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suh two-dimensional random walks on anisotropi lattie has originated from transport problemsof statistial physis.More formally, onsider the random walk {C(N) = (C1(N), C2(N)) ; N = 0, 1, 2, . . .} on Z
2with the transition probabilities

P(C(N + 1) = (k + 1, j)|C(N) = (k, j)) = P(C(N + 1) = (k − 1, j)|C(N) = (k, j)) =
1

2
− pj,

P(C(N + 1) = (k, j + 1)|C(N) = (k, j)) = P(C(N + 1) = (k, j − 1)|C(N) = (k, j)) = pj ,for (k, j) ∈ Z
2, N = 0, 1, 2, . . . We assume throughout the paper that 0 < pj ≤ 1/2 and minj∈Z pj <

1/2. Unless otherwise stated we assume also that C(0) = (0, 0).The ase pj = 1/4, j = 0,±1,±2, . . . orresponds to simple symmetri random walk on theplane. For this ase we refer to Erd®s and Taylor [14℄, Dvoretzky and Erd®s [13℄, Révész [25℄. Thease pj = 1/2 for some j means that the horizontal line y = j is missing. If all pj = 1/2, then therandom walk takes plae on the y axis, so it is only a one-dimensional random walk, and this aseis exluded from the present investigations. The ase however when pj = 1/2, j = ±1,±2, . . . but
p0 = 1/4 is an interesting one whih is the so-alled random walk on the two-dimensional omb. Forthis model we may refer to Weiss and Havlin [33℄, Bertahi and Zua [2℄, Bertahi [1℄, Csáki et al.[8℄. One of the main properties of this omb model is that the saling of the �rst oordinate C1(N)is of order N1/4, so it is a so-alled sub-di�usion, and an be approximated by an iterated (timehanged) Wiener proess, while the seond oordinate is of order N1/2 and an be approximatedby a Wiener proess. Horváth [20℄ proved a weak onvergene of C2(·) when pj are small so thatsaling is smaller than N1/2 and its limiting proess is a ertain time hanged Wiener proess.In the present paper we investigate the ase when both oordinates are of order N1/2 and anbe simultaneously approximated by independent Wiener proesses. First we outline some history ofthis problem. Note that in the literature usually horizontal and vertial lines are hanged, i.e., ourhorizontal lines orrespond to their vertial lines and vie versa. As noted already, the treatmentof anisotropi random walks is motivated by transport problems in statistial physis. For earlyinvestigations of the model we refer to Silver et al. [29℄, Seshadri et al. [27℄, Shuler [28℄, Westott[34℄, where ertain properties of this random walk were studied under various onditions. Heyde[17℄ proved an almost sure approximation for C2(·) under the ondition (1.1) below. Heyde etal. [19℄ treated the ase when onditions similar to (1.1) are assumed but γ an be di�erent forthe two parts of (1.1) and obtained almost sure onvergene to the so-alled osillating Brownianmotion. In Heyde [18℄ limiting distributions were given for C(·) under the ondition (1.1) butwithout remainder. Den Hollander [12℄ proved strong approximations for C(·) in the ase when pjare random variables with values 1/4 and 1/2. Roerdink and Shuler [26℄ proved some asymptotiproperties, inluding loal limit theorems, under ertain onditions. For more detailed history see[12℄.In the sequel we restrit ourselves to the following ondition of Heyde [17℄:2
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∑
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p−1
j = 2γ + o(n−η), n−1

n
∑

j=1

p−1
−j = 2γ + o(n−η) (1.1)as n → ∞ for some onstants γ, 1 < γ < ∞ and 1/2 < η < ∞.Under this ondition we will prove a joint strong approximation result for C1(·), C2(·), the oor-dinates of the walk C(·) by approximating them by two independent Wiener proesses (Brownianmotions).Theorem 1.1 Under the ondition (1.1) with 1/2 < η ≤ 1, on an appropriate probability spae forthe random walk

{C(N) = (C1(N), C2(N));N = 0, 1, 2, . . .}one an onstrut two independent standard Wiener proesses {W1(t); t ≥ 0}, {W2(t); t ≥ 0} sothat, as N → ∞, we have with any ε > 0
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= O(N5/8−η/4+ε) a.s. (1.2)A partiular ase, the so alled periodi ase, deserves a speial attention here, namely when
pj = pj+L for eah j ∈ Z, where L ≥ 1 is a positive integer. In this ase, denoting the randomwalk by C

P(N) = (CP
1 (N), CP

2 (N)), we have a better approximation and, moreover, we give someresults for the loal time in Setion 3.Theorem 1.2 On an appropriate probability spae for the random walk
{CP(N) = (CP

1 (N), CP
2 (N));N = 0, 1, 2, . . .}one an onstrut two independent standard Wiener proesses {W1(t); t ≥ 0}, {W2(t); t ≥ 0} sothat, as N → ∞, we have with any ε > 0
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= O(N1/4+ε) a.s., (1.3)where
γ =

