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1. Introduction and main result

Let (X;,7)2, be a sequence of i.i.d. vectors, with nonnegative second component. The two
components of the vector are not supposed to be independent. Let

n n
= ZXH Pn = ZTi'
=1 i=1

In our paper [8] we proved, that under very mild conditions on X; and 7;, one can approximate
(Sn, pn), by (S}, pl,) having the same marginal distributions, on such a way that (S;,) and
(p,) are independent. In fact we proved the following theorem.

Theorem 1A. Let (X;,7;);2, be a sequence of i.i.d. vectors, such that 7; > 0 and

Cc
(1.1) P(X; >z) < v P(r;>z) < o

for x large enough, where 0 < a <1, > 2 and ¢ > 0 are constants.
Then on an appropriate probability space one can construct two independent copies

(X, 79

2T )oi and (XZ-(Z),TZ@))i together with (X;, 7;)52, such that

(1.2) (Sns o)1 2 (S, 0PN G=1,2

(1.3) sup |py, — PS)| =0 (nl/a*) a.s.
k<n

(1.4) sup|S, — S| =0 <n1/ﬁ*) a.s.
k<n

as n — oo, where S,(Cj) = ZleXi(j), J) => = zj), Se=YF Xy, p=%F 7 and
ot >a, fF>2.

In the present paper the condition on 7; will be replaced by the following one:
1
h(z)’

where h(x) is slowly varying at infinity. Thus Theorem 1A takes care of the regularly varying
tail case, and the present paper deals with the case of slowly varying tail for 7;. Our main
result here is the following



Theorem 1.1. Let (X;,7;)3°, be a sequence of i.i.d. vectors, such that 7, > 0 and

1
P(r,>z) < —

(1.5) P(X,| > 7) < o)

.T_ﬂ’
for x large enough, where 3 > 2, ¢ > 0 and h(z) is slowly varying at infinity, increasing with
limy o0 h(z) = +00.

Then on an appropriate probability space one can construct two independent copies

(x5 " and (xP,72)”

7 ie

| together with (Xi, )2, such that

(1'6) (Sm pn)zozl 2 (Séj)’pg))zozl .7 = 1’ 2
(1.7) igp Sk — S,£2)| =0 (nl/ﬂ*) a.s.
(18) sup o = )| = O (17 (1%) s

as n — oo, where Sl(cj) =X, Xz‘(j)a pl(cj) = Xh Tz‘(j)a Sk = XiaXe, e = i
a<l, p*>2, and h*(-) is the inverse of h(-).

Now a brief explanation of this whole problem is in order.

Let {U,}2, be a simple symmetric random walk on the line i.e. U, = >}_; Yy, where
the random variables Y;, i = 1,2, ... are i.i.d. with P(Y; =+1) =P(Y; =-1) =1/2.

Define the local time of the walk by

(1.9) E(xz,n) =#{k; 0 <k <n, U=z}

Theorem 1B. (Dobrushin [15]): For any fized integer a # 0

é. ) B § Oa
(ilaaln2 2)1/(27131 = Uyl

(1.10)

. . D
as n — oo, where U and V are two independent standard normal variables and = denotes
convergence in distribution.

In fact the above result is only a special case of Dobrushin’s theorem, and it has several
generalizations most of them for Brownian local time in one dimension. (See Borodin [3],



Kasahara [20], Papanicolaou et al. [25], Yor [28], Csorgé and Révész [13], Csdki and Foldes
7)-

Denote by p, the n-th return time of the random walk to zero and S, = &(a, p,) — n,
ie. X; =&(a,pi) —&(a,pi1) — 1 and 7; = p; — p;—1. Then clearly here (X;, 7;)$%, is an i.i.d.
sequence of vectors but X; and 7; are not independent. However as Theorem 1B suggests it,
they are asymptotically independent in distribution. Further results are on this matter in
Kesten [22], Kasahara [21] and in Csaki et al. [5, 6].

In this paper just like in [8] we prove the asymptotic independence in strong sense, which,
as we will show, proves to be useful to get strong theorems for Dobrushin type results.

