fi . 1.4
lm Tog N I;V ? { ™ < x} G(z) a.s. for any z (1.4)

Relation (1.4) is the exact analogue of the a.s. central limit theorem (1.2) for extremal
statistics and raises the question which other weak limit theorems for independent r.v.’s
have an almost sure ‘logarithmic’ version. The purpose of this paper is to prove the
surprising fact that not only the CLT and limit theorems for local times and extrema, but
every weak limit theorem for independent r.v.’s, subject to minor technical conditions, has
an almost sure version. To formulate our result, we need a few preparatory remarks about

the structure of weak limit theorems.

The generic form of a weak limit theorem for a sequence (X,,) of r.v.’s is

fe(X1, Xo,...) NYe (1.5)
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where fr : R — R are measurable functions and G is a distribution function. A few
examples corresponding to well known limit theorems are:

(a) fr(@r, 2o, ..) = (1 + - +a3) /VE (CLT)

(b) fe(x1,29,...) = ag (I;1<a13< x; — by) (Limit theorems for extrema)
Z_

(c) fe(z1,@2,...) = VEsup [k} Z I(z; <t)— F(t)] (empirical d.f.’s)
¢ i<k

(d) fe(@1,22,...) = ag ZI{$1+“‘+$i:0}—bk (Local times)
i<k

(e) fe(z1,20,...) = ag Z h(ziy,---,2i, ) — b (U-statistics).
1<i1 < im <k
In most cases of interest, the functions fi depend only on finitely many of the z;’s and in
this paper we will consider only limit theorems of this kind. In this case, (1.5) reduces to

the form
D
fk(Xl,X2,. .. 7Xnk) G

for some sequence (ng) of positive integers. For notational simplicity, we first formulate
our results for the case ny = k (satisfied in all the above examples); we shall return to the
general case in the next section.

The functions fi in a limit theorem

Fio(X1, Xa, ..., X1) 2 G (1.6)

must be measurable, but not all measurable f; correspond to interesting limit theorems.
For example, if fx(x1,22,...) = 1 + zo for all £ > 1 and G denotes the convolution of
the distributions of X; and X5, then (1.6) expresses a true statement, but it cannot be
called a “limit theorem” because it involves only the variables X; and Xs. A true limit
theorem must involve infinitely many of the variables X;, and it must have the property
that for each k£ > 1, the influence of the initial variables X1, X5,... , X; on fi(X1,..., X))
becomes eventually negligible as | — 0o, so that the validity of (1.6) is not influenced by
changing finitely many X;’s. We will formalize this condition by assuming that for each
I > k > 1 there exists a measurable function fy ; : R'“* — R such that

E('fl(Xh e 7Xl) - fk:,l(Xk:—i-h e 7Xl)| A 1) S ck/cl (17)
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for some nondecreasing sequence ¢y — oo. For ¢, = k%, «a > 0 (1.7) means that
fi(X1,...,X;) is close in probability to fr;(Xg+1,...,X;) if £/l is small and thus f;
changes little in probability if we change its first €l variables, € small. 1t is easy to verify
(see Section 5) that all the limit theorems listed above satisfy this condition. In fact, as
experience shows, most “usual” weak limit theorems have this proportionality property.
For ¢, = (logk)®, a > 0, the right hand side of (1.7) will be small if logk/logl < e,
ie. k < [° with € small. That is, in this case (1.7) means that fi;(z1,...,z;) depends
negligibly on its first [® variables. Note that this segment is shorter than the segment of
length €l obtained in the case ¢y = k%: the dependence of f; on its initial variables became
more sensitive. For even more slowly increasing (ci) the segment of the initial, “irrelevant”
variables of f; gets even shorter, indicating a further increase of sensitivity of f;.
A simple example for a limit theorem

Fo(X1, ..., Xi) 2 G

where the dependence of fi on its first €k variables is not negligible (i.e. (1.7) does not
hold with ¢ = k%) is the Darling—Erdés (1956) limit theorem for the maximum of normed
partial sums of independent random variables. This theorem states that if (X,) is a
sequence of independent random variables with mean 0, variance 1 and uniformly bounded
third absolute moments, then letting S,, = X; + -+ -+ X,, we have

S; D
an, | max — —b, | — G
(iéfﬁ )

for suitable (ay) and (by,), where
G(z) = exp(—e™%).

Here max;<p, (Si / \ﬁ) behaves like the maximum of the Ornstein-Uhlenbeck process U in
[0,logn] and thus the probability that the maximum of S;/vi, 1 < 4 < n is attained
for some 7 < +/n is approximately 1/2. Hence changing the first y/n of the variables
X1,..., X, can change the value of max;<, (SZ- / \/Z) radically on a set of probability near
1/2 and thus (1.7) fails with ¢, = k°.

We can now formulate our first general result providing the a.s. version of the weak

limit theorems.



Theorem 1. Let X, X3,... be independent random variables satisfying the weak limit

theorem

fk(XlaXQa"' an) E)G (18)

where fi : R* — R (k =1,2...) are measurable functions and G is a distribution function.
Assume that for each 1 < k < | there exists a measurable function f  : R'“F — R such
that

E (‘fl(le .. ,Xl) - fk,l(Xk—i—l; .. ,Xl)| VAN 1) < A(ck/cl) (19)

with a constant A > 0 and a positive, nondecreasing sequence (c,) satisfying ¢, — oo,
Cni1/cn = O(1). Put

dk = 10g(ck+1/ck), Dn = Z dk. (1.10)
k<n
Then we have
. 1
A}E)noo Dn Z did {fr(X1,...,Xk) <z} =G(x) a.s. for any z € Cq (1.11)

k<N

where Cq denotes the set of continuity points of G. The result remains valid if we replace
the weight sequence (dy) by any (df) such that 0 < dj < dy, > dj = oc.

Theorem 1 shows that if a weak limit theorem (1.8) satisfies condition (1.9) then it
has an a.s. weighted version with weights depending on the sequence ¢ in (1.9). In the
case ¢, = k“ (1.10) gives

dy ~ const - 1/k
and thus (1.11) reduces to

1
i
No log N

Z %I{fk(Xl, o, Xg) <z} =G(x) a.s. for any z € Cgq. (1.12)
k<N

Thus in this case the a.s. limit theorem corresponding to our weak limit theorem will
involve logarithmic averages. This covers a very large class of limit theorems; several
examples will be given in Section 5. Among others, we shall prove there analogues of the
pointwise CLT for partial sums and partial maxima, extremal order statistics, empirical

distribution functions, U-statistics, local times, return times, etc. If ¢, = (logk)®, then
(1.10) gives

d;. ~ const -
ko OO P og k



and (1.11) reduces to

1

lim ——— I Xi,...,X = 8. fi .
Nl—I)nOOIOglogNk k {fk( 1, ’ k)<"I’.} G(J’.) a.s. lor aIIYZEECG

1
< klog
Such loglog averaging will appear, e.g., in the a.s. version of the Darling-Erdés limit the-
orem, see Section 5. Clearly, the slower the sequence (¢,) tends to infinity, the more
“sensitive” limit theorems are permitted by (1.9), and the more the weights dy, differ from
1/k.

