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Abstract

We study the path behaviour of the anisotropic random walk on the two-dimensional lattice Z2.
Strong approximation of its components with independent Wiener processes are proved. We also
give some asymptotic results for the local time in the periodic case.
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1 Introduction and main results

We consider random walks on the square lattice Z? of the plane with possibly unequal symmetric
horizontal and vertical step probabilities, so that these probabilities can only depend on the value
of the vertical coordinate. In particular, if such a random walk is situated at a site on the horizontal
line y = j € Z, then at the next step it moves with probability p; to either vertical neighbour,
and with probability 1/2 — p; to either horizontal neighbour. The initial motivation for studying
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such two-dimensional random walks on anisotropic lattice has originated from transport problems
of statistical physics.
More formally, consider the random walk {C(N) = (C1(N),C2(N)); N = 0,1,2,...} on Z2
with the transition probabilities
1

P(C(N +1) = (k+1,7)|C(N) = (k,5)) = P(C(N +1) = (k= L,j)IC(N) = (k) = 5 — pj,

P(C(N +1) = (k,j + D|C(N) = (k,j)) = P(C(N + 1) = (k,j = D|C(N) = (k,])) = pj;

for (k,j) € Z*, N =0,1,2,... We assume throughout the paper that 0 < p; < 1/2 and minjez p; <
1/2. Unless otherwise stated we assume also that C(0) = (0,0).

The case p; = 1/4, j = 0,+1,42,... corresponds to simple symmetric random walk on the
plane. For this case we refer to Erdés and Taylor [14], Dvoretzky and Erdds [13], Révész [25]. The
case p; = 1/2 for some j means that the horizontal line y = j is missing. If all p; = 1/2, then the
random walk takes place on the y axis, so it is only a one-dimensional random walk, and this case
is excluded from the present investigations. The case however when p; = 1/2, j = £1,%2,... but
po = 1/4 is an interesting one which is the so-called random walk on the two-dimensional comb. For
this model we may refer to Weiss and Havlin [33|, Bertacchi and Zucca [2], Bertacchi [1], Csaki et al.
[8]. One of the main properties of this comb model is that the scaling of the first coordinate C;(N)
is of order N4, so it is a so-called sub-diffusion, and can be approximated by an iterated (time
changed) Wiener process, while the second coordinate is of order N 1/2 and can be approximated
by a Wiener process. Horvath [20] proved a weak convergence of Cy(-) when p; are small so that
scaling is smaller than N'/2 and its limiting process is a certain time changed Wiener process.

In the present paper we investigate the case when both coordinates are of order N'/2 and can
be simultaneously approximated by independent Wiener processes. First we outline some history of
this problem. Note that in the literature usually horizontal and vertical lines are changed, i.e., our
horizontal lines correspond to their vertical lines and vice versa. As noted already, the treatment
of anisotropic random walks is motivated by transport problems in statistical physics. For early
investigations of the model we refer to Silver et al. [29], Seshadri et al. [27], Shuler [28]|, Westcott
[34], where certain properties of this random walk were studied under various conditions. Heyde
[17] proved an almost sure approximation for Ca(-) under the condition (1.1) below. Heyde et
al. [19] treated the case when conditions similar to (1.1) are assumed but v can be different for
the two parts of (1.1) and obtained almost sure convergence to the so-called oscillating Brownian
motion. In Heyde [18] limiting distributions were given for C(:) under the condition (1.1) but
without remainder. Den Hollander [12]| proved strong approximations for C(-) in the case when p;
are random variables with values 1/4 and 1/2. Roerdink and Shuler [26] proved some asymptotic
properties, including local limit theorems, under certain conditions. For more detailed history see
[12].

In the sequel we restrict ourselves to the following condition of Heyde [17]:



n n
n*Iij_l =2y+o(n™"), nilzp:} =2y+o(n™") (1.1)
j=1 j=1
as n — oo for some constants v, 1 <y < oo and 1/2 <7 < 0.
Under this condition we will prove a joint strong approximation result for C(-), Ca(+), the coor-
dinates of the walk C(:) by approximating them by two independent Wiener processes (Brownian
motions).