∑L−1
j=0 p−1

j

2L
.We mention a partiular periodi ase, the so-alled uniform ase, when pj = 1/4 if |j| ≡

0(modL) and pj = 1/2 otherwise. Then Theorem 1.2 is true with γ = (L + 1)/L.The following orollaries are onsequenes of Lemma D and Theorem 1.1. De�ne the ontinuoustime proess C(u), u ≥ 0 by linear interpolation of C(N). The spae C([0, 1], R2) is the set of3



ontinuous funtions de�ned on [0, 1] with values in R
2. Reall the de�nition of the two dimensionalStrassen lass of absolutely ontinuous funtions:

S(2) = {(f(x), g(x)), 0 ≤ x ≤ 1 : f(0) = g(0) = 0,

∫ 1

0
(ḟ2(x) + ġ2(x)) dx ≤ 1}. (1.4)Corollary 1.1 Under the onditions of Theorem 1.1 for the random walk C(·) we have

• (i) the sequene of random vetor-valued funtions
(

√
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(2N log log N)1/2
,
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γ
C2(xN)

(2N log log N)1/2
, 0 ≤ x ≤ 1

)

N≥3is almost surely relatively ompat in the spae C([0, 1], R2) and its limit points is the set offuntions S(2).

• (ii) In partiular, the vetor sequene
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]and the set of its limit points is the ellipse
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. (1.5)
• (iii) Moreover,
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a.s.4



Let us onsider D([0,∞), R2), the spae of R
2 valued àdlàg funtions on [0,∞). For f(t) =

(f1(t), f2(t)) and g(t) = (g1(t), g2(t)) in this funtion spae, de�ne for all �xed T > 0

∆ = ∆T (f, g) := sup
0≤t≤T

‖(f1(t) − g1(t)), (f2(t) − g2(t))‖, (1.6)where ‖ · ‖ is a norm in R
2, usually the ‖ · ‖p norm with p = 1 or 2 in our ase. De�ne also themeasurable spae (D([0,∞), R2),D), where D is the σ-�eld generated by the olletion of all ∆-openballs for all T > 0 of the funtion spae D([0,∞), R2).As a onsequene of Theorem 1.1, we onlude a weak onvergene result in terms of the followingfuntional onvergene in distribution statement.Corollary 1.2 Under the onditions of Theorem 1.1, as N → ∞, we have
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))for all h : D([0,∞), R2) → R
2 that are (D([0,∞), R2),D) measurable and ∆-ontinuous for all T >

0, or ∆-ontinuous for all T > 0, exept at points forming a set of measure zero on (D[0,∞), R2),D)with respet to the measure generated by {W1(t),W2(t); 0 ≤ t < ∞}, where W1 and W2 are twoindependent standard Wiener proesses, and d→ denotes onvergene in distribution.2 PreliminariesFirst we are to rede�ne our random walk {C(N); N = 0, 1, 2, . . .}. It will be seen that the proessdesribed right below is equivalent to that given in the Introdution (f. (2.2) below).To begin with, on a suitable probability spae onsider two independent simple symmetri (one-dimensional) random walks S1(·), and S2(·). We may assume that on the same probability spaewe have a double array of independent geometri random variables {G(j)
i , i ≥ 1, j ∈ Z} whih areindependent from S1(·), and S2(·), where G

(j)
i has the following geometri distribution

P(G
(j)
i = k) = 2pj(1 − 2pj)

k, k = 0, 1, 2, . . . (2.1)We now onstrut our walk C(N) as follows. We will take all the horizontal steps onseutivelyfrom S1(·) and all the vertial steps onseutively from S2(·). First we will take some horizontalsteps from S1(·), then exatly one vertial step from S2(·), then again some horizontal steps from
S1(·) and exatly one vertial step from S2(·), and so on. Now we explain how to get the numberof horizontal steps on eah oasion. Consider our walk starting from the origin proeeding �rsthorizontally G

(0)
1 steps (note that G

(0)
1 = 0 is possible with probability 2p0), after whih it takesexatly one vertial step, arriving either to the level 1 or −1, where it takes G

(1)
1 or G

(−1)
1 horizontalsteps (whih might be no steps at all) before proeeding with another vertial step. If this step5



arries the walk to the level j, then it will take G
(j)
1 horizontal steps, if this is the �rst visit tolevel j, otherwise it takes G

(j)
2 horizontal steps. In general, if we �nished the k -th vertial step andarrived to the level j for the i-th time, then it will take G

(j)
i horizontal steps.Let now HN , VN be the number of horizontal and vertial steps, respetively from the �rst Nsteps of the just desribed proess. Consequently, HN + VN = N , and