Any sequence D = (dq,da,...) of positive numbers with ) d,, = oo defines a linear
summation method (Riesz summation of order 1) as follows. Given a real sequence (),
put

aﬁbD) = D;l Z dr Xk where D, = Z dg.
k<n k<n

We say that (z,,) is D-summable if o'P) has a finite limit. By a classical theorem of Hardy

(see e.g. Chandrasekharan and Minakshisundaram, 1952, p. 35; see also pp. 37-38 for a more
general version due to Hirst), if two sequences D = (d,,) and D* = (d},) with partial sums
D,, and D}, satisty D} = O(D,,) then, under mild regularity conditions, the summation
procedure defined by D* is stronger (i.e. more effective) than the procedure defined by D
in the sense that if a sequence (z,) is D-summable then it is also D*-summable and to
the same limit. Moreover, if D¢ < D < D# for some 0 < o < (3 and sufficiently large
n, then by a theorem of Zygmund (see also Chandrasekharan and Minakshisundaram,
1952, p. 35) the summation procedures defined by D and D* are equivalent, i.e., aéD)
converges for some (z,) iff o{P") does. Finally, if Dy = O(Dy) for all ¥ > 0 then the
summation method defined by D* is strictly stronger than the method defined by D. (For
further results see Chandrasekharan and Minakshisundaram, 1952, Chapter 2; we refer
also to Bingham and Rogers, 1991 for various connections between summation methods
and probability theory.) For example, logarithmic summation defined by dy = 1/k is
stronger than Cesaro (or (C,1)) summation defined by dj = 1; on the other hand, all
summation procedures defined by di = (logk)®/k, a > —1 are equivalent to logarithmic
summation. Using the terminology of summation procedures, Theorem 1 means that the
more “sensitive” the functional f in the weak limit theorem

fk(Xla"' 7Xk) 2}G
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is (i.e. the slower the sequence (c,) in (1.9) tends to infinity), the more effective summation
procedure has to be used in the corresponding strong limit theorem

lim — Z del {fr(X1,...,Xk) <z} =G(x) a.s. for any = € Cg.
N—oo D k<N

While the essential new information provided by Theorem 1 concerns nonlinear func-
tionals fr, the theorem sheds also new light on a curious phenomenon observed earlier
in connection with the original a.s. central limit theorem. If X,, are independent random
variables satisfying the Lindeberg condition (and thus the CLT), then the pointwise CLT
can still fail (see Berkes and Dehling, 1993; Ibragimov and Lifshits, 1999), but as Atlagh
(1993) showed, with properly chosen weights the pointwise CLT is always valid. More
generally, Ibragimov and Lifshits (1999) showed that if (X,,) is a sequence of independent
random variables satisfying (1.3) with some b, 1 oo and the left hand side of (1.3) has
uniformly bounded p-th moments for some p > 0, then setting

d = (bk — be—1)/bks D= dy
k<n

we have

lim — Z dil { Sk — } = G(z) a.s. for any z € Cg.

Nooo D N k<N

Theorem 1 explains this phenomenon: if an independent sequence (X,,) with partial sums
Sy, satisfies (S, — ay)/bn 2, G, then removing X1,..., X from S,, for some k < n will
result of a change of (S, — ay)/b, in the order of magnitude b /b, and thus Theorem
1 applies with ¢, = b,. If b, grows like n? for some v > 0, then b;/by ~ I/k and thus
by Theorem 1 a pointwise CLT with weights 1/k is valid. However, if b,, grows, e.g., like
(logm)7, vy > 0, then we have a more sensitive functional and Theorem 1 yields nonstandard
weights. As the examples in Berkes and Dehling (1993), Ibragimov and Lifshits (1999)
show, the use of weights different from 1/k is really necessary in this case.

Theorem 1 is the simplest one of the ‘universal’ results proved in our paper. In Section
2 we will formulate several extensions of Theorem 1 and in Section 3 we will discuss the
weight sequences occuring in a.s. versions of weak limit theorems. The proofs of our
theorems will be given in Section 4 and in Section 5 we will give examples and applications
of our results.



2. Further results

Theorem 1 covers a very large class of limit theorems and condition (1.9) will be
verified easily in all applications considered in Section 5. It should be noted, however, that
condition (1.9) can be substantially weakened; the following result yields an essentially
optimal condition under which the weak limit theorem

foX1,..., Xp) D G (2.1)

implies the a.s. result (1.11). Let log, x = log if > 1 and 0 otherwise.

Theorem 2. Let X1, X, ... be independent random variables, fi : R* - R (k=1,2...)
measurable functions and assume that for each 1 < k < [ there exists a measurable function
fra: R™% — R such that

E(Ifi(X1,. .., X)) — feaXig1s- .., X)) A1) < C (log, log, (ar/cy)) "1 (2.2)

for some constants C > 0, e > 0 and a positive, nondecreasing sequence (c,) satisfying
Cn — 00, Cpnt1/cn = O(1). Put

dk = IOg(Ck_H/Ck), Dn = Z dk. (2.3)
k<n

Then for any distribution function G the relations

1
lim — Z did {fr(X1,...,Xk) <z} =G(x) a.s. for any =z € Cg (2.4)
N—oco Dy AN

and

lim DL Z AP {frx(X1,...,Xk) <z} = G(x) for any x € Cg (2.5)

are equivalent. The result remains valid if we replace the weight sequence (dy) by any (df)
such that 0 < dj <dyg, > dj = oo.

Note that the log, log, in (2.2) equals 0 for 1 < ¢;/cy < e; in this case the right
hand side of (2.2) is meant to be +oo (and thus (2.2) is automatically satisfied in this
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case). Actually, the proof of Theorem 2 will use condition (2.2) only for ¢;/ci > 3, when
log, log, can be replaced by loglog.

Assumption (2.2) of Theorem 2 is weaker than condition (1.9) in Theorem 1 and is ac-
tually sharp: Theorem 2 becomes false if we assume (2.2) only for ¢ = 0. This follows from
a recent counterexample of Lifshits (2000a) related to the pointwise CLT, see Section 5.
Observe also that in the theorem we state not only that the weak limit theorem (2.1)
implies the strong result (2.4), but that the strong result (2.4) is actually equivalent to the
weighted weak result (2.5). In addition to the case of weakly converging fi(X1,..., Xk),
relation (2.5) covers also situations where the distribution of fi(Xy,...,Xx) fluctuates
without a limit. In Berkes and Dehling (1994) and Berkes et al. (1991) several examples
are constructed (in the case of normalized partial sums) where (2.4) holds, but (2.1) fails.
A more natural example for this phenomenon is the St. Petersburg game, see Berkes et al.
(1999).

Theorem 1 permits various further generalizations. In what follows, we will investigate
more general limit theorems of the type

fo(X1, Xo, ..., Xp) 2 G

with arbitrary nj and also a.s. versions of weak limit theorems defined along subsequences.
Finally, we will investigate the case when the discrete parameter sequence X, is replaced
by a continouos parameter process.

Schatte (1988) and Atlagh and Weber (1992) proved that if (X,,) is a sequence of
i.i.d. random variables with EX; = 0, EX{ = 1 then setting S, = >, ., X; we have

) 1
oy T
k<N

(Actually, Schatte assumed also F|X;|> < 4+00.) In other words, if we consider S, /\/n
only along the subsequence 2¥, then the logarithmic averages in the pointwise central limit

Sgk }
<zy=(x a.s. for any z.
V2k (@) Y

theorem can be replaced by ordinary (Cesaro) averages. The following theorem shows
how to choose the weights in our general a.s. limit theorem (1.11) when we consider the
functional fx(Xi,...,Xk) only along a given subsequence (ny) of integers.