Theorem 1.1 Under the condition (1.1) with 1/2 < n <1, on an appropriate probability space for
the random walk

{C(N) = (C1(N),C2(N)); N =0,1,2,...}
one can construct two independent standard Wiener processes {W1(t); t > 0}, {Wa(t); t > 0} so

that, as N — oo, we have with any € > 0

-1 1
‘C’l(N) - W (7— N> ' + ‘C’Q(N) — W (- N) ‘ = O(NPO/8=n/4+ey 4. (1.2)
gl gl
A particular case, the so called periodic case, deserves a special attention here, namely when
pj = pj+r1 for each j € Z, where L > 1 is a positive integer. In this case, denoting the random
walk by CP(N) = (Cf(N),CF(N)), we have a better approximation and, moreover, we give some
results for the local time in Section 3.

Theorem 1.2 On an appropriate probability space for the random walk
{CP(N) = (CT(N),C5 (N)); N =0,1,2,...}

one can construct two independent standard Wiener processes {W1(t); t > 0}, {Wa(t); t > 0} so
that, as N — oo, we have with any € > 0

-1 1
‘Cf(N) - W <VT N) ‘ + [P (N) =Wy <; N)' = O(NY*8) as., (1.3)
where L
_ Zj;O p;
2L
We mention a particular periodic case, the so-called uniform case, when p; = 1/4 if |j| =

O(modL) and p; = 1/2 otherwise. Then Theorem 1.2 is true with v = (L +1)/L.
The following corollaries are consequences of Lemma D and Theorem 1.1. Define the continuous
time process C(u), u > 0 by linear interpolation of C(N). The space C([0,1],R?) is the set of



continuous functions defined on [0, 1] with values in R2. Recall the definition of the two dimensional
Strassen class of absolutely continuous functions:

1
0

S® ={(f(x),9(x)), 0 <z < 1: f(0) =g(0) =0, / (f*(@) + ¢ (2)) da < 1. (1.4)

Corollary 1.1 Under the conditions of Theorem 1.1 for the random walk C(-) we have

e (i) the sequence of random vector-valued functions

Ci(xN Cy(xN
( / 11 1(zN) VA 5(zN) 1/2,0§x§1>
2 (2N loglog N) (2N loglog N) N>3

is almost surely relatively compact in the space C([0,1],R?) and its limit points is the set of
functions S@.

e (ii) In particular, the vector sequence

C1(N) C2(N)
(2N loglog N)1/2" (2N loglog N)1/2 / -,

18 almost surely relatively compact in the rectangle

S E A

Vi VI VA
and the set of its limit points is the ellipse
{(x,y) : %xz +y < 1}. (1.5)
e (iii) Moreover,
N Vy—1 N 1
lim sup C1(N) - V7 and lim supL =— a.s.
Neooo V2N loglog N Nal Nooo V2Nloglog N /v
o (iv)
log log N\ /2 V=1
liminf | —28-" max _|Ci(k)| = VI ° g
N oo N 1<k<N V8
o loglog N 1/2 o
l}wglof <T> 12}%XN|CQ(I<:)| =7 a.s.



Let us consider D([0,00), R?), the space of R? valued cadlag functions on [0,00). For f(t) =
(f1(t), f2(t)) and g(t) = (g1(t), g2(t)) in this function space, define for all fixed 7' > 0

A=Ar(f,9): (f1(8) = 91(2)), (f2(t) — g2(1)) [, (1.6)

= sup ||
0<t<T

where || - || is a norm in R?, usually the || - ||, norm with p = 1 or 2 in our case. Define also the
measurable space (D([0, 00), R?), D), where D is the o-field generated by the collection of all A-open
balls for all T > 0 of the function space D([0,00), R?).

As a consequence of Theorem 1.1, we conclude a weak convergence result in terms of the following
functional convergence in distribution statement.

Corollary 1.2 Under the conditions of Theorem 1.1, as N — 0o, we have

h <N‘1/ZC([Nt])> —h (Clsz[fvpt]), CQJS}%”) K <W1 <VT_1 ) . W <%t>>

for all b : D([0,00),R?) — R? that are (D(]0, ), R?), D) measurable and A-continuous for all T >
0, or A-continuous for all T > 0, except at points forming a set of measure zero on (D]0, 00), R?), D)
with respect to the measure generated by {W1(t), Wa(t); 0 < t < oo}, where Wi and Wy are two

. . d . . . .
independent standard Wiener processes, and — denotes convergence in distribution.

2 Preliminaries

First we are to redefine our random walk {C(N); N =0,1,2,...}. It will be seen that the process
described right below is equivalent to that given in the Introduction (cf. (2.2) below).

