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al 
oordinate. In parti
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su
h two-dimensional random walks on anisotropi
 latti
e has originated from transport problemsof statisti
al physi
s.More formally, 
onsider the random walk {C(N) = (C1(N), C2(N)) ; N = 0, 1, 2, . . .} on Z
2with the transition probabilities

P(C(N + 1) = (k + 1, j)|C(N) = (k, j)) = P(C(N + 1) = (k − 1, j)|C(N) = (k, j)) =
1

2
− pj,

P(C(N + 1) = (k, j + 1)|C(N) = (k, j)) = P(C(N + 1) = (k, j − 1)|C(N) = (k, j)) = pj ,for (k, j) ∈ Z
2, N = 0, 1, 2, . . . We assume throughout the paper that 0 < pj ≤ 1/2 and minj∈Z pj <

1/2. Unless otherwise stated we assume also that C(0) = (0, 0).The 
ase pj = 1/4, j = 0,±1,±2, . . . 
orresponds to simple symmetri
 random walk on theplane. For this 
ase we refer to Erd®s and Taylor [14℄, Dvoretzky and Erd®s [13℄, Révész [25℄. The
ase pj = 1/2 for some j means that the horizontal line y = j is missing. If all pj = 1/2, then therandom walk takes pla
e on the y axis, so it is only a one-dimensional random walk, and this 
aseis ex
luded from the present investigations. The 
ase however when pj = 1/2, j = ±1,±2, . . . but
p0 = 1/4 is an interesting one whi
h is the so-
alled random walk on the two-dimensional 
omb. Forthis model we may refer to Weiss and Havlin [33℄, Berta

hi and Zu

a [2℄, Berta

hi [1℄, Csáki et al.[8℄. One of the main properties of this 
omb model is that the s
aling of the �rst 
oordinate C1(N)is of order N1/4, so it is a so-
alled sub-di�usion, and 
an be approximated by an iterated (time
hanged) Wiener pro
ess, while the se
ond 
oordinate is of order N1/2 and 
an be approximatedby a Wiener pro
ess. Horváth [20℄ proved a weak 
onvergen
e of C2(·) when pj are small so thats
aling is smaller than N1/2 and its limiting pro
ess is a 
ertain time 
hanged Wiener pro
ess.In the present paper we investigate the 
ase when both 
oordinates are of order N1/2 and 
anbe simultaneously approximated by independent Wiener pro
esses. First we outline some history ofthis problem. Note that in the literature usually horizontal and verti
al lines are 
hanged, i.e., ourhorizontal lines 
orrespond to their verti
al lines and vi
e versa. As noted already, the treatmentof anisotropi
 random walks is motivated by transport problems in statisti
al physi
s. For earlyinvestigations of the model we refer to Silver et al. [29℄, Seshadri et al. [27℄, Shuler [28℄, West
ott[34℄, where 
ertain properties of this random walk were studied under various 
onditions. Heyde[17℄ proved an almost sure approximation for C2(·) under the 
ondition (1.1) below. Heyde etal. [19℄ treated the 
ase when 
onditions similar to (1.1) are assumed but γ 
an be di�erent forthe two parts of (1.1) and obtained almost sure 
onvergen
e to the so-
alled os
illating Brownianmotion. In Heyde [18℄ limiting distributions were given for C(·) under the 
ondition (1.1) butwithout remainder. Den Hollander [12℄ proved strong approximations for C(·) in the 
ase when pjare random variables with values 1/4 and 1/2. Roerdink and Shuler [26℄ proved some asymptoti
properties, in
luding lo
al limit theorems, under 
ertain 
onditions. For more detailed history see[12℄.In the sequel we restri
t ourselves to the following 
ondition of Heyde [17℄:2
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n
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p−1
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n
∑

j=1

p−1
−j = 2γ + o(n−η) (1.1)as n → ∞ for some 
onstants γ, 1 < γ < ∞ and 1/2 < η < ∞.Under this 
ondition we will prove a joint strong approximation result for C1(·), C2(·), the 
oor-dinates of the walk C(·) by approximating them by two independent Wiener pro
esses (Brownianmotions).Theorem 1.1 Under the 
ondition (1.1) with 1/2 < η ≤ 1, on an appropriate probability spa
e forthe random walk

{C(N) = (C1(N), C2(N));N = 0, 1, 2, . . .}one 
an 
onstru
t two independent standard Wiener pro
esses {W1(t); t ≥ 0}, {W2(t); t ≥ 0} sothat, as N → ∞, we have with any ε > 0
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= O(N5/8−η/4+ε) a.s. (1.2)A parti
ular 
ase, the so 
alled periodi
 
ase, deserves a spe
ial attention here, namely when
pj = pj+L for ea
h j ∈ Z, where L ≥ 1 is a positive integer. In this 
ase, denoting the randomwalk by C

P(N) = (CP
1 (N), CP

2 (N)), we have a better approximation and, moreover, we give someresults for the lo
al time in Se
tion 3.Theorem 1.2 On an appropriate probability spa
e for the random walk
{CP(N) = (CP

1 (N), CP
2 (N));N = 0, 1, 2, . . .}one 
an 
onstru
t two independent standard Wiener pro
esses {W1(t); t ≥ 0}, {W2(t); t ≥ 0} sothat, as N → ∞, we have with any ε > 0
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= O(N1/4+ε) a.s., (1.3)where
γ =