Theorem 3. Let X1, Xo,... be independent random variables, fr, : RF — R (k=1,2...)
measurable functions and assume that for each 1 < k < [ there exists a measurable function
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fra: R'"% — R such that

E(fi(X1,. .., X)) — feuXig1,- -, X)) A1) < C (log, log, (I/k)) "+ (2.6)

for somee > 0. Let (ng) be an increasing sequence of positive integers satisfying ng41/ng =
O(1). Set

dk = log(nkH/nk Z dk (2.7)
k<n

Then for any distribution function G the relations

lim — Z did {fn,(X1,...,Xn,) <z} =G(x) a.s. for any z € Cg
N—oo D N k<N
and
lim — deP{fnk X1,...,Xn,) <z} =G(x) for any z € Cq
N—ooo D

k<N

are equivalent. The result remains valid if we replace the weight sequence (dy) by any (d})
such that 0 < dj <dg, > df =0

Condition (2.6) covers ‘proportional’ limit theorems, i.e. limit theorems of the type
(2.1) where fj depends weakly on its first o(k) variables. (As we noted in Section 1, most
“usual” limit theorems satisfy this condition; see the examples in Section 5.) It is worth
writing out the theorem in detail in a special case, e.g. in the case of the CLT, when (X,,)
is an i.i.d. sequence with EX; =0, EX? =1 and

f@r, .o m) = (@ 4+ a)/VD

(see example (a) in Section 1). In this case Theorem 3 states that if (ng) is an increasing
sequence of positive integers with ng1/n, = O(1) and di, is defined by (2.7), then

A;gnoo D—N Z dkl{ } = ®(x) a.s. for any z.

k<N
If ng = [k®] (o > 1) then dy ~ a/k, i.e. the weights are still logarithmic. If ny = [eF”]
(0 < a < 1), then dy ~ a/k'~, which corresponds to a weaker summation procedure.
The case ny, = 2F covers the results in Atlagh and Weber (1992), Schatte (1988) mentioned
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above. Clearly, the faster (ny) grows, the weaker the summation procedure in Theorem 3
becomes. For example, in the case ny = 2¥ one can use a weaker summation procedure
(namely Cesaro summation) to get the a.s. convergence of indicators than in the case
ng = k, when logarithmic summation is needed. This effect is exactly the opposite as the
effect of the functional fj getting more and more sensitive: this latter leads to the need of
using stronger averaging procedures. The same interpretation holds for Theorem 3 in case
of general functionals f.

Our next theorem is a common generalization of Theorems 1-3:

Theorem 4. Let X1, Xs,... be independent random variables, (n) an increasing se-
quence of positive integers, fr : R™ — R (k =1,2...) measurable functions and assume
that for each 1 < k <l there exists a measurable function fy;: R™ " — R such that

—(1+¢)

E(fi(X1,..., Xn) = fea(Xngs+1,---, Xn))|A1) <C (logJr log+(cl/ck)) (2.8)

for some constants C > 0, € > 0 and a positive, nondecreasing sequence (c,,) with ¢,, — 0o,
Cnt+1/cn = O(1). Put

di, =log(ck+1/ck), Dn = Z d.
k<n

Then for any distribution function G the relations

lim DL z del {fx(X1,...,Xn,) <z} =G(z) a.s. for any =z € Cg (2.9)

N—oco DN N
and
1
lim — Z deP {fr(X1,...,Xn,) <z} =G(x) for any z € Cqg (2.10)
N—oo DN <N

are equivalent. The result remains valid if we replace the weight sequence (dy) by any (df)
such that 0 < dj <dy, > d; = oo.

In addition to the situations considered in Theorems 1, 2 and 3, Theorem 4 covers

limit theorems of the type

feX1,. .o, Xn) DG (2.11)

with arbitrary (ng).
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In conclusion we extend our theorems to the case when the functionals fr depend
not on an independent sequence (X,,), but on a process {X (), t > 0} with independent
increments:

Theorem 5. Let {X(t),t > 0} be a process with X(0) = 0 and independent incre-
ments and let &1,&s,... be random variables such that & is measurable with respect to
o{X(t),0 <t < k}. Assume that for each 1 < k < | there exists a random variable
measurable with respect to o{X (t') — X (t) : k <t <t' <1} such that

E (& — €eal A1) < C (logy, 10g+(Cl/Ck))_(1+6)

for some constants C > 0, € > 0 and a positive, nondecreasing sequence (c,,) with ¢,, — 0o,
Cnt+1/cn = O(1). Put

dk = log(ck+1/ck), Dn = Z dk.

k<n
Then for any distribution function G the relations
lim —— 5" del {& < 2} = G(x) for any & € C (2.12)
im — = 8. .
N D el {&k < x x a.s. for any z fe
k<N
and
lim —— S deP{& <o} =G(z) eC (2.13)
— = I an -
Aim D k < T x or any x fe

k<N

are equivalent.

This theorem is the exact analogue of Theorem 2 for processes; the analogues of
Theorems 1, 3 and 4 can be formulated similarly. A typical application of Theorem 5 is
the Darling-Erd8s limit theorem for sup,<,<, (W(t)/Vt) where W is a Wiener process
(see Section 5.) o

We note that the following result is also true, where the sums in (2.12) and (2.13) are
replaced by integrals.

Theorem 6. Let {X(t),t > 0} be a process with X (0) = 0 and independent increments
and let {{(t), t > 0} be a process such that &(t) is measurable with respect to o{X (u), 0 <
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u < t}. Assume that for each 1 < s < t there exists a random variable £(s,t) measurable
with respect to o{X (u') — X(u) : s <wu <wu' <t} such that

—(14e€
B (|§(t) = £(5,8)| A1) < C (log log (e(t)/c(s))) """
for some constants C > 0, ¢ > 0 and a positive, nondecreasing, continuous function

(c(t), t > 1) with limy_,o c(t) = +o00. Put D(t) = logc(t). Then for any distribution
function G the relations

lim. 1 / UIE() <o) dD(t) = Gle)  as foramyseCo  (2.14)

T—oo D(T) J;
and
Tll_I)I;o D—/ P{{(t) <z} dD(t) = G(z) for any z € Cq (2.15)

are equivalent.

3. Notes on weight sequences

Most pointwise central limit theorems in the literature use the weights dp = 1/k and
it might appear that these weights are the 'natural’ ones. In many situations, the weights
1/k are very convenient to work with: for example, in the case of i.i.d. normal random
variables, the use of an exponential time transformation together with the ergodic theorem
yields a very elegant proof of the pointwise central limit theorem. However, Theorem 1
shows that even in these cases the weight sequence 1/k is only one in a very large class of
weight sequences that work equally well: for example, in the case of i.i.d. random variables
(Xy) with mean 0 and variance 1 the relation

lim —— ) di] {— < x} ®d(z)  as. for any z (3.1)

N— D
©HN <N

holds for all weight sequences 0 < dy < 1/k, Y dj = oo, and it is easy to see that (3.1)
remains valid also for several sequences di > 1/k. For example, (3.1) holds with

di, = (logk)®/k, (> -1) (3.2)
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(in fact, by Zygmund’s theorem, the summation method belonging to the sequence in (3.2)
is equivalent to logarithmic summation), and we shall see that (3.1) holds even with

di, = exp((logk)%)/k (3.3)

provided 0 < « < 1/2. On the other hand, Schatte (1988) proved that (3.1) does not
hold with dy =1 (Cesaro summation). Clearly, the larger the weight sequence (dy) is, the
stronger is the result (3.1) (see our earlier remarks on summation methods) and it would
be of considerable interest to determine the optimal weights. As (3.3) gives logarithmic
averaging for @ = 0 and Cesaro averaging for & = 1, we see that in the pointwise CLT (3.1)
we can go at least ”halfways” from logarithmic to Cesaro averaging. Whether (3.3) works
also for some 1/2 < a < 1 remains open. We note, however, that for every 1/2 < a < 1
relation (3.1) holds at least with convergence in probability.