To begin with, on a suitable probability space consider two independent simple symmetric (one-
dimensional) random walks Si(-), and S2(-). We may assume that on the same probability space
we have a double array of independent geometric random variables {GZ(] ), i >1,j € Z} which are

independent from S;(-), and Sa(-), where Gz(j ) has the following geometric distribution
P(GY) = k) =2p;(1 - 2p;)*, k=0,1,2,... (2.1)

We now construct our walk C(NN) as follows. We will take all the horizontal steps consecutively
from Si(-) and all the vertical steps consecutively from Sy(-). First we will take some horizontal
steps from Si(-), then exactly one vertical step from S3(-), then again some horizontal steps from
S1(-) and exactly one vertical step from Ss(-), and so on. Now we explain how to get the number
of horizontal steps on each occasion. Consider our walk starting from the origin proceeding first
horizontally Ggo) steps (note that Ggo) = 0 is possible with probability 2pg), after which it takes

exactly one vertical step, arriving either to the level 1 or —1, where it takes Ggl) or Ggfl) horizontal
steps (which might be no steps at all) before proceeding with another vertical step. If this step



carries the walk to the level j, then it will take ng ) horizontal steps, if this is the first visit to
)

level j, otherwise it takes ng horizontal steps. In general, if we finished the k -th vertical step and
arrived to the level j for the i-th time, then it will take GZ(] ) horizontal steps.
Let now Hpy, Vn be the number of horizontal and vertical steps, respectively from the first NV

steps of the just described process. Consequently, Hy + Vy = N, and
{C(N); N=0,1,2,...} ={(C1(N),C3(N)); N=0,1,2,...}

L ((S1(Hy), S2(Vy)); N =0,1,2,...}, (2.2)

where £ stands for equality in distribution.

Now we list some well-known results, and some new ones which will be used in the rest of the
paper. In case of the known ones we won’t give the most general form of the results, just as much
as we intend to use, while the exact reference will also be provided for the interested reader. Denote
the simple symmetric random walk on the line by S(n) and let M (n) = maxo<i<p, [S(k)|. Then we
have the LIL and Chung [6]:

Lemma A We have almost surely

. M(n) 1 i inf loglogn 1/2 M(n) s
imsup ———=—— =1, iminf [ ———— n)=—.
nﬂoop v2nloglogn n—00 n NG

Denote by &(x,n) the local time of the simple symmetric random walk S(n) defined by
n
E(z,n) =) I{S(i)=2}, =w€Z n=01.2,...,
i=0

where I{-} is the indicator function. Let the maximal local time be

§(n) = sup§(z,n).

TEZL

For the next Lemma see Kesten [21].
Lemma B For the mazimal local time we have

: §(n)
1
i (2n log log n)1/2

=1 a.s.

In Heyde [17] the following result was given about the uniformity of the local time (see also [9],
Lemma 5).
Lemma C For the simple symmetric walk we have for any € > 0

lim Super |£($ + 1,’1’L) B 5($,TL)|

=0 a.s.
n—00 nl/4+e

6



The next lemma is the two-dimensional version, and that of its consequence, of the celebrated
functional iterated logarithm law for multidimensional Wiener process due to Strassen [31]:
Lemma D Let Wi(t) and Wa(t) be independent standard Wiener processes starting from zero. Then
with probability 1, the limit points for the random vector valued functions

( Wi (2T) Wo(xT)
(

0<zx<1
2T loglog T')/2” (2T loglog T)/2’ =T= )

T>3
as T — oo is S@ of (1.4). In particular, the limit points of the random vectors

Wi(T) Wa(T)
(2T loglog T)1/2" (2T loglog T)'/2 ) 1~ 4

as T — oo is the unit circle
{(z,y) s 2® +¢? <1},
We will need the celebrated KMT strong invariance principle (cf. Komlos et al. [22]).

Lemma E On an appropriate probability space one can construct {S(n), n = 1,2,...}, a simple
symmetric random walk on the line and a standard Wiener process {W(t), t > 0} such that as
n — oo,

S(n) — W(n) = O(logn) a.s.
Lemma 2.1 Let {S(n); n=0,1,...} be a simple symmetric random walk on the line. Put
7(1) = min{n > 0: S(n) =i},

7 = min (7(0), 7(=L), 7(L)) -

Then
E(r) =L, (2.3)

and 11, has finite variance, (the value of which is unimportant in the present context).
Proof. For 0 < a <b < ¢ define
p(a,b,c) :=P(min{n: n>m, S(n) =a} <min{n: n>m, S(n)=c}|S(m)=">). (2.4)
It is well-known that (cf. e.g. [25], p. 23)
c—b

c—a

p(a,b,c) =

Consider
§(k7TL)’ k:i17i277i(L_1)7



i.e. the local time of k£ up to time 7y.
It is obvious that for L =1 or L = 2, we have 7, = L. So assume that L > 3.