The aim of this paper is to present a method which was developed by proving strong
approximation results in similar situations (see [5, 6], Csdki and Csorgé [4], Csdki and
Salminen [11], Csaki, Foldes and Révész [9], Csdki and Fdldes [8]). The proof of our Theorem
1.1 is in Section 2. Having at hand our Theorem 1.1 and Theorem 1.A, we turn our attention
to applications. We apply Theorem 1.1 to prove strong approximation results for additive
functionals of random walks on Z! and Z?. Theorem 1.1 is applied for random walks having
slowly varying truncated Green functions, this is the content of Section 3. In Section 4
we apply our Theorem 1.A for the case of regularly varying truncated Green function. In
our paper [9] we proved similar results for the local time difference of the simple symmetric
planar random walk, which led us to the generalization of our method in [8] for the slowly
varying case. Some consequences of our results are discussed in Section 5.

2. Proof of Theorem 1.1.

Before proving Theorem 1.1 we formulate two simple properties of slowly varying functions,
and prove some lemmas.

Property 1: If h(x) is slowly varying at infinity, then for every k > 0, there exist o, Yo
such that

(2.1) h(zy) < h(x)y" if ©>x9, Yy > yo.

This property easily follows from Potter’s theorem (see e.g. Bingham, Goldie and Teugels
[2], Theorem 1.5.6 (i), pp. 25).

Property 2: If h(x) is slowly varying at infinity with h(z) 1T +oo and Lg is so large that
1/h(x) is locally bounded in [Lg, 00), then
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with some constant C'.
Property 2 easily follows from [2], Proposition 1.5.8, pp. 26.

Now assume that (X () (j))oil, j = 1,2 are two indepent copies of the sequence of
vectors (X;,7;);~, defined on our probability space. Considering the corresponding partial
sums (S() p(7)) n=1,2,..., 5 = 1,2 we build up the process (S,, p,) as follows. Let
A, =2%and r, = A, — Ay =251 k =1,2... We define the k-th block of our processes
as

(SS90 P i) (SSL PR G=1.2.
Consider now 7'( 9 s for 7 = 1,2 within the k-th block. Fix ¢ < 1. We will call 7' ) and the
whole pair (XY ) Y large if

(2.3) D> h () =12 A <i< A

where h*(-) is the inverse of A(-). 7 and the whole pair (X7, 7} will be called small if

(2.4) D <k () j=1,2, Ay <i< Ay

Denote by 1/,(6] ), ué) the number of large and small Ti(j ), respectively in the k-th block. We

create the k-th block of our new partial sum process

(SAk—1+1’ pAk—l"f‘l)’ (SAk7 pAk)

by piecing together vectors from the processes ) and @ according to the following rules.
In the k-th block we will have vy, = l/k large pairs and py = Tk — 1/,(61) small pairs. To

achieve this goal let (X;,7;) = (X~(1), T ) for A, < 1 < A if TZ- is large. When 'rl-(l)

happens to be small we replace the pair (X SIS

it is possible. More precisely if ,ugc) > ,u(l) then each small pair from process () will be

) by a small pair from process (2) whenever

replaced by the first (first within the k-th block) p k ) small pairs from process . However,

if ,uk < u; ) then we can only replace the first (within the k-th block) u; ) small pairs by the

corresponding small pairs from process (@), leaving the remaining small pairs from process
(1) unaltered.

Piecing the blocks together we get our new process (Sy,p,). First observe, that our
process automatically satisfies (1.6) of our theorem by construction.