∑L−1
j=0 p−1

j

2L
.We mention a parti
ular periodi
 
ase, the so-
alled uniform 
ase, when pj = 1/4 if |j| ≡

0(modL) and pj = 1/2 otherwise. Then Theorem 1.2 is true with γ = (L + 1)/L.The following 
orollaries are 
onsequen
es of Lemma D and Theorem 1.1. De�ne the 
ontinuoustime pro
ess C(u), u ≥ 0 by linear interpolation of C(N). The spa
e C([0, 1], R2) is the set of3




ontinuous fun
tions de�ned on [0, 1] with values in R
2. Re
all the de�nition of the two dimensionalStrassen 
lass of absolutely 
ontinuous fun
tions:

S(2) = {(f(x), g(x)), 0 ≤ x ≤ 1 : f(0) = g(0) = 0,

∫ 1

0
(ḟ2(x) + ġ2(x)) dx ≤ 1}. (1.4)Corollary 1.1 Under the 
onditions of Theorem 1.1 for the random walk C(·) we have

• (i) the sequen
e of random ve
tor-valued fun
tions
(

√

γ

γ − 1

C1(xN)

(2N log log N)1/2
,
√

γ
C2(xN)

(2N log log N)1/2
, 0 ≤ x ≤ 1

)

N≥3is almost surely relatively 
ompa
t in the spa
e C([0, 1], R2) and its limit points is the set offun
tions S(2).

• (ii) In parti
ular, the ve
tor sequen
e
(

C1(N)

(2N log log N)1/2
,

C2(N)

(2N log log N)1/2

)

N≥3is almost surely relatively 
ompa
t in the re
tangle
[

−
√

γ − 1√
γ

,

√
γ − 1√

γ

]

×
[

− 1√
γ

,
1√
γ

]and the set of its limit points is the ellipse
{

(x, y) :
γ

γ − 1
x2 + γy2 ≤ 1

}

. (1.5)
• (iii) Moreover,

lim sup
N→∞

C1(N)√
2N log log N

=

√
γ − 1√

γ
and lim sup

N→∞

C2(N)√
2N log log N

=
1√
γ

a.s.

• (iv)
lim inf
N→∞

(

log log N

N

)1/2

max
1≤k≤N

|C1(k)| =
π
√

γ − 1√
8γ

a.s.

lim inf
N→∞

(

log log N

N

)1/2

max
1≤k≤N

|C2(k)| =
π√
8γ

a.s.4



Let us 
onsider D([0,∞), R2), the spa
e of R
2 valued 
àdlàg fun
tions on [0,∞). For f(t) =

(f1(t), f2(t)) and g(t) = (g1(t), g2(t)) in this fun
tion spa
e, de�ne for all �xed T > 0

∆ = ∆T (f, g) := sup
0≤t≤T

‖(f1(t) − g1(t)), (f2(t) − g2(t))‖, (1.6)where ‖ · ‖ is a norm in R
2, usually the ‖ · ‖p norm with p = 1 or 2 in our 
ase. De�ne also themeasurable spa
e (D([0,∞), R2),D), where D is the σ-�eld generated by the 
olle
tion of all ∆-openballs for all T > 0 of the fun
tion spa
e D([0,∞), R2).As a 
onsequen
e of Theorem 1.1, we 
on
lude a weak 
onvergen
e result in terms of the followingfun
tional 
onvergen
e in distribution statement.Corollary 1.2 Under the 
onditions of Theorem 1.1, as N → ∞, we have

h
(

N−1/2
C([Nt])

)

= h

(

C1([Nt])

N1/2
,

C2([Nt])

N1/2

)

d→ h

(

W1

(

γ − 1

γ
t

)

, W2

(

1

γ
t

))for all h : D([0,∞), R2) → R
2 that are (D([0,∞), R2),D) measurable and ∆-
ontinuous for all T >

0, or ∆-
ontinuous for all T > 0, ex
ept at points forming a set of measure zero on (D[0,∞), R2),D)with respe
t to the measure generated by {W1(t),W2(t); 0 ≤ t < ∞}, where W1 and W2 are twoindependent standard Wiener pro
esses, and d→ denotes 
onvergen
e in distribution.2 PreliminariesFirst we are to rede�ne our random walk {C(N); N = 0, 1, 2, . . .}. It will be seen that the pro
essdes
ribed right below is equivalent to that given in the Introdu
tion (
f. (2.2) below).To begin with, on a suitable probability spa
e 
onsider two independent simple symmetri
 (one-dimensional) random walks S1(·), and S2(·). We may assume that on the same probability spa
ewe have a double array of independent geometri
 random variables {G(j)
i , i ≥ 1, j ∈ Z} whi
h areindependent from S1(·), and S2(·), where G

(j)
i has the following geometri
 distribution

P(G
(j)
i = k) = 2pj(1 − 2pj)

k, k = 0, 1, 2, . . . (2.1)We now 
onstru
t our walk C(N) as follows. We will take all the horizontal steps 
onse
utivelyfrom S1(·) and all the verti
al steps 
onse
utively from S2(·). First we will take some horizontalsteps from S1(·), then exa
tly one verti
al step from S2(·), then again some horizontal steps from
S1(·) and exa
tly one verti
al step from S2(·), and so on. Now we explain how to get the numberof horizontal steps on ea
h o

asion. Consider our walk starting from the origin pro
eeding �rsthorizontally G

(0)
1 steps (note that G

(0)
1 = 0 is possible with probability 2p0), after whi
h it takesexa
tly one verti
al step, arriving either to the level 1 or −1, where it takes G

(1)
1 or G

(−1)
1 horizontalsteps (whi
h might be no steps at all) before pro
eeding with another verti
al step. If this step5




arries the walk to the level j, then it will take G
(j)
1 horizontal steps, if this is the �rst visit tolevel j, otherwise it takes G