P(¢(17) = 0) =

<%p(1, 2, L))j_1 (% + %(1 - (1, 2’L))>

(i) (aan) oo

For k =2,3,...,L — 1 the same type of argument results in

P(g(l, TL) = .]) =

2
1
2
1
2

P(E(hm) =0) =1 .

j—1
Pk, ) =) = 501~ 0.1.0) (50 = pOLR) + otk 1.0))

X

(%p(o, E—1,k) + %(1 —plk k+1, L))>

_ (k=1 L-k-1 - 1, o
2k \ 26 2(L—k) ok " 2L—k)) T

From the above distributions, which are geometric, we get by simple calculation

L—k
E(g(kaTL)) = Ta
Obviously, the same is true for k = —1,—-2,...,—(L — 1), with k replaced by —k.
Consequently
L-1 L1, o
E(r;) =142 kZlE(g(k,TL)) =1+2 2 ——=L

It is clear from the above calculations that 77 has finite variance. O

Let
Ep={jL;j=0,+1,+2,...},

Y.L =70, YL =min{j >0:S5(vi-1,L +j) € EL},

N
TN, = E Yi,Ls
i=1

Ny, =max{k : T} < n}.



Since Ty, is a sum of i.i.d. random variables, IV, is a renewal process. It follows from Gut et
al. [16]

Lemma F As N — oo, we have almost surely
Tn.r = NL + O(N/?+¢)
and as n — oo we have almost surely

N, = % + O(n}/2+e),

For sums of geometric random variables we need the following exponential estimation.
Lemma 2.2 Let {GZQ), i=1,2,...,n5,j =0,%£1,£2,...,£K} be independent random variables

with distribution

P(GY =k)=a;(1-q;)%, k=01,2,...,
where 0 < aj < 1. Put

K nj K

Bk = Z ZGZ@, 0? =VarBg = Z 771]-(1@;&]-).

j=—K i=1 =K J

K G) 1« A i\ K n
J Y J
P Z Z<GZ — (Xj ) >)\ SQeXp —T‘_Q—FZW Z J . (25)

j=—K i=1 J
Proof. Since Gz(j), t=1,2,...,n;, 7 =0,£1,£2,...,£K are independent, and GEj) has moment
generating function

E ( GG(J)> CY]
1—¢e(1—aj)

for e?(1 — a;) < 1, the cumulant generating function of Bi can be obtained from the series expan-
sions of logarithmic and exponential functions as follows.

K K o o)
logE <66BK> = Z nj(log aj—log(1—e’(1—a;))) = Z n; <log0zj Z Z (1—«ay) kj_l) .
j=—K j=—K =0 k=1

But

o
Z 1-— a] —log o,
k=1



[e o]

S-apt =,

k=1 a4
(1 - o) = - ;2%,
k=1 J
and for £ > 3
i(l — ay) MK = S A= 1;7”)(1 - aj)m7
k=1 af

where A(-,-) are Eulerian numbers defined by

m—1
1
Z <n+ )(m—j)", n=12..., m=12,...,n
Jj=
(see e.g. Comtet [7], pp. 242-243). Since
-1 -1
AU —-1,m) (1 —ay)™ < D AL —1,m) = (£—1),
m=1 m=1
and .
n;(1 — ;)
E — J J
(Bk) Z P—
=K
we have
0(Bx —E(Bg)) 207y = nj
E K—EBK)) ) < G i =7
<e > exp + ; jZ_K a§

By Markov inequality,
020 > LSy
P(Bx —E(Bg) > \) <e ME <69(BK_E(BK)> <eMexp{ — + 296 Z j
J
The estimation of P(E(Bg) — Bx > ) is similar. By choosing # = \/o?, we have the Lemma. O

3 Local times and range

Before proving our main results, Theorems 1.1 and 1.2, in Section 4, in this section we deal with
the periodic case on its own. In this case, for a given positive integer L > 1, p;; 1 = p; for all j € Z,

and for i = 0,1,..., we have
121
— — =2 3.1
=7 E Pl (3.1)
Jj=0




with 1 <y < 00, as in (1.1).

In this special context we conclude results of interest on their own for the local time and range
of the walk and relate them to our main approximation theorems, as well as to similar ones for
other walks in the literature. The topics discussed in this section are not needed in Section 4 for
the proofs of Theorems 1.1 and 1.2 themselves.