Similarly to the above remarks, the weights in Theorems 2-5 are far from being the
only possible (or optimal) ones. For example, Zygmund’s theorem shows that Theorems
2-5 remain valid with

di, = log(ckt1/ck)(logck)®, (o> —1)

and if the right side of (2.2) is sharpened to C(¢;/cx) 7 for some v > 0 then we will prove
that one can even choose

dy, = log(ck+1/ck) exp((logex)®), 0<a<l/2
On the other hand, the conclusion of the theorem fails generally for
di, = log(ck+1/ck)ck a>0.

Again, the optimal weight sequence remains unknown.

In conclusion we note that by the assumption cgy1/cx = O(1) made in Theorems 1,
2, 4 and 5 the weight sequences (dg) in all of our theorems are bounded. This condition
can be easily removed: the proofs our theorems remain valid, with obvious changes, if
Ck+1/ck grows, e.g., with polynomial speed. However, it must be pointed out that the
case cpt1/cr — 0o covers only relatively uninteresting situations. For example, under
Ck+1/cx — oo condition (2.8) of Theorem 4 implies that

P
fl(le- .. ,an) — fl_l,l(an_1+1,. .. ,an) — 0

15



and thus setting fi = frx—1k, the limit theorem (2.11) reduces to the relation
« D
o Xnp_ 1415+, Xny) — G

where for different k’s the left hand side contains disjoint sets of the X;’s. From the law of
the iterated logarithm it will follow easily that in this case the conclusion of the theorem
holds with any positive weight sequence (d,,) satisfying

E? = Z d2 — oo (3.4)
k<n
and
dp, =0 (En/(loglog En)l/Z) . (3.5)

Moreover, this result is optimal, i.e. replacing the o in (3.5) by O the result becomes
false. Condition (3.5) permits almost exponential increase of the weights d,; for ex-
ample, the conclusion of the theorem holds if d,, = e®/(1°8™)" ~ > 1, and we will see
that it generally fails if d, = e®/1°8™. That our theorems cannot hold with exponential
weights (d,,) (except in trivial cases) is obvious from the fact that for exponential (d,,) the
summability procedure belonging to (d,) is equivalent to convergence (see Chandrasekha-
ran and Minakshisundaram, 1952, p. 13), and thus (2.9) means almost sure convergence
of I{fr(X1,...,Xn,) <z} to G(x) for all z € Cg, which is impossible except if G is
concentrated in a single point ¢ and fx(X1,...,X,,) — ¢ as.

4. Proof of the theorems

We shall give the proof of Theorem 4; the proofs of Theorems 5 and 6 are similar.
Despite the large generality of our theorems, the proofs will be rather simple; we will
use essentially the same second order argument that was used in the proof of the original
versions of the ASCLT (see e.g. Lacey and Philipp, 1990; Schatte, 1988). Let

0 < dy <log(ck+1/ck), D, = Z dj, — oo. (4.1)
k<n
By a well known principle in the theory of the pointwise central limit theorem (see e.g.
Lacey and Philipp, 1990), it suffices to prove that for any bounded Lipschitz 1 function
g : R — R we have

lim —— S dilg (Fs(Xn, oo Xn)) = Bg (f(X1, o X)) =0 a5 (42)
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Put
§e =9 (fr(X1,. s X)) — Eg (fr(X1,... s Xpy))
and let K > 1 denote a constant such that
lg(x)| < K and |g(z)—g(y)| < K|z —y| forany z,y € R. (4.3)

Then for any 1 < k < [ with ¢/cy > 3 we get, using (2.8), (4.3) and the fact that
fe(X1,...,Xp,) and fx1(Xn,41,...,Xp,) are independent,

|E(&k&)|

= |Cov (g9 (fr(X1,..-, Xn,)) 9 (filXe, ..., Xn)))) |
= |Cov (g9 (fr(X1,..-, X)), 9 (ilXn, -, X)) — 9 (Frp(Xnpg1, -+ -5 Xiy))) | (4.4)
<2K - Elg(fu(X1,... s X)) = 9 (fea(Xng41, -+ X)) |
<2K - E(K|fi(Xy,-., X)) = fea(Xnjt1, -, X )| A 2K)
< 4CK? (loglog(c; /cx))~ ).
Now )
E(Z dkfk) <2 Z didi|E(§k&1) |- (4.5)

k<N 1<k<ISN
Let N be so large that Dy > 4. By (4.4), the contribution of those terms in the sum on
the right side of (4.5) where

cfcy > eXP(Dle/Q)
1s at most

C*(logDy)™""° Y digdy < C*(log Dy)~'"°D}.
1<k<IKN
On the other hand, letting M = sup,,»;(¢n+1/cn), the relation ¢;/c, < exp(D]lV/Q) implies
logciy1 — loger <logM + Dll\,/2

and thus (4.1) and the trivial estimate |E(£&;)| < 4K?2 show that the contribution of those
terms on the right hand side of (4.5) where ¢;/c, < exp (DJlV/Q) is

N N
< 8K?2 Z dy, Z d; < const - Z dy, Z (log i1 — logey)

k=1 {I>k: c;<cy exp (DIIV/Q)} k=1 {I>k: c;<cg exp (Dllv/2)}

N
< const - Z d (logM + D}V/Z) < const - D?V/2.
k=1
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Hence setting

1
Ty =—— ) dén
Dy k<N

we get
ET3 < const - (log D)5,

Let n > 0 be so small that (14 ¢)(1 —#n) > 1. Since (d,) is bounded by (4.1) and
Cnt+1/cn = O(1), we have D,,11/D,, — 1 and thus we can choose a nondecreasing sequence
(N) of positive integers such that

Ei—n

DN ~ e (46)

k

and consequently
ETJ%k < const - k~17¢

for some p > 0. Hence we have > o, [T, |? < +00 a.s., implying T, — 0 a.s. Now for
Ny < N < Ng41 we have

N
2K Dy
Ty| <|T, — E d; = |T, 2K (1 — k).
1=IVg

Since Dy, ,/Dn, — 1 by (4.6), it follows that Ty — 0 a.s., completing the proof of (4.2).
If condition (2.8) of Theorem 4 is assumed only for [ > k£ > A with some constant
A > 0, then the theorem remains valid with the summations in (2.9) and (2.10) extended
for A <k < N. (The proof requires only trivial changes.) In this case fi, fx 1, cx need not
even be defined if k or [ is < A. A similar remark applies in our other theorems.
It is easily seen that if the right hand side of (2.8) is replaced by C(¢;/cx) ™" for some
v > 0, then in Theorem 4 we can choose

d, = log(ckgr1/ck) exp ((logck)®) 0<a<l1/2

In this case instead of (4.4) we get |FE(£x&;)| < const - (¢;/ck) " and thus the contribution
of those terms in (4.5) where ¢;/cx > (log Dy)?/7 is at most D3 (log Dy)~2. On the other
hand, in the present case we get by elementary calculations

D,, ~ const - (logc,)'™*exp ((logc,)®)
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and consequently
exp ((log c;,)®) ~ const - Dy, /(log Dy, )1~/

Thus the contribution of those terms in (4.5) where ¢;/cx < (log Dy)?/7 is

N
<8K®-) dy > (logci1 — log ) exp((log c1)®)
k=1 {I>k:c;<cr(log Dn)2/7}

N
< const - exp((logen)®) Z di loglog Dy = const - exp((log en)®) Dy loglog Dy
k=1

< const - D loglog DN/(logDN)(l_a)/a < const - D?V/(logDN)_(HE)

for sufficiently large N; here € > 0 by o < 1/2. The rest of the proof is the same as above.

The previous argument breaks down for 1/2 < « < 1, but it is worth noting that even
in this case we have Ty — 0 and thus relation (2.10) implies (2.9) at least in probability.
Whether we can have a.s. convergence in this case remains open.