(j)
2 horizontal steps. In general, if we �nished the k -th verti
al step andarrived to the level j for the i-th time, then it will take G

(j)
i horizontal steps.Let now HN , VN be the number of horizontal and verti
al steps, respe
tively from the �rst Nsteps of the just des
ribed pro
ess. Consequently, HN + VN = N , and

{C(N); N = 0, 1, 2, . . .} = {(C1(N), C2(N)); N = 0, 1, 2, . . .}

d
= {(S1(HN ), S2(VN )); N = 0, 1, 2, . . .} , (2.2)where d

= stands for equality in distribution.Now we list some well-known results, and some new ones whi
h will be used in the rest of thepaper. In 
ase of the known ones we won't give the most general form of the results, just as mu
has we intend to use, while the exa
t referen
e will also be provided for the interested reader. Denotethe simple symmetri
 random walk on the line by S(n) and let M(n) = max0≤k≤n |S(k)|. Then wehave the LIL and Chung [6℄:Lemma A We have almost surely
lim sup

n→∞

M(n)√
2n log log n

= 1, lim inf
n→∞

(

log log n

n

)1/2

M(n) =
π√
8
.Denote by ξ(x, n) the lo
al time of the simple symmetri
 random walk S(n) de�ned by

ξ(x, n) =

n
∑

i=0

I{S(i) = x}, x ∈ Z, n = 0, 1, 2, . . . ,where I{·} is the indi
ator fun
tion. Let the maximal lo
al time be
ξ(n) = sup

x∈Z

ξ(x, n).For the next Lemma see Kesten [21℄.Lemma B For the maximal lo
al time we have
lim sup

n→∞

ξ(n)

(2n log log n)1/2
= 1 a.s.In Heyde [17℄ the following result was given about the uniformity of the lo
al time (see also [9℄,Lemma 5).Lemma C For the simple symmetri
 walk we have for any ε > 0

lim
n→∞

supx∈Z |ξ(x + 1, n) − ξ(x, n)|
n1/4+ε

= 0 a.s.6



The next lemma is the two-dimensional version, and that of its 
onsequen
e, of the 
elebratedfun
tional iterated logarithm law for multidimensional Wiener pro
ess due to Strassen [31℄:Lemma D Let W1(t) and W2(t) be independent standard Wiener pro
esses starting from zero. Thenwith probability 1, the limit points for the random ve
tor valued fun
tions
(

W1(xT )

(2T log log T )1/2
,

W2(xT )

(2T log log T )1/2
, 0 ≤ x ≤ 1

)

T≥3as T → ∞ is S(2) of (1.4). In parti
ular, the limit points of the random ve
tors
(

W1(T )

(2T log log T )1/2
,

W2(T )

(2T log log T )1/2

)

T≥3as T → ∞ is the unit 
ir
le
{(x, y) : x2 + y2 ≤ 1}.We will need the 
elebrated KMT strong invarian
e prin
iple (
f. Komlós et al. [22℄).Lemma E On an appropriate probability spa
e one 
an 
onstru
t {S(n), n = 1, 2, . . .}, a simplesymmetri
 random walk on the line and a standard Wiener pro
ess {W (t), t ≥ 0} su
h that as

n → ∞,
S(n) − W (n) = O(log n) a.s.Lemma 2.1 Let {S(n); n = 0, 1, . . .} be a simple symmetri
 random walk on the line. Put
τ(i) = min{n > 0 : S(n) = i},

τL = min (τ(0), τ(−L), τ(L)) .Then
E(τL) = L, (2.3)and τL has �nite varian
e, (the value of whi
h is unimportant in the present 
ontext).Proof. For 0 ≤ a ≤ b ≤ c de�ne

p(a, b, c) := P(min{n : n > m, S(n) = a} < min{n : n > m, S(n) = c} | S(m) = b). (2.4)It is well-known that (
f. e.g. [25℄, p. 23)
p(a, b, c) =

c − b

c − a
.Consider

ξ(k, τL), k = ±1,±2, . . . ,±(L − 1),7



i.e. the lo
al time of k up to time τL.It is obvious that for L = 1 or L = 2, we have τL = L. So assume that L ≥ 3.
P(ξ(1, τL) = 0) =

1

2

P(ξ(1, τL) = j) =
1

2

(

1

2
p(1, 2, L)

)j−1(1

2
+

1

2
(1 − p(1, 2, L))

)

=
1

2

(

L − 2

2(L − 1)

)j−1( L

2(L − 1)

)

, j = 1, 2, . . .For k = 2, 3, . . . , L − 1 the same type of argument results in
P(ξ(k, τL) = 0) = 1 − 1

2k

P(ξ(k, τL) = j) =
1

2
(1 − p(0, 1, k))

(

1

2
(1 − p(0, 1, k)) +

1

2
p(k, k + 1, L)

)j−1

×

×
(

1

2
p(0, k − 1, k) +

1

2
(1 − p(k, k + 1, L))

)

=
1

2k

(

k − 1

2k
+

L − k − 1

2(L − k)

)j−1( 1

2k
+

1

2(L − k)

)

, j = 1, 2, . . .From the above distributions, whi
h are geometri
, we get by simple 
al
ulation
E(ξ(k, τL)) =

L − k

L
,Obviously, the same is true for k = −1,−2, . . . ,−(L − 1), with k repla
ed by −k.Consequently

E(τL) = 1 + 2

L−1
∑

k=1

E(ξ(k, τL)) = 1 + 2

L−1
∑

k=1

L − k

L
= L.It is 
lear from the above 
al
ulations that τL has �nite varian
e. 2Let

EL = {jL; j = 0,±1,±2, . . .},
γ1,L = τL, γi,L = min{j > 0 : S(γi−1,L + j) ∈ EL},