First we note that in the case of L > 2 there is a relation between the periodic case and a
particular case of the so-called random walk with internal states (or random walk with internal
degrees of freedom). This was introduced by Sinai [30], and further investigated by Kramli and
Szész [23], Telcs [32], Nandori [24] and others. Let F be a finite set. On Z? x I the Markov chain
{U(N) = (X(N), Z(N))} is a random walk with internal states, if for xn,xy41 € Z%, €y, Iny1 € F

P(U(N +1) = (xn41,¢n+1) | UN) = (x5, 4N)) = P(xn41 = XN, IN, IN41)-
In the particular case d = 2, F' = {0,1,..., L — 1}, for (k,j) € Z?
ford=1,...,L -2,
P(UWN+1)=(k,j+1,0) | UWN) = (k,5, L — 1))
= P(U(N + 1) - (kaj7L - 2) ‘ U(N) - (k7]7L - 1)) =PL-1,
for £=0,1,...,L— 1.
It is clear that for CP(N) = (CF(N),CF(N)) and U(N) = (X1(N), Xo(N), Z(N)), we have a

one-to-one correspondence, namely
Cf(N) = Xi(N),  CJ(N) = LXz(N) + Z(N),

with 0 < Z(N) < L — 1. Hence Z(N) = ¢ if and only if CI'(N) = £(modL) and X3(N) =
(CE(N) = Z(N))/L.

Since Z(N) is bounded, it follows that Theorem 1.2 is true with C¥'(N) replaced by Xi(N),
and C{'(N) replaced by LX5(N).

To study the local times of our random walk, we need a local limit theorem for CF(.).

Lemma 3.1 In the periodic case we have

1

P(CP(2N) = (0,0)) ~ rNpovy =1

with L > 1.

11



Proof. For the proof we could have used the local limit theorems for random walks with internal
states, given as in Kramli and Szasz [23]. Nandori [24] also gives a remainder term in this local
limit theorem. To determine the exact constant, we take another route, namely apply (2.3.9) of
Roerdink and Shuler [26] with d = 2. Using their notations, what we have to determine is the
invariant probability measure (7, 71,...,7r—1) and the determinants of their matrices 2D and A.
Now 2D, what they call diffusion matrix, whose elements are the constants in the variances and
covariances of the components, can be seen in Theorems 1.1 and 1.2, i.e., we have

v—1
2D:< v ?)
0 =
™

The matrix A has elements (cf. (2.2.25) in [26]) Ax; = age; (scalar product), where a; = (1,0),
az = (07L)7 €1 = (170)7 €2 = (071)7 hence

1 0
=0 1)
giving det(2D) = (y — 1)/4?, detA = L.
Now (2.3.9) of [26] with d = 2 reads as follows.

P(CP(N) = (0,a)|CF(0) = (0,3)) ~ ma(dets) "2 (2aN) 1, (3.3)
where 0 < o, < L —1,
det's — (det 2D)(det A) 2 = % (3.4)

and 7, are the components of the left eigenvector corresponding to the maximal eigenvalue A\g = 1
of the stochastic matrix 7" defined by (2.1.10) in [26].
We are to show now that

1

= — =0,...,L -1 .
o 00 (35)

T

First we note that the elements of the matrix T are the transition probabilities for the internal
states of the walk in hand.

Now for L = 1, this matrix has only one element that is equal to 1, hence my = 1, in agreement
with (3.5), via (3.1) with L = 1.

When L = 2, the matrix T of the transition probabilities for the internal states is the 2x2 matrix

T_ <1 —2po  2po >
2pp 1-2py
In view of this, easy computations show that (mg,71) as given by (3.5) are the components of the
left eigenvector (p1/(po+p1), po/(po+p1)) that corresponds to the eigenvalue Ao = 1 of this matrix.

12



Continuing along these lines, for L > 2, the elements of the matrix 71" are the transition proba-
bilities
P(,i+1)=P(,i—1)=p;, PG,i)=1-2p;, i=1,2,...,L—2,
P(0,1) =P(0,L —1) =pg, P(0,0) =1—2py,
P(L - 1,L - 2) = P(L - 1,0) =PrL—-1, P(L - 1,L - 1) =1- 2pL—1-

Consequently, it can be seen that 7,; @ = 0,1,...,L — 1 as in (3.5), are the components of the
left eigenvector corresponding to the eigenvalue Ag = 1 of this matrix 7" in this case too, i.e., when
L>2.