{C(N); N = 0, 1, 2, . . .} = {(C1(N), C2(N)); N = 0, 1, 2, . . .}

d
= {(S1(HN ), S2(VN )); N = 0, 1, 2, . . .} , (2.2)where d

= stands for equality in distribution.Now we list some well-known results, and some new ones whih will be used in the rest of thepaper. In ase of the known ones we won't give the most general form of the results, just as muhas we intend to use, while the exat referene will also be provided for the interested reader. Denotethe simple symmetri random walk on the line by S(n) and let M(n) = max0≤k≤n |S(k)|. Then wehave the LIL and Chung [6℄:Lemma A We have almost surely
lim sup

n→∞

M(n)√
2n log log n

= 1, lim inf
n→∞
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log log n

n

)1/2

M(n) =
π√
8
.Denote by ξ(x, n) the loal time of the simple symmetri random walk S(n) de�ned by

ξ(x, n) =

n
∑

i=0

I{S(i) = x}, x ∈ Z, n = 0, 1, 2, . . . ,where I{·} is the indiator funtion. Let the maximal loal time be
ξ(n) = sup

x∈Z

ξ(x, n).For the next Lemma see Kesten [21℄.Lemma B For the maximal loal time we have
lim sup

n→∞

ξ(n)

(2n log log n)1/2
= 1 a.s.In Heyde [17℄ the following result was given about the uniformity of the loal time (see also [9℄,Lemma 5).Lemma C For the simple symmetri walk we have for any ε > 0

lim
n→∞

supx∈Z |ξ(x + 1, n) − ξ(x, n)|
n1/4+ε

= 0 a.s.6



The next lemma is the two-dimensional version, and that of its onsequene, of the elebratedfuntional iterated logarithm law for multidimensional Wiener proess due to Strassen [31℄:Lemma D Let W1(t) and W2(t) be independent standard Wiener proesses starting from zero. Thenwith probability 1, the limit points for the random vetor valued funtions
(

W1(xT )

(2T log log T )1/2
,

W2(xT )

(2T log log T )1/2
, 0 ≤ x ≤ 1

)

T≥3as T → ∞ is S(2) of (1.4). In partiular, the limit points of the random vetors
(

W1(T )

(2T log log T )1/2
,

W2(T )

(2T log log T )1/2

)

T≥3as T → ∞ is the unit irle
{(x, y) : x2 + y2 ≤ 1}.We will need the elebrated KMT strong invariane priniple (f. Komlós et al. [22℄).Lemma E On an appropriate probability spae one an onstrut {S(n), n = 1, 2, . . .}, a simplesymmetri random walk on the line and a standard Wiener proess {W (t), t ≥ 0} suh that as

n → ∞,
S(n) − W (n) = O(log n) a.s.Lemma 2.1 Let {S(n); n = 0, 1, . . .} be a simple symmetri random walk on the line. Put
τ(i) = min{n > 0 : S(n) = i},

τL = min (τ(0), τ(−L), τ(L)) .Then
E(τL) = L, (2.3)and τL has �nite variane, (the value of whih is unimportant in the present ontext).Proof. For 0 ≤ a ≤ b ≤ c de�ne

p(a, b, c) := P(min{n : n > m, S(n) = a} < min{n : n > m, S(n) = c} | S(m) = b). (2.4)It is well-known that (f. e.g. [25℄, p. 23)
p(a, b, c) =

c − b

c − a
.Consider

ξ(k, τL), k = ±1,±2, . . . ,±(L − 1),7



i.e. the loal time of k up to time τL.It is obvious that for L = 1 or L = 2, we have τL = L. So assume that L ≥ 3.
P(ξ(1, τL) = 0) =

1

2
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, j = 1, 2, . . .For k = 2, 3, . . . , L − 1 the same type of argument results in
P(ξ(k, τL) = 0) = 1 − 1

2k

P(ξ(k, τL) = j) =
1

2
(1 − p(0, 1, k))

(

1

2
(1 − p(0, 1, k)) +

1

2
p(k, k + 1, L)

)j−1

×

×
(

1

2
p(0, k − 1, k) +

1

2
(1 − p(k, k + 1, L))

)

=
1

2k

(
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, j = 1, 2, . . .From the above distributions, whih are geometri, we get by simple alulation
E(ξ(k, τL)) =

L − k

L
,Obviously, the same is true for k = −1,−2, . . . ,−(L − 1), with k replaed by −k.Consequently

E(τL) = 1 + 2
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∑

k=1

L − k

L
= L.It is lear from the above alulations that τL has �nite variane. 2Let

EL = {jL; j = 0,±1,±2, . . .},
γ1,L = τL, γi,L = min{j > 0 : S(γi−1,L + j) ∈ EL},

TN,L =

N
∑

i=1

γi,L,

Nn = max{k : Tk,L ≤ n}.8



Sine TN,L is a sum of i.i.d. random variables, Nn is a renewal proess. It follows from Gut etal. [16℄Lemma F As N → ∞, we have almost surely
TN,L = NL + O(N1/2+ε)and as n → ∞ we have almost surely

Nn =
n

L
+ O(n1/2+ε).For sums of geometri random variables we need the following exponential estimation.Lemma 2.2 Let {G(j)

i , i = 1, 2, . . . , nj , j = 0,±1,±2, . . . ,±K} be independent random variableswith distribution
P(G