TN,L =

N
∑

i=1

γi,L,

Nn = max{k : Tk,L ≤ n}.8



Sin
e TN,L is a sum of i.i.d. random variables, Nn is a renewal pro
ess. It follows from Gut etal. [16℄Lemma F As N → ∞, we have almost surely
TN,L = NL + O(N1/2+ε)and as n → ∞ we have almost surely

Nn =
n

L
+ O(n1/2+ε).For sums of geometri
 random variables we need the following exponential estimation.Lemma 2.2 Let {G(j)

i , i = 1, 2, . . . , nj , j = 0,±1,±2, . . . ,±K} be independent random variableswith distribution
P(G

(j)
i = k) = αj(1 − αj)

k, k = 0, 1, 2, . . . ,where 0 < αj ≤ 1. Put
BK =

K
∑

j=−K

nj
∑

i=1

G
(j)
i , σ2 = V arBK =

K
∑

j=−K

nj(1 − αj)

α2
j

.Then, for λ < −σ2 log(1 − αj) for ea
h j ∈ [−K,K], we have
P





∣

∣

∣

∣

∣

∣

K
∑

j=−K

nj
∑

i=1

(

G
(j)
i − 1 − αj

αj

)

∣

∣

∣

∣

∣

∣

> λ



 ≤ 2 exp



− λ2

2σ2
+

∞
∑

ℓ=3

λℓ

σ2ℓ

K
∑

j=−K

nj

αℓ
j



 . (2.5)Proof. Sin
e G
(j)
i , i = 1, 2, . . . , nj, j = 0,±1,±2, . . . ,±K are independent, and G

(j)
i has momentgenerating fun
tion

E

(

eθG
(j)
i

)

=
αj

1 − eθ(1 − αj)for eθ(1− αj) < 1, the 
umulant generating fun
tion of BK 
an be obtained from the series expan-sions of logarithmi
 and exponential fun
tions as follows.
log E

(

eθBK

)

=
K
∑

j=−K

nj(log αj−log(1−eθ(1−αj))) =
K
∑

j=−K

nj

(

log αj +
∞
∑

ℓ=0

θℓ

ℓ!

∞
∑

k=1

(1 − αj)
kkℓ−1

)

.But
∞
∑

k=1

(1 − αj)
kk−1 = − log αj ,9



∞
∑

k=1

(1 − αj)
k =

1 − αj

αj
,

∞
∑

k=1

(1 − αj)
kk =

1 − αj

α2
j

,and for ℓ ≥ 3
∞
∑

k=1

(1 − αj)
kkℓ−1 =

∑ℓ−1
m=1 A(ℓ − 1,m)(1 − αj)

m

αℓ
j

,where A(·, ·) are Eulerian numbers de�ned by
A(n,m) =

m−1
∑

j=0

(−1)j
(

n + 1

j

)

(m − j)n, n = 1, 2, . . . , m = 1, 2, . . . , n.(see e.g. Comtet [7℄, pp. 242-243). Sin
e
ℓ−1
∑

m=1

A(ℓ − 1,m)(1 − αj)
m ≤

ℓ−1
∑

m=1

A(ℓ − 1,m) = (ℓ − 1)!,and
E(BK) =

K
∑

j=−K

nj(1 − αj)

αj
,we have

E

(

eθ(BK−E(BK ))
)

≤ exp







θ2σ2

2
+

∞
∑

ℓ=3

θℓ
K
∑

j=−K

nj

αℓ
j







.By Markov inequality,
P(BK − E(BK) ≥ λ) ≤ e−λθ

E

(

eθ(BK−E(BK )
)

≤ e−λθ exp







θ2σ2

2
+

∞
∑

ℓ=3

θℓ
K
∑

j=−K

nj

αℓ
j







.The estimation of P(E(BK) − BK ≥ λ) is similar. By 
hoosing θ = λ/σ2, we have the Lemma. 23 Lo
al times and rangeBefore proving our main results, Theorems 1.1 and 1.2, in Se
tion 4, in this se
tion we deal withthe periodi
 
ase on its own. In this 
ase, for a given positive integer L ≥ 1, pj+L = pj for all j ∈ Z,and for i = 0, 1, . . ., we have
1

L

L−1
∑

j=0

1

pj+iL
=

1

L

L−1
∑

j=0

1

pj
= 2γ, (3.1)10



with 1 < γ < ∞, as in (1.1).In this spe
ial 
ontext we 
on
lude results of interest on their own for the lo
al time and rangeof the walk and relate them to our main approximation theorems, as well as to similar ones forother walks in the literature. The topi
s dis
ussed in this se
tion are not needed in Se
tion 4 forthe proofs of Theorems 1.1 and 1.2 themselves.First we note that in the 
ase of L ≥ 2 there is a relation between the periodi
 
ase and aparti
ular 
ase of the so-
alled random walk with internal states (or random walk with internaldegrees of freedom). This was introdu
ed by Sinai [30℄, and further investigated by Krámli andSzász [23℄, Tel
s [32℄, Nándori [24℄ and others. Let F be a �nite set. On Z
d × F the Markov 
hain

{U(N) = (X(N), Z(N))} is a random walk with internal states, if for xN ,xN+1 ∈ Z
d, ℓN , ℓN+1 ∈ F

P(U(N + 1) = (xN+1, ℓN+1) | U(N) = (xN , ℓN )) = P (xN+1 − xN , ℓN , ℓN+1).In the parti
ular 
ase d = 2, F = {0, 1, . . . , L − 1}, for (k, j) ∈ Z
2