Putting o = # = 0 into (3.3), using (3.4), and since the probability on the left hand side is non-
zero only if the number of steps are even, we have to modify (3.3) by multiplying it by (1+ (—1)"),
just as in (2.3.15) or (2.3.17) of [26]. With this modification, replacing N by 2N in (3.3), we arrive
at (3.2) of Lemma 3.1. O

Having now Lemma 3.1, we are to study the local time and range of the periodic random walk.
These results are additional to that of Theorem 1.2.

It follows from Lemma 3.1 that the truncated Green function g(-) is given by

log N
dpomy/y — 1’

which implies that our anisotropic random walk in this case is recurrent and also Harris recurrent.
First, we define the local time by

N
g(N)=> P(CF(k) = (0,0)) ~ N — oo,
k=0

2((k, ), N) =Y I{CF(r) = (k,j)}, (k,j) € Z%. (3.6)

In the case when the random walk is (Harris) recurrent, then we have (cf. e.g. Chen [3])

. E((k101),N) - plk )
lim — - = - a.s.,
N—oo E((kz,j2), N)  p(ks, j2)

where p(+) is an invariant measure. So to obtain limit theorems for the local time as in (3.6), it
suffices to find an invariant measure that, in combination with appropriate results for Z((0,0), N),
will also yield general results.

In this context, an invariant measure is defined via

wA) = Y uk, ) P(CY(N +1) € AICT(N) = (k, ).
(k,j)ez?

For (k,j) € Z2, in our case we have

) ~ 1 ~ 1 ) .
w(k, j) = u(k +1,5) (5 —pj> + pu(k —1,7) (5 —pj> + p(k, 5+ Dpj1 + p(k,j — 1)pj-1.

13



It is easy to see that

. 1 .
:U’(k:’j) = JO) (k’j) € Z2’
Dy

satisfies this equation. So this defines an invariant measure. Hence

lim 72((0’9)’]\” bi
N—oo Z((k,5),N)  po

for (k,j) € Z? fixed.
Thus, using now g(N), it follows from Darling and Kac [11] that we have

Corollary 3.1

lim P MZx = lim P Apom 7_1:((070)’N)2x =e %, x>0.
g(N) log N

For a limsup result, via Chen [3] we conclude

N—oo N—oo

Corollary 3.2

=((0,0), N 1
lim sup (0,0,N) _ a.s.

Nooo logNlogloglog N 4pgmy/y — 1

For moderate and large deviations and functional limit laws for the local time see Cséki et al.
[10], which was extended by Gantert and Zeitouni [15]. In our case the functional limit theorem
reads as follows: Let M be the set of functions m(z), 0 < z < 1 which are non-decreasing, right-

continuous on [0,1) and left-continuous at = 1, equipped with weak topology, induced by Lévy
metric. Furthermore, let M* be the subset of M with m(0) = 0 and

/1 dm(x) <1
0 X

Corollary 3.3 Let t(N,z) € M be a sequence of functions such that

. logt(N, )
lim ————————* ==
N—oco log N

for all 0 <z <1, like for example, t(N,x) = N*. Put

frlz) = dpomy/y — 1E(0,t(N, z))
N log Nlogloglog N

Then, almost surely, the set of limit points of {fn(x), 0 <z < 1}n>16 15 M*.
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For further results, including second order limit laws, we refer to Chen [4] and [5].

The range of the random walk {C¥(-)} is defined by

RIN) = 3 I{E((k.j).N) > 0},

(k.j)ez?

i.e. the number of distinct sites visited by the random walk up to time N. Roerdink and Shuler

[26] gives
2my/y—1 N
E(R(N)) ~ .
(B ~ TS N oo
Moreover, a law of large numbers follows from Nandori [24]
Corollary 3.4
lim RN) = lim YR(N)log N _ 1 a.s.

Nooo E(R(N)) N—oo 2my/y—1N

4 Proofs of the approximation theorems

Proof of Theorem 1.1.
The proof of Theorem 1.1 will be based on the following Proposition.

Proposition 4.1 Assume the conditions of Lemma 2.2 and put M = Z]K:_K n;. For M — oo and
K — oo assume moreover that

K = K(M)=O(MY*),  max nj = O(M'/2"?), (4.1)
for all § >0,
1
—<alil'™" j=0,%142,. (4.2)

j
for some 1/2 <n <1 andc; >0,

1 1 c2
L _ow), Ls< (43)
K (&7} g M1/2
for some co > 0. Then we have as K, M — oo,
K nj ] K 1— s
S 369 = 3 U oy (1.4)
j=—K i=1 j=—K i

for some € > 0.