(j)
i = k) = αj(1 − αj)

k, k = 0, 1, 2, . . . ,where 0 < αj ≤ 1. Put
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.Then, for λ < −σ2 log(1 − αj) for eah j ∈ [−K,K], we have
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 . (2.5)Proof. Sine G
(j)
i , i = 1, 2, . . . , nj, j = 0,±1,±2, . . . ,±K are independent, and G

(j)
i has momentgenerating funtion
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=
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1 − eθ(1 − αj)for eθ(1− αj) < 1, the umulant generating funtion of BK an be obtained from the series expan-sions of logarithmi and exponential funtions as follows.
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∞
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∞
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ℓ−1
∑

m=1

A(ℓ − 1,m)(1 − αj)
m ≤

ℓ−1
∑

m=1

A(ℓ − 1,m) = (ℓ − 1)!,and
E(BK) =

K
∑

j=−K

nj(1 − αj)

αj
,we have

E

(

eθ(BK−E(BK ))
)

≤ exp







θ2σ2

2
+

∞
∑

ℓ=3

θℓ
K
∑

j=−K

nj

αℓ
j







.By Markov inequality,
P(BK − E(BK) ≥ λ) ≤ e−λθ
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.The estimation of P(E(BK) − BK ≥ λ) is similar. By hoosing θ = λ/σ2, we have the Lemma. 23 Loal times and rangeBefore proving our main results, Theorems 1.1 and 1.2, in Setion 4, in this setion we deal withthe periodi ase on its own. In this ase, for a given positive integer L ≥ 1, pj+L = pj for all j ∈ Z,and for i = 0, 1, . . ., we have
1

L
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1
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1
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= 2γ, (3.1)10



with 1 < γ < ∞, as in (1.1).In this speial ontext we onlude results of interest on their own for the loal time and rangeof the walk and relate them to our main approximation theorems, as well as to similar ones forother walks in the literature. The topis disussed in this setion are not needed in Setion 4 forthe proofs of Theorems 1.1 and 1.2 themselves.First we note that in the ase of L ≥ 2 there is a relation between the periodi ase and apartiular ase of the so-alled random walk with internal states (or random walk with internaldegrees of freedom). This was introdued by Sinai [30℄, and further investigated by Krámli andSzász [23℄, Tels [32℄, Nándori [24℄ and others. Let F be a �nite set. On Z
d × F the Markov hain

{U(N) = (X(N), Z(N))} is a random walk with internal states, if for xN ,xN+1 ∈ Z
d, ℓN , ℓN+1 ∈ F

P(U(N + 1) = (xN+1, ℓN+1) | U(N) = (xN , ℓN )) = P (xN+1 − xN , ℓN , ℓN+1).In the partiular ase d = 2, F = {0, 1, . . . , L − 1}, for (k, j) ∈ Z
2

P(U(N + 1) = (k, j, ℓ + 1) | U(N) = (k, j, ℓ)) = P(U(N + 1) = (k, j, ℓ − 1) | U(N) = (k, j, ℓ)) = pℓfor ℓ = 1, . . . , L − 2,
P(U(N +1) = (k, j, 1) | U(N) = (k, j, 0)) = P(U(N +1) = (k, j−1, L−1) | U(N) = (k, j, 0)) = p0,

P(U(N + 1) = (k, j + 1, 0) | U(N) = (k, j, L − 1))

= P(U(N + 1) = (k, j, L − 2) | U(N) = (k, j, L − 1)) = pL−1,

P(U(N+1) = (k+1, j, ℓ) | U(N) = (k, j, ℓ)) = P(U(N+1) = (k−1, j, ℓ) | U(N) = (k, j, ℓ)) =
1

2
−pℓfor ℓ = 0, 1, . . . , L − 1.It is lear that for C

P(N) = (CP
1 (N), CP

2 (N)) and U(N) = (X1(N),X2(N), Z(N)), we have aone-to-one orrespondene, namely
CP

1 (N) = X1(N), CP
2 (N) = LX2(N) + Z(N),with 0 ≤ Z(N) ≤ L − 1. Hene Z(N) = ℓ if and only if CP

2 (N) ≡ ℓ (modL) and X2(N) =
(CP

2 (N) − Z(N))/L.Sine Z(N) is bounded, it follows that Theorem 1.2 is true with CP
1 (N) replaed by X1(N),and CP

2 (N) replaed by LX2(N).To study the loal times of our random walk, we need a loal limit theorem for C
P(·).Lemma 3.1 In the periodi ase we have