P(U(N + 1) = (k, j, ℓ + 1) | U(N) = (k, j, ℓ)) = P(U(N + 1) = (k, j, ℓ − 1) | U(N) = (k, j, ℓ)) = pℓfor ℓ = 1, . . . , L − 2,
P(U(N +1) = (k, j, 1) | U(N) = (k, j, 0)) = P(U(N +1) = (k, j−1, L−1) | U(N) = (k, j, 0)) = p0,

P(U(N + 1) = (k, j + 1, 0) | U(N) = (k, j, L − 1))

= P(U(N + 1) = (k, j, L − 2) | U(N) = (k, j, L − 1)) = pL−1,

P(U(N+1) = (k+1, j, ℓ) | U(N) = (k, j, ℓ)) = P(U(N+1) = (k−1, j, ℓ) | U(N) = (k, j, ℓ)) =
1

2
−pℓfor ℓ = 0, 1, . . . , L − 1.It is 
lear that for C

P(N) = (CP
1 (N), CP

2 (N)) and U(N) = (X1(N),X2(N), Z(N)), we have aone-to-one 
orresponden
e, namely
CP

1 (N) = X1(N), CP
2 (N) = LX2(N) + Z(N),with 0 ≤ Z(N) ≤ L − 1. Hen
e Z(N) = ℓ if and only if CP

2 (N) ≡ ℓ (modL) and X2(N) =
(CP

2 (N) − Z(N))/L.Sin
e Z(N) is bounded, it follows that Theorem 1.2 is true with CP
1 (N) repla
ed by X1(N),and CP

2 (N) repla
ed by LX2(N).To study the lo
al times of our random walk, we need a lo
al limit theorem for C
P(·).Lemma 3.1 In the periodi
 
ase we have

P(CP(2N) = (0, 0)) ∼ 1

4πNp0
√

γ − 1
(3.2)with L ≥ 1. 11



Proof. For the proof we 
ould have used the lo
al limit theorems for random walks with internalstates, given as in Krámli and Szász [23℄. Nándori [24℄ also gives a remainder term in this lo
allimit theorem. To determine the exa
t 
onstant, we take another route, namely apply (2.3.9) ofRoerdink and Shuler [26℄ with d = 2. Using their notations, what we have to determine is theinvariant probability measure (π0, π1, . . . , πL−1) and the determinants of their matri
es 2D and A.Now 2D, what they 
all di�usion matrix, whose elements are the 
onstants in the varian
es and
ovarian
es of the 
omponents, 
an be seen in Theorems 1.1 and 1.2, i.e., we have
2D =

( γ−1
γ 0

0 1
γ

)

.The matrix A has elements (
f. (2.2.25) in [26℄) Aki = akei (s
alar produ
t), where a1 = (1, 0),
a2 = (0, L), e1 = (1, 0), e2 = (0, 1), hen
e

A =

(

1 0
0 L

)

,giving det(2D) = (γ − 1)/γ2, detA = L.Now (2.3.9) of [26℄ with d = 2 reads as follows.
P(CP(N) = (0, α)|CP(0) = (0, β)) ∼ πα(det s)−1/2(2πN)−1, (3.3)where 0 ≤ α, β ≤ L − 1,

det s = (det 2D)(detA)−2 =
γ − 1

L2γ2
(3.4)and πα are the 
omponents of the left eigenve
tor 
orresponding to the maximal eigenvalue λ0 = 1of the sto
hasti
 matrix T de�ned by (2.1.10) in [26℄.We are to show now that

πα =
1

2pαLγ
, α = 0, . . . , L − 1. (3.5)First we note that the elements of the matrix T are the transition probabilities for the internalstates of the walk in hand.Now for L = 1, this matrix has only one element that is equal to 1, hen
e π0 = 1, in agreementwith (3.5), via (3.1) with L = 1.When L = 2, the matrix T of the transition probabilities for the internal states is the 2x2 matrix

T =

(

1 − 2p0 2p0

2p1 1 − 2p1

)

.In view of this, easy 
omputations show that (π0, π1) as given by (3.5) are the 
omponents of theleft eigenve
tor (p1/(p0 +p1), p0/(p0 +p1)) that 
orresponds to the eigenvalue λ0 = 1 of this matrix.12



Continuing along these lines, for L > 2, the elements of the matrix T are the transition proba-bilities
P(i, i + 1) = P(i, i − 1) = pi, P(i, i) = 1 − 2pi, i = 1, 2, . . . , L − 2,

P(0, 1) = P(0, L − 1) = p0, P(0, 0) = 1 − 2p0,

P(L − 1, L − 2) = P(L − 1, 0) = pL−1, P(L − 1, L − 1) = 1 − 2pL−1.Consequently, it 
an be seen that πα; α = 0, 1, . . . , L − 1 as in (3.5), are the 
omponents of theleft eigenve
tor 
orresponding to the eigenvalue λ0 = 1 of this matrix T in this 
ase too, i.e., when
L > 2.Putting α = β = 0 into (3.3), using (3.4), and sin
e the probability on the left hand side is non-zero only if the number of steps are even, we have to modify (3.3) by multiplying it by (1+ (−1)N ),just as in (2.3.15) or (2.3.17) of [26℄. With this modi�
ation, repla
ing N by 2N in (3.3), we arriveat (3.2) of Lemma 3.1. 2Having now Lemma 3.1, we are to study the lo
al time and range of the periodi
 random walk.These results are additional to that of Theorem 1.2.It follows from Lemma 3.1 that the trun
ated Green fun
tion g(·) is given by

g(N) =
N
∑

k=0

P(CP(k) = (0, 0)) ∼ log N

4p0π
√

γ − 1
, N → ∞,whi
h implies that our anisotropi
 random walk in this 
ase is re
urrent and also Harris re
urrent.First, we de�ne the lo
al time by