15



Proof. By (4.1), (4.2) and (4.3) we have

K K
Z n_i = O(M(1/2+)A+(E=1)(A=n))y Z 1 O(M(/2+0)EA=m+1+n)
j=—K @ j=—K Qj
For ¢ = 2 this gives
Ko (1 —ay) Ko,
o2 = Z % < Z a_; = O(MU/ZHO)E=)y,
j=—K J j=—K J

Put
A= MEO' — O(M(S/Q—n/Q)(l/2+5)+6)

into (2.5) of Lemma 2.2 with ¢ > 0 small enough. This is possible, since for |j| < K and € < n/2
we can select 6 > 0 small enough, such that
A ME MeE—1/2
= <c < METLV2)G N < epgem /2240 () <
o2 log ﬁ olog 1_1a_ - T -
J J

for large enough M. We get

K i=1

< 2exp
o

(ZZG(J Zn] aj > A
(%

Ea
= O(M(1/2+6)(£(1—n)+1+n) )) ) (4.5)

But using (4.3),

14
— M* _ > [ M/ A=)+
Z 70( MA/2+0)(e( n)+1+n)) < O(M(1/2+5)(1+n)) Z < -
(=3 =3

_ O(M1/2777+3€+5(47277) )

Choosing § > 0 and € > 0 small enough, the dominant term on the exponent of the right-hand side
of (4.5) is —M? /2, hence by Borel-Cantelli lemma

jf:f:GE 3wt

=—K i=1

+O(M3/4 7]/4+8+5) a.s.

as M — oo. This completes the proof of the Proposition 4.1. O
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To prove Theorem 1.1, we start with the redefined version of C(N) given in the Preliminaries.
By Lemma E we may assume that on the same probability space where the two simple symmetric
random walks S1(n) and Sa(n) are already defined, there are also two independent Wiener processes
Wi (+), Wa() such that for i = 1,2 we have

sup [S;(k) — Wi(k)| = O(logn) (4.6)

k<n

almost surely, as n — oo.
As in Section 2, let Hy, Vy be the number of horizontal and vertical steps, respectively from
the first N steps of C(-). In view of (2.2) it is enough to show that

—1
Hy=21""N+0 (N5/4*"/2+6> (4.7)
Y
almost surely, as N — oo.
Consider the sum

() () ()
Gy + G5+ +G§2(]VN)

which is the total number of horizontal steps on the level j, where &3(,-) is the local time of the
walk So(-). This statement is slightly incorrect if j happens to be the level where the last vertical
step (up to the total of N steps) takes the walk. In this case the last geometric random variable
might be truncated. However the error which might occur from this simplification will be part of
the O(-) term. This can be seen as follows. Let

&2(5,VN) &4, VN)—

H;_Z Z GY H];:Z Z GU)

where ng) has distribution (2.1). Obviously, Hy < Hy < Hj; and

+ - _ ()
HY = Hy =3 Geyvy
J

2= 2

ming<k<v,, S2(k)<j<maxo<r<v, S2(k)

Here and in the sequel

Now consider the following sum:
K

3 6w,

j=—K

17



where GU) are independent random variables with distribution (2.1). Then

K K K

() 1-2p; 2 () S
E ZGJ :Z . o =Var ZGJ :Z )
i J

j=—K ==k 2P

From Lemma 2.2 with n; = 1, we obtain

K 2 o] ¢ K
() 1- 2pj A A 1
j=—K =3 j=—K ~J
Note that by using (1.1) and (4.2), with a; = 2p;, we get as K — oo,
K
1—2p;
> = 0K),
j=—r Pi
and
S|
= O(K=m+m),
]Z_:K (2p;)°

cK <o =O(K*™).

Put A = 0 K¢ into (4.8) with € > 0 small enough, we get similarly to the proof of (4.4) of Proposition
4.1 that

K L %
) — ] 1-n/2+ey _
§ G § T +O(K ) = O(K).
j=—K =K

Choosing K = maxj<k<v, |S2(k)|, this gives
HY — Hy < Hf; — Hy = O(NV/2+9)

almost surely, as N — oo, with arbitrary small §.

So consider " " 0

+ _ j j J
H =3 (6V+68 + .+ G ) -
j

We apply Proposition 4.1 with M = Vi, K = maxo<k<v, [S2(k)|, n; = & (4, Vn), a; = 2p;,
j=0,41,42, ...