P(CP(2N) = (0, 0)) ∼ 1

4πNp0
√

γ − 1
(3.2)with L ≥ 1. 11



Proof. For the proof we ould have used the loal limit theorems for random walks with internalstates, given as in Krámli and Szász [23℄. Nándori [24℄ also gives a remainder term in this loallimit theorem. To determine the exat onstant, we take another route, namely apply (2.3.9) ofRoerdink and Shuler [26℄ with d = 2. Using their notations, what we have to determine is theinvariant probability measure (π0, π1, . . . , πL−1) and the determinants of their matries 2D and A.Now 2D, what they all di�usion matrix, whose elements are the onstants in the varianes andovarianes of the omponents, an be seen in Theorems 1.1 and 1.2, i.e., we have
2D =

( γ−1
γ 0

0 1
γ

)

.The matrix A has elements (f. (2.2.25) in [26℄) Aki = akei (salar produt), where a1 = (1, 0),
a2 = (0, L), e1 = (1, 0), e2 = (0, 1), hene

A =

(

1 0
0 L

)

,giving det(2D) = (γ − 1)/γ2, detA = L.Now (2.3.9) of [26℄ with d = 2 reads as follows.
P(CP(N) = (0, α)|CP(0) = (0, β)) ∼ πα(det s)−1/2(2πN)−1, (3.3)where 0 ≤ α, β ≤ L − 1,

det s = (det 2D)(detA)−2 =
γ − 1

L2γ2
(3.4)and πα are the omponents of the left eigenvetor orresponding to the maximal eigenvalue λ0 = 1of the stohasti matrix T de�ned by (2.1.10) in [26℄.We are to show now that

πα =
1

2pαLγ
, α = 0, . . . , L − 1. (3.5)First we note that the elements of the matrix T are the transition probabilities for the internalstates of the walk in hand.Now for L = 1, this matrix has only one element that is equal to 1, hene π0 = 1, in agreementwith (3.5), via (3.1) with L = 1.When L = 2, the matrix T of the transition probabilities for the internal states is the 2x2 matrix

T =

(

1 − 2p0 2p0

2p1 1 − 2p1

)

.In view of this, easy omputations show that (π0, π1) as given by (3.5) are the omponents of theleft eigenvetor (p1/(p0 +p1), p0/(p0 +p1)) that orresponds to the eigenvalue λ0 = 1 of this matrix.12



Continuing along these lines, for L > 2, the elements of the matrix T are the transition proba-bilities
P(i, i + 1) = P(i, i − 1) = pi, P(i, i) = 1 − 2pi, i = 1, 2, . . . , L − 2,

P(0, 1) = P(0, L − 1) = p0, P(0, 0) = 1 − 2p0,

P(L − 1, L − 2) = P(L − 1, 0) = pL−1, P(L − 1, L − 1) = 1 − 2pL−1.Consequently, it an be seen that πα; α = 0, 1, . . . , L − 1 as in (3.5), are the omponents of theleft eigenvetor orresponding to the eigenvalue λ0 = 1 of this matrix T in this ase too, i.e., when
L > 2.Putting α = β = 0 into (3.3), using (3.4), and sine the probability on the left hand side is non-zero only if the number of steps are even, we have to modify (3.3) by multiplying it by (1+ (−1)N ),just as in (2.3.15) or (2.3.17) of [26℄. With this modi�ation, replaing N by 2N in (3.3), we arriveat (3.2) of Lemma 3.1. 2Having now Lemma 3.1, we are to study the loal time and range of the periodi random walk.These results are additional to that of Theorem 1.2.It follows from Lemma 3.1 that the trunated Green funtion g(·) is given by

g(N) =
N
∑

k=0

P(CP(k) = (0, 0)) ∼ log N

4p0π
√

γ − 1
, N → ∞,whih implies that our anisotropi random walk in this ase is reurrent and also Harris reurrent.First, we de�ne the loal time by

Ξ((k, j), N) =

N
∑

r=1

I{CP(r) = (k, j)}, (k, j) ∈ Z
2. (3.6)In the ase when the random walk is (Harris) reurrent, then we have (f. e.g. Chen [3℄)

lim
N→∞

Ξ((k1, j1), N)

Ξ((k2, j2), N)
=

µ(k1, j1)

µ(k2, j2)
a.s.,where µ(·) is an invariant measure. So to obtain limit theorems for the loal time as in (3.6), itsu�es to �nd an invariant measure that, in ombination with appropriate results for Ξ((0, 0), N),will also yield general results.In this ontext, an invariant measure is de�ned via

µ(A) =
∑

(k,j)∈Z2

µ(k, j)P(CP(N + 1) ∈ A|CP(N) = (k, j)).For (k, j) ∈ Z
2, in our ase we have

µ(k, j) = µ(k + 1, j)

(

1

2
− pj

)

+ µ(k − 1, j)

(

1

2
− pj

)

+ µ(k, j + 1)pj+1 + µ(k, j − 1)pj−1.13



It is easy to see that
µ(k, j) =

1

pj
, (k, j) ∈ Z

2,satis�es this equation. So this de�nes an invariant measure. Hene
lim

N→∞

Ξ((0, 0), N)

Ξ((k, j), N)
=

pj

p0
a.s.for (k, j) ∈ Z

2 �xed.Thus, using now g(N), it follows from Darling and Ka [11℄ that we haveCorollary 3.1
lim