We finally prove the claim, made in Section 3, that if in Theorem 4 the function
fw(z1,...,2,,) depends only on z,, _,+1,...,2Z,, (i-e., if different fi’s depend on disjoint
segments of the sequence x1,z3,...), then the conclusion of the theorem holds for any
weight sequence (d,) satisfying (3.4), (3.5) and this becomes false if we replace the o in
(3.5) by O. The direct part is easy: letting g denote a bounded Lip 1 function on R, we
have to verify, just as in the proof above,

) 1
Nll_{noo Dn Z diér, =0 a.s. (4.7)
k<N

where
fk; = g(fk(Xnk—1+1’ s 7Xnk:)) - Eg(fk(Xnk—1+1’ s ’Xnk:))'

Clearly, (3.5) implies

. 1/2
Il?gyfdk =0 (En/(log log E,) )

and thus

E? < <%13xdk> D, =o (DnEn/ (loglog E,,)" 2)

whence
E,=o (Dn /(loglog En)1/2) . (4.8)
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Now (&,) is a uniformly bounded sequence of independent, zero mean random variables
and if Eﬁfl > ¢ > 0 for some constant ¢ then the variance of Zk<n drér lies between
positive constant multiples of E,, and thus (3.5) shows that Kolmog(;rov’s LIL applies to
the sequence (d,&,). Hence we get, using also (4.8), that

Y dier =0 <En(log log En)1/2) —o(D,)  as.
k<n

and thus (4.7) is valid. If inf F€2 = 0 then we get the same conclusion by replacing &,
by & = &, + (pn, Where (,, are independent r.v.’s, independent also of the &,’s, such that
P((,=1)=P((,=-1)=1/2.

Conversely, let (X,,) be an i.i.d. sequence with P(X; =1) = P(X; = —1) = 1/2 and

let ng =k, fu(z1,...,2n,) = fe(wr) = T, dp = €¥/1°8%_ Simple calculations show that
D, = Z dy, = Z ekl 1ok  en/lognjnep (4.9)
k<n k<n
E? = Z d? = Z e2k/logk %eQ"/ logn 1og 1 (4.10)
k<n k<n
and thus

d, = O (En/(log log En)1/2) .

Let G(z) denote the distribution function having jump 1/2 at z = —1 and = = 1. Clearly
P{fr(Xg) < z} = G(z) for all z and thus

. 1
lim Do Z dip P {fr(Xg) < 2z} = G(x) for any z € Cg

but we will show that

) 1
I&E)noo Dn ’;vde {fr(Xk) <z} = G(x) a.s. for any z € Cg

is not valid. Specifically, we prove that setting nx = I {fx(Xx) < 0} — P {fx(X%) < 0}, the

relation
1

lim — > demr =0 as. (4.11)
" k<n

n—oo )
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is not valid. To see this, let ¢,, be the smallest integer such that D; > e™. By the relation
D, 1/D, — 1 we have D; ~ e™ and it is also easily seen that i, ~ nlogn. Relations
(4.9), (4.10) imply

in+1 2n

E d? ~ const - S (4.12)
~ logn
1=%p+1

Now 7, are i.i.d. symmetric two-valued random variables and simple calculations show
that the finite sequence {d;n;; i, + 1 < i < 4,41} satisfies the conditions of Feller’s large
deviation theorem (see Feller, 1943, Theorem 1). It follows that if z,, = cov/logn (n =
1,2,...) with a sufficiently small absolute constant cy then

Tn41 Tntl 1/2 1
P dim; > x d? > const - — as nm — oo.
2 dimi > ( 2. ¢ = Jn
1=inp+1 1=tn+1

In view of (4.12) this implies that for a sufficiently small positive constant ¢; we have

7:‘n-}-l
P{ Z d;n; > cle"} > const - —

i=in+1

S -

and thus

tn41
P{ Y dim > ce” i.o.} =1. (4.13)

i=in+1
Now if (4.11) were true then by the definition of 4,, and D;  ~ e™ it would follow that
intl
Z d;n; = o(e™) a.s.

i=in+1

which contradicts to (4.13).
5. Applications

In this section we shall give several applications of our theorems.
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1. Partial sums. Let X, Xs,... be independent random variables with partial sums
Sn =Y p<n Xi and assume that (S, —an)/by L, @G for some distribution function G and
numerical sequences (ay,), (b,) satisfying b, 1T 00, by41/b, = O(1). Assume also that

Sn_an

1496
- ) <K (n=12,...) (5.1)

E <logJr log,

for some constants § > 0, K > 0. Then the assumptions of Theorem 2 are satisfied with
¢, = br and

l l
fl(.’lil,. .. ,.’Bl) = (Z:Ez — Cl,l) /bl, fk,l(l'k—}-l,-- . ,xl) = ( Z Ty — (al — ak)> /bl

=1 i=k+1

1+6

Indeed, letting g(x) = 1+ (log, log, x)'™°, the function =/g(x) is continuous for > 0 and

increasing for z > xy and thus there exists a number ay > 0 such that z/y < g(z)/g(y)
for 0 <z <y, y > ag. Hence letting A = b;/b;, and assuming A > ay we get, using (5.1),

E(fi(X1,..., X)) — fea(Xps1,--., X)) A1)
Sk—ak o 1 Sk—ak 1
“)‘E(X{\ b AA}) SmEg(

b
b —(1+9)
!
) < const - <log+ log, b_) .
k

1 Sk — Qg

gl
9(A) b

Increasing the constant if necessary, the last expression in (5.2) will exceed 1 for 1 <

bi/br, < ag, and thus the relation

Sk — ag
br

=F

") 6a

IN

—(1+9)
E (|fl(X17 s 7Xl) - fk),l(XkH-l; s 7Xl)‘ A 1) < const - <1Og+ 1Og—|— i)
holds for all I > k > 1, showing that Theorem 2 applies with c¢x = bg. If we assume also
bi/br > CU/K) (1> k) (5.3)

for some constants C' > 0, v > 0, then the last expression in (5.2) is bounded by const -
(log, log_ (1/k))~(*% and thus Theorem 2 applies with c; = k, in which case (2.3) gives
dy ~ const/k. Hence we obtain
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Theorem A. Let X1, Xo,... be independent random variables with partial sums S,, and
assume that (S, —an)/bn 2, G for some distribution function G and numerical sequences
(an), (bn) satisfying b, 1 00, bpi1/b, = O(1). Assume also that (5.1) holds for some
constants § > 0, K > 0. Then

1 _
lim — Z di I Sk — ax <zp=G(x) a.s. for any z € Cg (5.4)
N—oo DN RN bk

where dy, and Dy, are defined by

dy, = log(brs1/bk), Dn=>  di. (5.5)
k<n

If the norming factors b, satisfy also (5.3), then (5.4) holds with dy, = 1/k, Dy = log N.