Ξ((k, j), N) =

N
∑

r=1

I{CP(r) = (k, j)}, (k, j) ∈ Z
2. (3.6)In the 
ase when the random walk is (Harris) re
urrent, then we have (
f. e.g. Chen [3℄)

lim
N→∞

Ξ((k1, j1), N)

Ξ((k2, j2), N)
=

µ(k1, j1)

µ(k2, j2)
a.s.,where µ(·) is an invariant measure. So to obtain limit theorems for the lo
al time as in (3.6), itsu�
es to �nd an invariant measure that, in 
ombination with appropriate results for Ξ((0, 0), N),will also yield general results.In this 
ontext, an invariant measure is de�ned via

µ(A) =
∑

(k,j)∈Z2

µ(k, j)P(CP(N + 1) ∈ A|CP(N) = (k, j)).For (k, j) ∈ Z
2, in our 
ase we have

µ(k, j) = µ(k + 1, j)

(

1

2
− pj

)

+ µ(k − 1, j)

(

1

2
− pj

)

+ µ(k, j + 1)pj+1 + µ(k, j − 1)pj−1.13



It is easy to see that
µ(k, j) =

1

pj
, (k, j) ∈ Z

2,satis�es this equation. So this de�nes an invariant measure. Hen
e
lim

N→∞

Ξ((0, 0), N)

Ξ((k, j), N)
=

pj

p0
a.s.for (k, j) ∈ Z

2 �xed.Thus, using now g(N), it follows from Darling and Ka
 [11℄ that we haveCorollary 3.1
lim

N→∞
P

(

Ξ((0, 0), N)

g(N)
≥ x

)

= lim
N→∞

P

(

4p0π
√

γ − 1 Ξ((0, 0), N)

log N
≥ x

)

= e−x, x ≥ 0.For a limsup result, via Chen [3℄ we 
on
ludeCorollary 3.2
lim sup
N→∞

Ξ((0, 0), N)

log N log log log N
=

1

4p0π
√

γ − 1
a.s.For moderate and large deviations and fun
tional limit laws for the lo
al time see Csáki et al.[10℄, whi
h was extended by Gantert and Zeitouni [15℄. In our 
ase the fun
tional limit theoremreads as follows: Let M be the set of fun
tions m(x), 0 ≤ x ≤ 1 whi
h are non-de
reasing, right-
ontinuous on [0, 1) and left-
ontinuous at x = 1, equipped with weak topology, indu
ed by Lévymetri
. Furthermore, let M∗ be the subset of M with m(0) = 0 and

∫ 1

0

dm(x)

x
≤ 1.Corollary 3.3 Let t(N,x) ∈ M be a sequen
e of fun
tions su
h that

lim
N→∞

log t(N,x)

log N
= xfor all 0 ≤ x ≤ 1, like for example, t(N,x) = Nx. Put

fN (x) =
4p0π

√
γ − 1Ξ(0, t(N,x))

log N log log log N
.Then, almost surely, the set of limit points of {fN (x), 0 ≤ x ≤ 1}N≥16 is M∗.14



For further results, in
luding se
ond order limit laws, we refer to Chen [4℄ and [5℄.The range of the random walk {CP(·)} is de�ned by
R(N) =

∑

(k,j)∈Z2

I{Ξ((k, j), N) > 0},i.e. the number of distin
t sites visited by the random walk up to time N . Roerdink and Shuler[26℄ gives
E(R(N)) ∼ 2π

√
γ − 1

γ

N

log N
, N → ∞.Moreover, a law of large numbers follows from Nándori [24℄Corollary 3.4

lim
N→∞

R(N)

E(R(N))
= lim

N→∞

γ R(N) log N

2π
√

γ − 1 N
= 1 a.s.4 Proofs of the approximation theoremsProof of Theorem 1.1.The proof of Theorem 1.1 will be based on the following Proposition.Proposition 4.1 Assume the 
onditions of Lemma 2.2 and put M =

∑K
j=−K nj. For M → ∞ and

K → ∞ assume moreover that
K = K(M) = O(M1/2+δ), max

−K≤j≤K
nj = O(M1/2+δ), (4.1)for all δ > 0,

1

αj
≤ c1|j|1−η , j = 0,±1,±2, . . . (4.2)for some 1/2 < η ≤ 1 and c1 > 0,

K
∑

j=−K

1

αj
= O(K),

1

σ
≤ c2

M1/2
(4.3)for some c2 > 0. Then we have as K,M → ∞,

K
∑

j=−K

nj
∑

i=1

G
(j)
i =

K
∑

j=−K

nj
1 − αj

αj
+ O(M3/4−η/4+ε) a.s. (4.4)for some ε > 0. 15



Proof. By (4.1), (4.2) and (4.3) we have
K
∑

j=−K

nj

αℓ
j

= O(M (1/2+δ)(1+(ℓ−1)(1−η)))
K
∑

j=−K

1

αj
= O(M (1/2+δ)(ℓ(1−η)+1+η)).For ℓ = 2 this gives

σ2 =

K
∑

j=−K

nj(1 − αj)

α2
j

≤
K
∑

j=−K

nj

α2
j

= O(M (1/2+δ)(3−η)).Put
λ = M εσ = O(M (3/2−η/2)(1/2+δ)+ε)into (2.5) of Lemma 2.2 with ε > 0 small enough. This is possible, sin
e for |j| ≤ K and ε < η/2we 
an sele
t δ > 0 small enough, su
h that