N→∞
P

(

Ξ((0, 0), N)

g(N)
≥ x

)

= lim
N→∞

P

(

4p0π
√

γ − 1 Ξ((0, 0), N)

log N
≥ x

)

= e−x, x ≥ 0.For a limsup result, via Chen [3℄ we onludeCorollary 3.2
lim sup
N→∞

Ξ((0, 0), N)

log N log log log N
=

1

4p0π
√

γ − 1
a.s.For moderate and large deviations and funtional limit laws for the loal time see Csáki et al.[10℄, whih was extended by Gantert and Zeitouni [15℄. In our ase the funtional limit theoremreads as follows: Let M be the set of funtions m(x), 0 ≤ x ≤ 1 whih are non-dereasing, right-ontinuous on [0, 1) and left-ontinuous at x = 1, equipped with weak topology, indued by Lévymetri. Furthermore, let M∗ be the subset of M with m(0) = 0 and

∫ 1

0

dm(x)

x
≤ 1.Corollary 3.3 Let t(N,x) ∈ M be a sequene of funtions suh that

lim
N→∞

log t(N,x)

log N
= xfor all 0 ≤ x ≤ 1, like for example, t(N,x) = Nx. Put

fN (x) =
4p0π

√
γ − 1Ξ(0, t(N,x))

log N log log log N
.Then, almost surely, the set of limit points of {fN (x), 0 ≤ x ≤ 1}N≥16 is M∗.14



For further results, inluding seond order limit laws, we refer to Chen [4℄ and [5℄.The range of the random walk {CP(·)} is de�ned by
R(N) =

∑

(k,j)∈Z2

I{Ξ((k, j), N) > 0},i.e. the number of distint sites visited by the random walk up to time N . Roerdink and Shuler[26℄ gives
E(R(N)) ∼ 2π

√
γ − 1

γ

N

log N
, N → ∞.Moreover, a law of large numbers follows from Nándori [24℄Corollary 3.4

lim
N→∞

R(N)

E(R(N))
= lim

N→∞

γ R(N) log N

2π
√

γ − 1 N
= 1 a.s.4 Proofs of the approximation theoremsProof of Theorem 1.1.The proof of Theorem 1.1 will be based on the following Proposition.Proposition 4.1 Assume the onditions of Lemma 2.2 and put M =

∑K
j=−K nj. For M → ∞ and

K → ∞ assume moreover that
K = K(M) = O(M1/2+δ), max

−K≤j≤K
nj = O(M1/2+δ), (4.1)for all δ > 0,

1

αj
≤ c1|j|1−η , j = 0,±1,±2, . . . (4.2)for some 1/2 < η ≤ 1 and c1 > 0,

K
∑

j=−K

1

αj
= O(K),

1

σ
≤ c2

M1/2
(4.3)for some c2 > 0. Then we have as K,M → ∞,

K
∑

j=−K

nj
∑

i=1

G
(j)
i =

K
∑

j=−K

nj
1 − αj

αj
+ O(M3/4−η/4+ε) a.s. (4.4)for some ε > 0. 15



Proof. By (4.1), (4.2) and (4.3) we have
K
∑

j=−K

nj

αℓ
j

= O(M (1/2+δ)(1+(ℓ−1)(1−η)))
K
∑

j=−K

1

αj
= O(M (1/2+δ)(ℓ(1−η)+1+η)).For ℓ = 2 this gives

σ2 =

K
∑

j=−K

nj(1 − αj)

α2
j

≤
K
∑

j=−K

nj

α2
j

= O(M (1/2+δ)(3−η)).Put
λ = M εσ = O(M (3/2−η/2)(1/2+δ)+ε)into (2.5) of Lemma 2.2 with ε > 0 small enough. This is possible, sine for |j| ≤ K and ε < η/2we an selet δ > 0 small enough, suh that

λ

σ2 log 1
1−αj

=
M ε

σ log 1
1−αj

≤ c
M ε−1/2

αj
≤ cM ε−1/2|j|1−η ≤ cM ε−1/2+(1/2+δ)(1−η) < 1for large enough M . We get

P





∣

∣

∣

∣

∣

∣

K
∑

j=−K

nj
∑

i=1

G
(j)
i −

K
∑

j=−K

nj
1 − αj

αj

∣

∣

∣

∣

∣

∣

> λ





≤ 2 exp

(

−M2ε

2
+

∞
∑

ℓ=3

M ℓε

σℓ
O(M (1/2+δ)(ℓ(1−η)+1+η))

)

. (4.5)But using (4.3),
∞
∑

ℓ=3

M ℓε

σℓ
O(M (1/2+δ)(ℓ(1−η)+1+η)) ≤ O(M (1/2+δ)(1+η))