In the case dj, = 1/k this was proved by Berkes and Dehling (1993); the general case
extends also a result of Ibragimov and Lifshits (1999) who proved the same conclusion

under the stronger moment condition
Sn — Qp P

E
br,

instead of (5.1).
Recently Lifshits (2000a) constructed a sequence (X,) of independent r.v.’s with
mean 0 and finite variances whose partial sums S,, satisfy S,,/\/n 2N (0,1) and

Sn
E<10g+10g+ \/—EDSK (n=1,2,...)

for some constant K > 0 but the a.s. central limit theorem
. 1 1 Sk
ngnoo Tog N ’Z]:V EI {ﬁ < x} = ®(x) a.s. for any z

is not valid. This shows that condition (5.1) of Theorem A is sharp even in the case a,, = 0,
b, = y/n. In view of the estimate (5.2), this implies that assumption (2.2) of Theorem 2
is also sharp, and thus the same holds for the analogous conditions in Theorems 3, 4, 5.
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2. Extremes. Let X1, Xo,... be ii.d. random variables and (ay), (b,) numerical sequences.
Then the assumptions of Theorem 1 are satisfied with ¢ = k and

filz1, .o @) =a (Ililgl}wz - bz) , T (@kg1,...521) = ay ( max T — bl) .

k+1<i<l
Indeed, in this case fi(X1,...,X;) = fe1(Xg+1,- .., X;) differs from zero only if

max X; > max X;
1<i<k k+1<i<lI

and we will see below that the probability of this event is < k/I. Therefore
FE (|fl(X1, ... ,Xl) — fk,l(Xk—i—h ... ,Xl)| A 1) < k/l

Thus we obtain the following result (see Cheng et al., 1998; Fahrner and Stadtmiiller,
1998):

Theorem B. Let X1, X»,... be Li.d. random variables such that setting M} = max;<j X;

we have
ag (Mk — bk) 2) G
for some numerical sequences (a,), (by) and a distribution function G. Then

i 1
i
NSoo log N

1
Z EI{ak(Mk —bg) <z} = G(x) a.s. for any = € Cg.
k<N

We note that, as observed in Cheng et al. (1998), Fahrner and Stadtmiiller (1998),
Theorem B becomes false if we replace logarithmic averages by ordinary (Cesaro) averages.

It remains to prove that if 1 < k <[ and X4,..., X; are i.i.d. random variables, then
P X; X;) < k/l. )
(1??5’% e kff%}fg i) <K/ (5.6)

Letting F' denote the (left continuous) distribution function of X, the distribution func-
tions of the two random variables in (5.6) are Hy(z) = F(z)* and Hs(z) = F(z)'~* and
thus the probability in (5.6) equals

/_oo Hy(z)dHy(z) = /_OO F(z)=*kF(z)*~'dF (z) < /01 kt'=ldt = k/I
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where in the second step we used the fact that

/ W(F(2))dF(z / ()t (5.7)

for any nondecreasing function 1 on [0, 1]. To verify (5.7), let F~1(t) = sup{z : F(z) < t}
and let U be a r.v. uniformly distributed on (0,1). Then F(F~'(¢)) <t for all t € (0,1)
and the r.v. Y = F~}(U) has distribution function F. Thus the left hand side of (5.7)
equals

BUF() = By @) < B00) = [ 00
as claimed.

Theorem B extends easily to independent, not identically distributed random vari-
ables. Note that the identical distribution of the X; was used only to obtain (5.6) and
the proof remains valid if (5.6) holds with the right hand side replaced by C(k/l) for a
constant C. This modified inequality holds, in turn, if for any / > 1 and any permutation
{i1,...,4} of {1,2,...,1} we have

P (le Z max (Xi2, ce aXil)) S C/l (58)

Condition (5.8) is satisfied, e.g., if the distributions of the X; are continuous and resemble
each other in the sense that there exists a continuous distribution function F' and positive
constants 1, 2 (necessarily v; < 1) such that for all 4 > 1

N(1—=F(t) < P(X; >t) <v(1—-F(t)) for all t € R.

Indeed, letting F; denote the distribution function of X; and using the postulated bounds
for P(X; > t) we get that the probability in (5.8) equals

o !
/_ (1 - Fy (2))d (H F, <x>)
oo ! oo l
< /_ (1-F(z))d (H F;, (w)) =72 /_ (H Fir(w)) dF (z)

r=2

<72 /_Oo (1 —7(1- F(l')))l_l dF (z) < ’YQ/O (1—y(1— u))l_l du < %l_l
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where we used (5.7) again.

Obviously, one cannot hope that (5.6) holds for independent X; with radically different
distributions. An instructive example is given by the case when the distribution function
of Xy is F(x)%~%-1 where F is a fixed distribution function and (c) is an increasing
sequence with ¢y = 0 and ¢; > 1. In this case the distribution functions Hq(x) and Hy(z)
of max; <<k X; and maxyi1<i<; X; are F(z)% and F(z)%~, respectively, and thus the
probability in (5.6) is

/_OO Hy(xz)dH,(z) = /_00 F(z)9 =%, F(z)*1dF (z) < cx/c

where we used (5.7) in the last step. Thus (5.6) can fail, but Theorem 1 still applies in
this case and we get the following theorem extending Theorem B:

Theorem C. Let X1, X3, ... be independent random variables such that the distribution
of Xy, is F'(z)° -1 where (c) is an increasing sequence satisfying co =0, ¢; > 1, ¢;, = 00
and cp41/cp, = O(1). Let M), = max;<y X; and assume that

ag (Mk - bk) 2) G

for some numerical sequences (ay), (bn) and a distribution function G. Then letting
di = log(ck+1/cx) and Dy, = ), ., di, we have

Nli_I)nOo Du Z dil {ax(My — bg) < x} = G(x) a.s. for any z € Cg.
k<N
3. Maxima of partial sums. Let X1, Xa,... be independent random variables with partial

sums Sy, = D ., Xi and let S} = maxg<y, Si. Assume that for some positive numerical
sequence (b,) we have

n

146
l7/’(10g+log+ ) <K (n=1,2,...) (5.9)

for some K > 0, > 0 and the analogous relation for S} is also valid. Then the assumptions

n

of Theorem 2 are satisfied with ¢; = by and

1
fil@y, .. o) = - max (21 + -+ + )
1 i<l

1 ( +1+ ) i
max €T . A
fr l(:Uk_H, .. ,xl) = { b k+1<i<i k+1 + x; io

0 if 40 <k
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where 1 < 79 < [ is the smallest integer where s; = 1 + ...+ x;, 1 < ¢ < [, reaches its
maximum. Indeed, letting s7 = max;<; s;, observe that the difference

A= fi(x1,...,21) — fei(Trs1,---,21)

equals s3/b; if iy < k, while for 49 > k the sum 1 + ...+ z;, K +1 < i <[ reaches its
maximum also at ¢ = igp and thus A = s;/b;. Therefore
S*
A 1) +E (‘—’“ A 1)
by

and thus estimate (5.2) applies with trivial changes. Hence we obtain
Theorem D. Let X, X9,... be independent r.v.’s with partial sums S, and let S, =

S
E(fi(X1,..., X)) = fea(Xis1,-.. , X)|AD) < E ( b—f

maxy<n Sk Let (by) be a positive numerical sequence satisfying b, 1 00, bp41/by = O(1)
and assume that
Sk /by 2 G
for some distribution function G' and also that (5.9) and its analogue for S} hold. Then
. 1 Sk
lim — Z dil S = <z =G(x) a.s. for any z € Cg
by

N—>oo DN N

where dy, and Dy are defined by (5.5). If the norming factors b,, satisfy also (5.3), then
the last convergence relation holds with dy, = 1/k, Dy = log N.

An analogous result holds for the absolute maxima S}* = maxy<,, |Sk|; the proof is

similar.

4. Empirical distribution functions. Let Xq, Xa,... be i.i.d. random variables with con-
tinuous distribution function F' and let

1
Fo(w) = — » I(Xi <) (5.10)
k<n
be the empirical distribution function of the sample (X7,...,X,). Then the assumptions

of Theorem 1 are satisfied with ¢, = k and

filxy, ..., x) = \i[lsgp zZSl(I(azz < z)— F(x))|,
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Jei(@k1, -, 1) = isup Z (I(z; < z)— F(x))].