λ

σ2 log 1
1−αj

=
M ε

σ log 1
1−αj

≤ c
M ε−1/2

αj
≤ cM ε−1/2|j|1−η ≤ cM ε−1/2+(1/2+δ)(1−η) < 1for large enough M . We get

P





∣

∣

∣

∣

∣

∣

K
∑

j=−K

nj
∑

i=1

G
(j)
i −

K
∑

j=−K

nj
1 − αj

αj

∣

∣

∣

∣

∣

∣

> λ





≤ 2 exp

(

−M2ε

2
+

∞
∑

ℓ=3

M ℓε

σℓ
O(M (1/2+δ)(ℓ(1−η)+1+η))

)

. (4.5)But using (4.3),
∞
∑

ℓ=3

M ℓε

σℓ
O(M (1/2+δ)(ℓ(1−η)+1+η)) ≤ O(M (1/2+δ)(1+η))

∞
∑

ℓ=3

(

M (1/2+δ)(1−η)+ε

σ

)ℓ

= O(M1/2−η+3ε+δ(4−2η)).Choosing δ > 0 and ε > 0 small enough, the dominant term on the exponent of the right-hand sideof (4.5) is −M2ε/2, hen
e by Borel-Cantelli lemma
K
∑

j=−K

nj
∑

i=1

G
(j)
i =

K
∑

j=−K

nj
1 − αj

αj
+ O(M3/4−η/4+ε+δ) a.s.as M → ∞. This 
ompletes the proof of the Proposition 4.1. 216



To prove Theorem 1.1, we start with the rede�ned version of C(N) given in the Preliminaries.By Lemma E we may assume that on the same probability spa
e where the two simple symmetri
random walks S1(n) and S2(n) are already de�ned, there are also two independent Wiener pro
esses
W1(·), W2(·) su
h that for i = 1, 2 we have

sup
k≤n

|Si(k) − Wi(k)| = O(log n) (4.6)almost surely, as n → ∞.As in Se
tion 2, let HN , VN be the number of horizontal and verti
al steps, respe
tively fromthe �rst N steps of C(·). In view of (2.2) it is enough to show that
HN =

γ − 1

γ
N + O

(

N5/4−η/2+ǫ
) (4.7)almost surely, as N → ∞.Consider the sum

G
(j)
1 + G

(j)
2 + ... + G

(j)
ξ2(j,VN )whi
h is the total number of horizontal steps on the level j, where ξ2(·, ·) is the lo
al time of thewalk S2(·). This statement is slightly in
orre
t if j happens to be the level where the last verti
alstep (up to the total of N steps) takes the walk. In this 
ase the last geometri
 random variablemight be trun
ated. However the error whi
h might o

ur from this simpli�
ation will be part ofthe O(·) term. This 
an be seen as follows. Let

H+
N =

∑

j

ξ2(j,VN )
∑

i=1

G
(j)
i , H−

N =
∑

j

ξ2(j,VN )−1
∑

i=1

G
(j)
i ,where G

(j)
i has distribution (2.1). Obviously, H−

N ≤ HN ≤ H+
N and

H+
N − H−

N =
∑

j

G
(j)
ξ2(j,VN ).Here and in the sequel

∑

j

=
∑

min0≤k≤VN
S2(k)≤j≤max0≤k≤VN

S2(k)

.Now 
onsider the following sum:
K
∑

j=−K

G(j),

17



where G(j) are independent random variables with distribution (2.1). Then
E





K
∑

j=−K

G(j)



 =
K
∑

j=−K

1 − 2pj

2pj
, σ2 = V ar





K
∑

j=−K

G(j)



 =
K
∑

j=−K

1 − 2pj

(2pj)2
.From Lemma 2.2 with nj = 1, we obtain

P





∣

∣

∣

∣

∣

∣

K
∑

j=−K

(

G
(j)
i − 1 − 2pj

2pj

)

∣

∣

∣

∣

∣

∣

> λ



 ≤ 2 exp



− λ2

2σ2
+

∞
∑

ℓ=3

λℓ

σ2ℓ

K
∑

j=−K

1

αℓ
j



 . (4.8)Note that by using (1.1) and (4.2), with αj = 2pj , we get as K → ∞,
K
∑

j=−K

1 − 2pj

2pj
= O(K),and

K
∑

j=−K

1

(2pj)ℓ
= O(Kℓ(1−η)+η),

cK ≤ σ2 = O(K2−η).Put λ = σKε into (4.8) with ε > 0 small enough, we get similarly to the proof of (4.4) of Proposition4.1 that
K
∑

j=−K

G(j) =

K
∑

j=−K

1 − 2pj

2pj
+ O(K1−η/2+ε) = O(K).Choosing K = max1≤k≤VN

|S2(k)|, this gives
H+

N − HN ≤ H+
N − H−

N = O(N1/2+δ)almost surely, as N → ∞, with arbitrary small δ.So 
onsider
H+

N =
∑

j

(

G
(j)
1 + G

(j)
2 + ... + G

(j)
ξ2(j,VN )

)

.We apply Proposition 4.1 with M = VN , K = max0≤k≤VN
|S2(k)|, nj = ξ2(j, VN ), αj = 2pj ,

j = 0,±1,±2, . . .The assumptions of this Proposition are satis�ed almost surely: (4.1) follows from Lemma Aand Lemma B, and for (4.2) we refer to Heyde [17℄. The �rst part of (4.3) follows from (1.1). Itremains to verify the se
ond part of (4.3). A

ording to a result of Heyde [17℄ (p. 726, formula (6))
lim

N→∞

1

VN

∑

j

ξ2(j, VN )