∞
∑

ℓ=3

(

M (1/2+δ)(1−η)+ε

σ

)ℓ

= O(M1/2−η+3ε+δ(4−2η)).Choosing δ > 0 and ε > 0 small enough, the dominant term on the exponent of the right-hand sideof (4.5) is −M2ε/2, hene by Borel-Cantelli lemma
K
∑

j=−K

nj
∑

i=1

G
(j)
i =

K
∑

j=−K

nj
1 − αj

αj
+ O(M3/4−η/4+ε+δ) a.s.as M → ∞. This ompletes the proof of the Proposition 4.1. 216



To prove Theorem 1.1, we start with the rede�ned version of C(N) given in the Preliminaries.By Lemma E we may assume that on the same probability spae where the two simple symmetrirandom walks S1(n) and S2(n) are already de�ned, there are also two independent Wiener proesses
W1(·), W2(·) suh that for i = 1, 2 we have

sup
k≤n

|Si(k) − Wi(k)| = O(log n) (4.6)almost surely, as n → ∞.As in Setion 2, let HN , VN be the number of horizontal and vertial steps, respetively fromthe �rst N steps of C(·). In view of (2.2) it is enough to show that
HN =

γ − 1

γ
N + O

(

N5/4−η/2+ǫ
) (4.7)almost surely, as N → ∞.Consider the sum

G
(j)
1 + G

(j)
2 + ... + G

(j)
ξ2(j,VN )whih is the total number of horizontal steps on the level j, where ξ2(·, ·) is the loal time of thewalk S2(·). This statement is slightly inorret if j happens to be the level where the last vertialstep (up to the total of N steps) takes the walk. In this ase the last geometri random variablemight be trunated. However the error whih might our from this simpli�ation will be part ofthe O(·) term. This an be seen as follows. Let

H+
N =

∑

j

ξ2(j,VN )
∑

i=1

G
(j)
i , H−

N =
∑

j

ξ2(j,VN )−1
∑

i=1

G
(j)
i ,where G

(j)
i has distribution (2.1). Obviously, H−

N ≤ HN ≤ H+
N and

H+
N − H−

N =
∑

j

G
(j)
ξ2(j,VN ).Here and in the sequel

∑

j

=
∑

min0≤k≤VN
S2(k)≤j≤max0≤k≤VN

S2(k)

.Now onsider the following sum:
K
∑

j=−K

G(j),

17



where G(j) are independent random variables with distribution (2.1). Then
E





K
∑

j=−K

G(j)



 =
K
∑

j=−K

1 − 2pj

2pj
, σ2 = V ar





K
∑

j=−K

G(j)



 =
K
∑

j=−K

1 − 2pj

(2pj)2
.From Lemma 2.2 with nj = 1, we obtain

P





∣

∣

∣

∣

∣

∣

K
∑

j=−K

(

G
(j)
i − 1 − 2pj

2pj

)

∣

∣

∣

∣

∣

∣

> λ



 ≤ 2 exp



− λ2

2σ2
+

∞
∑

ℓ=3

λℓ

σ2ℓ

K
∑

j=−K

1

αℓ
j



 . (4.8)Note that by using (1.1) and (4.2), with αj = 2pj , we get as K → ∞,
K
∑

j=−K

1 − 2pj

2pj
= O(K),and

K
∑

j=−K

1

(2pj)ℓ
= O(Kℓ(1−η)+η),

cK ≤ σ2 = O(K2−η).Put λ = σKε into (4.8) with ε > 0 small enough, we get similarly to the proof of (4.4) of Proposition4.1 that
K
∑

j=−K

G(j) =

K
∑

j=−K

1 − 2pj

2pj
+ O(K1−η/2+ε) = O(K).Choosing K = max1≤k≤VN

|S2(k)|, this gives
H+

N − HN ≤ H+
N − H−

N = O(N1/2+δ)almost surely, as N → ∞, with arbitrary small δ.So onsider
H+

N =
∑

j

(

G
(j)
1 + G

(j)
2 + ... + G

(j)
ξ2(j,VN )

)

.We apply Proposition 4.1 with M = VN , K = max0≤k≤VN
|S2(k)|, nj = ξ2(j, VN ), αj = 2pj ,

j = 0,±1,±2, . . .The assumptions of this Proposition are satis�ed almost surely: (4.1) follows from Lemma Aand Lemma B, and for (4.2) we refer to Heyde [17℄. The �rst part of (4.3) follows from (1.1). Itremains to verify the seond part of (4.3). Aording to a result of Heyde [17℄ (p. 726, formula (6))
lim

N→∞

1

VN

∑

j

ξ2(j, VN )

2pj
= γ a.s. (4.9)18



Hene, as N → ∞, we have almost surely,
σ2

VN
=

1

VN

∑

j

ξ2(j, VN )(1 − 2pj)

(2pj)2
≥ 1

VN

∑

j

ξ2(j, VN )(1 − 2pj)

2pj
=

1

VN

∑

j

ξ2(j, VN )

2pj
− 1 → γ − 1 > 0.This veri�es the seond part of (4.3).Hene by Proposition 4.1, sine VN ≤ N , we have almost surely, as N → ∞,