Vie k+1<i<i
Indeed, letting A = 1/I/k and
T =sup Y (I(X; < @) - P())
i<k
we get
E|fi(X1,. -, X)) = freg(Xpt1, - -, X1)| < E|Ti/ V1| < const - (k/1)'/?

since E|Ty/Vk| is bounded (see Dvoretzky et al., 1956, Lemma 2). Also, the classical
theorem of Kolmogorov-Smirnov implies that

fk:(Xla--- ,Xk) - G

where -
G(l‘) — Z ( 1)3 —24222
j=—00
Thus Theorem 1 implies
Theorem E. Let X1, X5,... be i.i.d. random variables with continuous distribution func-

tion F, let F,, be the empirical distibution function defined by (5.10) and let

D, = sgp |Fy(x) — F(z)|

be the Kolmogorov statistics. Then

1 1 - 922
1 — = —1) e~ 2172
Nh_l:féo E kI{\/EDk < a:} E (—1)%e a.s. for any z.

log N k<N P

A similar argument yields the one-sided result

: 1 1 —2g?
1\}1_1?100 logN’KZNEI{\/ED’j <a:} =1l-e a.s. for any x
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where D = sup,(F,(z) — F(z)).

5. U-statistics. Let X1, X5,... be an i.i.d. sequence, m > 1 an integer and h(zy,...,Z.y,)
a symmetric measurable function satisfying

Eh*(Xq,...Xp) < .

Let

Un:% Z h(X“, 7Xim)

m/ 1<i; <. <im<n

be the corresponding U-statistic. Set § = Fh(X1,...,X,,), and put for 1 <j<m
hj(x1,...,25) = Eh(zy,... 25, Xj41,--., Xom), ¢j = Varh;(Xy,...,X;).
It is known (see e.g. Serfling, 1980, p. 182) that
0=C( < <(n=Varh(Xq,...,Xn) < oco.

Let ¢ > 1 denote the smallest integer such that (. > 0; we call ¢ the critical parameter
of the statistic U,. It is known that n°/2(U,, — #) has a nondegenerate limit distribution.
(See e.g. Koroljuk and Borovskich, 1994; we refer also to Denker, 1985; Giné and Zinn,
1994 and the references there for various further related results.) Put h(Xy,..., X)) =
h(X1,...,Xm) — 0 and set, for any 1 < k <,

lc/2 N
fl(.%'l,...,xl):T Z h(.’l,‘il,...,l'im),
(m) 1<i1<... <1 <I
Jc/2 -
fk:,l(xk—l—la--- ,xl) =7 Z h(l‘il,... ,inm).
(m) k+1<i1<...<4n <
We claim that
E(fi(X1,.. o, X0) = foa(Xna1,---, X)) < C(k/D) (k<1 (5.11)

for some positive constant C'; this will show that Theorem 1 applies in our case. Relation
(5.11) can be equivalently written as

E(1°?Uy )% < O (k1) (5.12)
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where

1 * ~
Uk = @ Zl§i1<...<im§l h( Xy, X))
and the * means that at least one of 41, ... , 4., lies in the interval [1, k]. To prove (5.12) we
note that if {ay,...,ay,} and {b1,...,b,} are two sets of distinct positive integers with j
common elements, then
Eh(Xay, .- Xa, )h( Xy, -+ Xs,,) = (- (5.13)

(see Serfling, 1980, p. 183). Now expanding U,il and using (5.13) and {; =0 for j < ¢, we
get nonzero terms belonging only to such sets {a1,...,a,} and {b1,...,b,} which have
at least ¢ common elements. Thus among aq, ... ,am,b1,... , b, there are at most 2m — ¢
different ones, moreover, at least one of these elements must be in the interval [1,k].
Therefore, the number of choices for the union set {ai,...,am,b1,... by} is at most
k1?™=<=1_ Once this union set is fixed, each of the sets {a1,... ,a,,} and {b1,... by} can
be chosen at most in C,, ways, where C,, = (2::) Thus, the number of nonzero terms
in E(Ug,;)? is at most C2 kl?™~°~1. By the Cauchy-Schwarz inequality, the left hand side
of (5.13) is at most 9 = Varh(Xq,...,X,,) and since we have (751) ~ ™, (5.12) follows.

Hence we proved the following theorem:

Theorem F. Let X7, X5,... be i.i.d. random variables, m > 1 a fixed integer and

U'n:L Z h(Xz17 7Xim)

")
m/) 1<iy1 <. <im<n

where h(x1,...,Z;,) a symmetric measurable function satisfying
Eh*(Xy,... Xm) < 0.

Let § = Eh(X4,...,X,,) and let ¢ be the critical parameter of the statistic U,,. Then

1
lim
N—oo log

1
N Z EI{kcm(Uk—H) <x} = F(z) a.s. for any z € Cp
k<N

where F is the limit distribution of n®/?(U, — 6).
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6. Local times. Let X1, Xo,... be i.i.d. integer valued random variables with EX; = 0.
Put ¢ (v) = E(e™*!) and assume that ¢(27t) = 1 if and only if ¢ is an integer and

satisfies

1T ) e

21 J_p 1 — Xp(v) (1—-X)B’
where 0 < 8 < 1/2. Putting S,, = X1 + ... + X,,, it follows that the random walk

{Sn, n > 1} is aperiodic and X; is in the domain of normal attraction of a stable law of
order « = 1/(1 — ). (Note that 1 < a < 2.) Define the local time £(z,n) by

as A—1

&(z,n) = ZI{Si =z}, z€Z. (5.14)

It was shown by Darling and Kac (1957) that

n—00 anP J

Jim P{§ (0,n) x} — Fy(z) = %ﬁ ; (_1.!);_— sin(wf))L(1+ fi)zf.  (5.15)

Kesten and Spitzer (1979) showed that for some constant ¢ we have
EE(0,n) <cnf,  E(£(z,n) —€(0,n))" < c[2/0=Pnf.

Thus choosing

l
1
fi(zy, ... axl):(ll—ﬁ;I{$1+---+$i:0}

!
1
fk,l($k+1,---,$1)=m zk: Hzgiqr + ...+ 2, =0}
i=k+1

we have
E|fil(X1, ..., X1) — feg(Xks1, ..., X7)|

alP alB
_ g ‘5(0, k) &(Sk,1) — &(Sk, k) — (£(0,1) — £(0, k))‘
alP alB

< % ((k/1)? + 7P B1S/P120=P1012) < " (/1) + (k/1)2)
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Thus using Theorem 1 we get the following

Theorem G. Let the random walk {S,,, n > 1} satisfy the above conditions and let £(z,n)
be its local time defined by (5.14). Then

1 1. [£(00,k) _
A}gnoo Tog N ’KZN %I{ B < x} = Fp(z) a.s. for any z

where Fj is the distribution function defined by (5.15).
7. Return times. Let 0 = 79 < 71 < ... be the successive times of return to the origin of a

two dimensional simple symmetric random walk and put X,, =7, — 7,—1 (n=1,2,...).
Clearly, (X,,) is an i.i.d. sequence; it is known (see Dvoretzky and Erdés, 1951) that

P(Xy>1t)~ @ as t — oo. (5.16)

Setting M}, = max; <y, X;, relation (5.16) implies
1 D
z log My — H

where

Hiz) e/ if >0 (5.17)
x) = .
0 if 2<0

Now Theorem 1 applies to the sequence (X,,) with ¢, = k and

1
xi1,...,71) = = logmax z; x ....x7) = —log max z;.
fl( 1 ) l) 1 g i< iy fk,l( k+1, ; l) l gk—l—lSiSl i

(This can be verified exactly as in the case of Theorem B.) Hence we get

1 1 1
A}i_r)noo og N ’KZN EI {E log M, < x} = H(z) a.s. for any z.