2pj
= γ a.s. (4.9)18



Hen
e, as N → ∞, we have almost surely,
σ2

VN
=

1

VN

∑

j

ξ2(j, VN )(1 − 2pj)

(2pj)2
≥ 1

VN

∑

j

ξ2(j, VN )(1 − 2pj)

2pj
=

1

VN

∑

j

ξ2(j, VN )

2pj
− 1 → γ − 1 > 0.This veri�es the se
ond part of (4.3).Hen
e by Proposition 4.1, sin
e VN ≤ N , we have almost surely, as N → ∞,

H+
N =

∑

j

(

G
(j)
1 + G

(j)
2 + . . . + G

(j)
ξ2(j,VN )

)

=
∑

j

ξ2(j, VN )
1 − 2pj

2pj
+ O(N3/4−η/4+ε) (4.10)

= −VN +
1

2

∑

j

ξ2(j, VN )
1

pj
+ O(N3/4−η/4+ε).In what follows we take some more ideas from Heyde [17℄ in order to prove (4.9) with anappropriate remainder term. Introdu
e the notation

1

j

j
∑

k=1

1

pk
= κj ,

1

j

j
∑

k=1

1

p−k
= βj .Then

∑

j

ξ2(j, VN )
1

pj
=

∞
∑

j=1

ξ2(j, VN )(jκj − (j−1)κj−1)+
∞
∑

j=1

ξ2(−j, VN )(jβj − (j−1)βj−1)+ ξ2(0, VN )
1

p0

=
∞
∑

j=1

jκj(ξ2(j, VN ) − ξ2(j + 1, VN )) +
∞
∑

j=1

jβj(ξ2(−j, VN ) − ξ2(−j − 1, VN )) + ξ2(0, VN )
1

p0

=
∞
∑

j=1

j(κj − 2γ)(ξ2(j, VN ) − ξ2(j + 1, VN )) + 2γ
∞
∑

j=1

j(ξ2(j, VN ) − ξ2(j + 1, VN ))

+

∞
∑

j=1

j(βj − 2γ)(ξ2(−j, VN )− ξ2(−j− 1, VN ))+2γ

∞
∑

j=1

j(ξ2(−j, VN )− ξ2(−j− 1, VN ))+ ξ2(0, VN )
1

p0

= 2γ

∞
∑

j=−∞

ξ2(j, VN ) +

∞
∑

j=1

j(κj − 2γ)(ξ2(j, VN ) − ξ2(j + 1, VN ))

+

∞
∑

j=1

j(βj − 2γ)(ξ2(−j, VN ) − ξ2(−j − 1, VN )) + ξ2(0, VN )

(

1

p0
− 2γ

)

.19



Observe that
2γ

∞
∑

j=−∞

ξ2(j, VN ) = 2γVN .Applying Lemma A for S2(·), Lemma C and (1.1) again we get that
∞
∑

j=1

j(κj − 2γ)(ξ2(j, VN ) − ξ2(j + 1, VN )) +

∞
∑

j=1

j(βj − 2γ)(ξ2(−j, VN ) − ξ2(−j − 1, VN ))

= O(N1/4+ǫ)

maxk≤N |S2(k)|
∑

j=1

j1−η = O(N1/4+ǫ)O(N1−η/2+ε) = O(N5/4−η/2+ε),where here and throughout the paper the value of ε might 
hange from line to line.Assembling the pie
es we arrive at
HN = (γ − 1)VN + O(N5/4−η/2+ε) + O(N1/2+ε) = (γ − 1)VN + O(N5/4−η/2+ε) a.s. (4.11)as N → ∞.In the middle equation the last term is 
oming from the single term ξ2(0, VN )/p0. Being HN +

VN = N , we get (4.7). Consequently, we have (4.6), (2.2) and (4.7), hen
e
C1(N) = S1(HN ) = W1(HN ) + O(log HN ) = W1

(

γ − 1

γ
N + O(N5/4−η/2+ε)

)

+ O(log N)

= W1

(

γ − 1

γ
N

)

+ O(N5/8−η/4+ε), (4.12)almost surely, as N → ∞. Similarly,
C2(N) = W2

(

1

γ
N

)

+ O(N5/8−η/4+ε), (4.13)almost surely, as N → ∞, whi
h 
on
ludes the proof of Theorem 1.1. 2Proof of Theorem 1.2 By Lemma F
∑

j≡0(modL)

ξ2(j, n) =
n

L
+ O(n1/2+ε)With a similar argument we also have

∑

j≡i(modL)

ξ2(j, n) =
n

L
+ O(n1/2+ε), i = 0, 1, . . . , L − 1. (4.14)20



Consequently, from the law of the iterated logarithm we 
on
lude almost surely, as N → ∞,
HN =

∑

j

(

G
(j)
1 + G

(j)
2 + ... + G

(j)
ξ2(j,VN )

)

=
VN

L

L−1
∑

j=0

1 − 2pj

2pj
+O(N1/2+ε) = VN (γ−1)+O(N1/2+ε).Thus, having

HN =
γ − 1

γ
N + O(N1/2+ε), VN =

1

γ
N + O(N1/2+ε),similarly to the above argument, results in

CP
1 (N) = S1(HN ) = W1(HN ) + O(log HN ) = W1

(

γ − 1

γ
N

)

+ O(N1/4+ε) (4.15)and
CP

2 (N) = S2(VN ) = W2(VN ) + O(log VN ) = W2

(

1

γ
N

)

+ O(N1/4+ε) (4.16)almost surely, as N → ∞, whi
h proves Theorem 1.2. 2A
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