H+
N =

∑

j

(

G
(j)
1 + G

(j)
2 + . . . + G

(j)
ξ2(j,VN )

)

=
∑

j

ξ2(j, VN )
1 − 2pj

2pj
+ O(N3/4−η/4+ε) (4.10)

= −VN +
1

2

∑

j

ξ2(j, VN )
1

pj
+ O(N3/4−η/4+ε).In what follows we take some more ideas from Heyde [17℄ in order to prove (4.9) with anappropriate remainder term. Introdue the notation

1

j

j
∑

k=1

1

pk
= κj ,

1

j

j
∑

k=1

1

p−k
= βj .Then

∑

j

ξ2(j, VN )
1

pj
=

∞
∑

j=1

ξ2(j, VN )(jκj − (j−1)κj−1)+
∞
∑

j=1

ξ2(−j, VN )(jβj − (j−1)βj−1)+ ξ2(0, VN )
1

p0

=
∞
∑

j=1

jκj(ξ2(j, VN ) − ξ2(j + 1, VN )) +
∞
∑

j=1

jβj(ξ2(−j, VN ) − ξ2(−j − 1, VN )) + ξ2(0, VN )
1

p0

=
∞
∑

j=1

j(κj − 2γ)(ξ2(j, VN ) − ξ2(j + 1, VN )) + 2γ
∞
∑

j=1

j(ξ2(j, VN ) − ξ2(j + 1, VN ))

+

∞
∑

j=1

j(βj − 2γ)(ξ2(−j, VN )− ξ2(−j− 1, VN ))+2γ

∞
∑

j=1

j(ξ2(−j, VN )− ξ2(−j− 1, VN ))+ ξ2(0, VN )
1

p0

= 2γ

∞
∑

j=−∞

ξ2(j, VN ) +

∞
∑

j=1

j(κj − 2γ)(ξ2(j, VN ) − ξ2(j + 1, VN ))

+

∞
∑

j=1

j(βj − 2γ)(ξ2(−j, VN ) − ξ2(−j − 1, VN )) + ξ2(0, VN )

(

1

p0
− 2γ

)

.19



Observe that
2γ

∞
∑

j=−∞

ξ2(j, VN ) = 2γVN .Applying Lemma A for S2(·), Lemma C and (1.1) again we get that
∞
∑

j=1

j(κj − 2γ)(ξ2(j, VN ) − ξ2(j + 1, VN )) +

∞
∑

j=1

j(βj − 2γ)(ξ2(−j, VN ) − ξ2(−j − 1, VN ))

= O(N1/4+ǫ)

maxk≤N |S2(k)|
∑

j=1

j1−η = O(N1/4+ǫ)O(N1−η/2+ε) = O(N5/4−η/2+ε),where here and throughout the paper the value of ε might hange from line to line.Assembling the piees we arrive at
HN = (γ − 1)VN + O(N5/4−η/2+ε) + O(N1/2+ε) = (γ − 1)VN + O(N5/4−η/2+ε) a.s. (4.11)as N → ∞.In the middle equation the last term is oming from the single term ξ2(0, VN )/p0. Being HN +

VN = N , we get (4.7). Consequently, we have (4.6), (2.2) and (4.7), hene
C1(N) = S1(HN ) = W1(HN ) + O(log HN ) = W1

(

γ − 1

γ
N + O(N5/4−η/2+ε)

)

+ O(log N)

= W1

(

γ − 1

γ
N

)

+ O(N5/8−η/4+ε), (4.12)almost surely, as N → ∞. Similarly,
C2(N) = W2

(

1

γ
N

)

+ O(N5/8−η/4+ε), (4.13)almost surely, as N → ∞, whih onludes the proof of Theorem 1.1. 2Proof of Theorem 1.2 By Lemma F
∑

j≡0(modL)

ξ2(j, n) =
n

L
+ O(n1/2+ε)With a similar argument we also have

∑

j≡i(modL)

ξ2(j, n) =
n

L
+ O(n1/2+ε), i = 0, 1, . . . , L − 1. (4.14)20



Consequently, from the law of the iterated logarithm we onlude almost surely, as N → ∞,
HN =

∑

j

(

G
(j)
1 + G

(j)
2 + ... + G

(j)
ξ2(j,VN )

)

=
VN

L

L−1
∑

j=0

1 − 2pj

2pj
+O(N1/2+ε) = VN (γ−1)+O(N1/2+ε).Thus, having

HN =
γ − 1

γ
N + O(N1/2+ε), VN =

1

γ
N + O(N1/2+ε),similarly to the above argument, results in

CP
1 (N) = S1(HN ) = W1(HN ) + O(log HN ) = W1

(

γ − 1

γ
N

)

+ O(N1/4+ε) (4.15)and
CP

2 (N) = S2(VN ) = W2(VN ) + O(log VN ) = W2

(

1

γ
N

)
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