But My < 1, < kM, and thus (log 7, — log My)/k — 0 a.s. Thus we proved
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Theorem H. Let 0 = 79 < 7, < ... be the successive times of return to the origin of a

two dimensional simple symmetric random walk. Then we have

1 1 1
A}i_l)noo Tog N I;V EI {E log 1, < x} = H(x) a.s. for any z

where H is the distribution function defined by (5.17).

Actually, all we used about the i.i.d. sequence (X,,) was its positivity and (5.16), hence
the same argument shows that if (X,,) is a positive i.i.d. sequence satisfying (5.16) then
setting Sk, = >, 4 X; we have

1 1 1
Nli_r)nOo log N k;v EI {E log S, < a:} = H(z) a.s. for any z.

8. Darling-Erdds type limit theorems. Let (X,) be a sequence of independent random
variables with mean 0, variance 1 and uniformly bounded third absolute moments. Put
Sk = X1+ -+ + Xg. By a well known theorem of Darling and Erdds (1956) we have

an (maxﬂ - bn) 2.q
k<n \/k
where

logloglogn — log4m
2(21oglogn)1/2

an = (2loglogn)'/2, b, = (2loglogn)*/? + (n>3) (5.18)

and
G(z) = exp(—e™%). (5.19)

(Actually, the assumption on the third moments can be weakened, see Einmahl, 1989;
Oodaira, 1976; Shorack, 1979.) An analogous result holds for the Wiener process W, in
fact we have

W(t
an ( sup W) _ bn> ENVe: (5.20)
1<t<n
where (a,,), (b,) and G are the same as above. We now show that
, 1 W (t) ) }
lim — dil sup —~=- — < =G a.s. for a
e D Z & {ak (13&21; i k T (z) I any T
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for a suitable (di), where Dy =37 n di. To this end, let
cn = exp(y/loglogn), A, =exp (logn/ exp(y/loglog n)) (n>3),

& =a (121; WT(;) - z) (1>3),

and put for [ > k > 3

a; | sup w_bl if k<A
Ek = A2<t<l Vi

0 it k> A
Clearly &, is measurable with respect to o{X (') — X () : k <t < t' <l}. We claim that
E(|& — &l A1) <A(cp/a)? (3<k <L, 1>1) (5.21)

where [y is an absolute constant. In the case k > A; relation (5.21) is valid since the left
hand side is at most 1, while the right hand side exceeds 1 since

Cr > exp (\/loglogAl> = exp ((10g10gl - \/loglogl)l/z) > exp (Vloglogl - 1) > /4.

To prove (5.21) for k < A; we first note that the stationarity and Markov property for the
Ornstein-Uhlenbeck process imply easily that

W (t) W (t) } logT ,
P<{ sup ——= = su = forany T >T > 1 5.22
{1§t£T Vit 1§t§pT' Vit log 1" Y - ( )
and thus
W (t W (t log A2 2
P< sup W) # sup W) = 084 _ 2 (5.23)
1<e<t Vi azci< Vi logl ¢

Now setting

we have by (5.23)
P&G#&)=2/a
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and thus
E (|£l — é.l*| A 1) < 2/6[ < QCk/Cl < 2(Ck/Cl)1/2. (524)

Hence to prove (5.21) it suffices to show that

E (& — &ral A1) < (er/e)'/?. (5.25)
Now by k < A; we have
] W (k)|
|§l _gk,l < Al ap

and thus
E&f — &k,

2o kool (\/m)<1<ck
_A?I_Al_ P & T g

which implies (5.25) by the Cauchy-Schwarz inequality. Since the number of pairs (k,[)
with 3 < k <1 <l is finite, (5.21) implies that

E(‘fl — gkﬂ A 1) < C(ck/cl)l/2 < C'(log+ log+(cl/ck))_2 (3 <k< l)

for some constants C' > 0, C’ > 0. Hence using Theorem 5 we get that

1 & W(t)
Iim — dil < a sup ——— — b ) <z =G(z a.s. for any z 5.26
N—oco Dy ’;’ k { * (1§t15)k \/i k) } ( ) ’ ( )

where

1
dy, ~ , Dy ~ y/loglog N 5.27
T ok log k+/loglog k N 0808 ( )

by di = log(ck+1/ck) and simple calculations. (Note that &, &g, ¢ are defined only for
I > k > 3, but this does not cause any difficulty, as we observed in Section 4.) By the
theorem of Zygmund mentioned after Theorem 1 the summation procedure belonging to
the weights in (5.27) is equivalent to the summation procedure belonging to dj = 1/klogk,
D3y ~ loglog N. Hence we proved the following

Theorem J. Let W be a Wiener process. Then

N
_ 1 1 W(t)
1 E I —_— = =G 8. fi 5.28
N 3o loglog N — klogk {ak (éltlgk Vi k) < a:} (z) as. for any = (5.28)
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where (ay,), (bn) and G(x) are defined by (5.18) and (5.19), respectively.

Using Theorem 6 instead of Theorem 5, the same procedure leads to

T
! / ! I {at ( sup Wiu) _ bt) < a:} dt = G(z) a.s. for any z.
3

I
7500 loglog T tlogt 1<u<t VU

Using an a.s. invariance principle, it is easy to extend Theorem J for partial sums.
Let (X,) be a sequence of independent random variables with mean 0, variance 1 and
uniformly bounded (2 + d)-th moments for some § > 0; put Sy = X7 + - -+ Xj. Then one
can define the sequence (X,,), together with a Wiener process W, on a suitable probability
space such that

S, — W(n) = O(n'/?m) a.s. (5.29)

for some constant 1 > 0. (See e.g. Strassen, 1967.) The last relation easily implies

5i sup W) (t)

ak max - — —+0 a.s. 5.30
((logk)?’sisk\ﬁ (log k)3<t<k Vit ) ( )

where (ay) is defined by (5.18). (Cf. also Oodaira, 1976; Shorack, 1979.) Note that ¢ and
t in (5.30) are restricted to the interval [(log k)3, k], but since the LIL implies

WT(?‘ = O(logloglog k)/?) a.s.,

sup
1<t< (log k)?
it follows that
ag sup W) _ b | = —o0 a.s. (5.31)
1<t<(logk)? V1t

and thus (5.28) remains valid if we extend the sup only for (log k)® < ¢ < k. Since changing
the random variable £ by o(1) in (2.12) does not affect the validity of (2.12) (see e.g. Lacey
and Philipp, 1990), (5.30) implies that (5.28) holds if sup; <.« (W (t)/V/t) is replaced by
MaX(iog k)2 <i<k (Si/ V). Finally, the last maximum can be r_eplaced by max;<(Si/V1),
as it follows from the the analogue of (5.31) for the (X,,). Thus we proved the following
result:
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Theorem K. Let (X,) be a sequence of independent random variables with mean 0,
variance 1 and uniformly bounded (2 + §)-th moments for some 6 > 0. Put Sy =Y., X;.
Then

N
. 1 1 S; B
1\}1_1)20 oglog N I; klogkI {ak (I{lsagc Vi bk) < a:} = G(x) a.s for any z
where (an), (bn) and G(z) are defined by (5.18) and (5.19), respectively.

In the case when the random variables X,, are i.i.d., the moment conditions in Theorem
K can be weakened: in this case the theorem holds under assuming only

EX; =0, EX{ =1, E (X7 log, log, | X1]) < oc. (5.32)

The proof is similar to the above, just in this case instead of (5.29) we use the a.s. invariance
principle
Sn—W(n)=o (\/ﬁ(log log n)_l/z) a.s.

valid under (5.32) (see Einmahl, 1987). Observing also that the a.s. invariance principle
(5.29) is actually valid for a large class of weakly dependent sequences (X,) (see Philipp
and Stout, 1975), it follows that Theorem K also holds in many dependent situations.
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