The assumptions of this Proposition are satisfied almost surely: (4.1) follows from Lemma A
and Lemma B, and for (4.2) we refer to Heyde [17]. The first part of (4.3) follows from (1.1). It
remains to verify the second part of (4.3). According to a result of Heyde [17] (p. 726, formula (6))

. 1 §2(4, V)
lim — S 2N 4.
Jim_ VNZJ.: oy = O (4.9)
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Hence, as N — oo, we have almost surely,

2

Vy

VNZ (2p;)? : > T 2 2p; e : toami=o

This verifies the second part of (4.3).
Hence by Proposition 4.1, since Vi < N, we have almost surely, as N — oo,

A =36+ 68+ + Gty

- 252 Aok pf + O(N3/A=n/4+2) (4.10)

=-Vn+5 252 J,VN)p + O(N¥/Amn/4re),

In what follows we take some more ideas from Heyde [17] in order to prove (4.9) with an
appropriate remainder term. Introduce the notation

1<~ 1 1J~ 1
—,Z—:K,j, —Z—:ﬁj

J = pr J = Pk

Then

ZSQ ]7VN 252 3, Vn)(jkj — (G —Dkj-1 +Z§2 =3, VN)(GB; — (1 — 1)Bj-1) +&2(0, VN)p0

Jj=1 Jj=1

Z (2, V) = &0 + 1, VN)) + D iBj(&(—4, Vi) — &a(—j — 1, Vi) + &(0, VN)piO
= j=1

J(rj = 20)(&(, VN) = &0 + 1, VW) + 27> §(&(, V) — &G +1, V)
1 j=1

'M8

J

+Zy j —27) (éa( j,vm—@(—j—1,VN>)+2ij<§z<—j,vN>—§2<—j—1,vN>)+§z<o,vN>]}o
j=1

=2y Z &4, Vn) +Zj = 29)(&2(), V) — &0 + 1, Vn))

]_700

+3 585 — 20)(&a(—4, Vi) = La(— — 1, Vi) + &(0, Viv) (i - 2’y> .
Jj=1 Po
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Observe that -
2y Y &G V) =2V

j=—o0

Applying Lemma A for Ss(-), Lemma C and (1.1) again we get that
Z] —29) (&0, V) — &G+ 1L, VW) + D 38 — 20)(&a(—4, Vi) — &a(—=j — 1, Vi)
j=1

maxy < |S2(k)|
_ O(N1/4+e) Z jlfn _ O(N1/4+e)O(N1777/2+6) — O(N5/4717/2+€),
j=1
where here and throughout the paper the value of € might change from line to line.
Assembling the pieces we arrive at

Hy = (v — 1)V + O(NY471/248) L O(NY248) = (4 — 1)V + O(NY/A70/248) g5 (4.11)

as N — oo.
In the middle equation the last term is coming from the single term £2(0, Viy)/po. Being Hy +
VN = N, we get (4.7). Consequently, we have (4.6), (2.2) and (4.7), hence

C1(N) = Si(Hy) = Wi(Hy) + O(log Hy) = Wi (TN + O(N®/4= n/2+€)> + O(log N)

- Wy <—7 ; 1N> + O(NO/8-n/4+e), (4.12)

almost surely, as N — oo. Similarly,
Cy(N) = Wy <1N> + O(NP/8=n/4+e)y, (4.13)
Y

almost surely, as N — oo, which concludes the proof of Theorem 1.1. O
Proof of Theorem 1.2 By Lemma F

> &) =T +0MH)

j=0(modL)

With a similar argument we also have

Z 52(]5 ) _+O( 1/2+€)’ ’LZO,l,,L—l (414)
j=i(modL)
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Consequently, from the law of the iterated logarithm we conclude almost surely, as N — oo,

L—-1
_ (4) (4) () AN 1—2p; Ugen »
Hy = g <Glﬂ +GY) + ... —f—ngg(j,VN)) A ZO o L+ O(NY#e) = V(v —1) + O(N1/?#Fe),
J j=

Thus, having
—1 1
Hy = VTN +O(NY>5), vy = ;N + O(N'/?*%),

similarly to the above argument, results in

CF(N) = 8)(Hy) = Wi(Hy) + Olog Hy) = Wi (%N) FONYHE) (415)

and
1
Cf(N) = SQ(VN) = WQ(VN) + O(log VN) =Wy (—N) + O(N1/4+€) (4.16)
Y
almost surely, as N — oo, which proves Theorem 1.2. O
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