Lemma 2.1. For any q > 0 and any integer £ > 1

(2.5) E(rO1(r9 < (rf))) < C

i=1,2

q » 4y AE*ISZ.<AZ-



Proof. The proof directly follows from (2.2) and (1.5) as

(G (-) W) 1 h*(r})
2. E (77 I(1’ *(rd Lo+ — < Ly+
( 6) <Tz (TZ = " (TE))) = k:ZLo h(k) =0 C Tg

where C is a constant. In the sequel we keep denoting uninteresting constant by C, the value
of which might vary from line to line. O

Lemma 2.2. For any q* >q >0
(2.7) sup |pe — p§1)| < h* (Nq*) a.s.
<N
if N is big enough.
Proof. First observe that for A, ;1 < N < A,
S NS ) (0)
(2.8) sup |pg pZ \ < sup |pe — pz | <>y > 7 I(Tij < h*(rg)).
=1 j=1 1=A; 1+1
Moreover, for any p > 0, by Lemma 2.1 and Markov’s inequality
2 Ay . .
P(Y Y I <weh) > and) <
J=1 i=A;_1+1

Re(rd) 1
)

(2.9) reC =Cry 7= 209,

Thus for any p > 0 for which 1 —p — ¢ <0,

o0
22 D(A-p=0) + 59
=1

implying by Borel-Cantelli lemma that for £ > £5(w)

2 A : :
(2.10) > Y AIEY <w)) <rh () as.

=1 i=Ap_1+1

Hence by (2.8) for £ big enough

Bl

(2.11) zsup |pe — Z *(r]) < krbh* (r]).



Select now an arbitrary ¢* > ¢, and p > 0, such that p + ¢ > 1 should hold. We show now
that with this selection we have

(2.12) krgh® (rf) < b (rf)
for £ big enough.
To see this, observe that for any p’ > p > 0,
kP < P

for k£ big enough.
Now applying A(-) on both sides of (2.12) and using Property 1, with x > 0 small enough
such that
q+ps<q

should hold, we get

2.13 (B (r) krP) < 78 (krb)® < plpb'® = p0t#'s < 0"
k) FTk PG KTk k k

Thus (2.13), and hence (2.12) hold.
Consequently by (2.8),(2.11) and (2.12) for Ax_; < N < Ay

(2.14) sup pe—p| < () < b7 (N7)
proving our lemma. O

Lemma 2.3. For any fived ¢ > 0

(2.15) P (yél) + 1/152) > 57“}7(1) < exp (—rfq)
if £ 1s large enough.

Proof. Clearly Vél) and I/§2) are both binomial with parameters r; and p, = P(p; > h*(r])) <

1/r{ and independent, hence their sum is binomial with parameters 27, and p;. Now observe
that for any A > 0

P(yél) + I/é2) > A) < exp(—A)E(exp(yél) + yf))) =
exp(—A)(1 + pele — 1))? < exp(—A) exp(dpery) <
(2.16) exp(—A + 4r,79).

Select now A = 57,77 to get the lemma. O



Lemma 2.4. For any 0 < ¢ < 1, and any z > 0 such that (z + ¢ — 1) > 1, we have for
large N
(2.17) sup | Sy — S§2)| < CN? a.s.

I<N

Proof. Let A;_1 < N < Aj. Define

(2.18) M, = max < max <|Xz,(1)‘) ,  max (|Xi(2)|)>

Ap1<i<Ay Ap_1<i<Ay

Observe now that

k
(2.19) sup |Sy— SgQ)\ < sup |S;— S§2)| < ZQ(Vél) + VéQ))Mg.

1<I<N 1<U< Ay, —

Therefore by Lemma 2.3 and (1.5)

1
exp(—r, %) +P (Mg > 1—0rj+q‘1) <
exp(—ﬁ*q + CT;—ﬁ(Hq—l) —
(220) eXp(_2(e_1)(1_Q)) +02(Z—1)(1—ﬂ(z+q—1))'

Under the conditions of our lemma, the last line (2.20) is convergent in ¢, implying, that
almost surely for large N

sup |Sg—S§2)|§ Z |Sg—S§2)|§

1<e<N 1<e< Ay,
k
(2.21) 3 othE < 02k < ON®
=1

O

Now we are ready to prove Theorem 1.1. To get (1.7) of our theorem by Lemma 2.4 we
have to ensure that z can be selected to be less than 1/2. Being 3 > 2, select a small enough
€ > 0 such that 1/ < 1/2 —4e, and select ¢ = 1—2¢, and z = 1/2 — € to meet the conditions
of Lemma 2.4 and we get (1.7) with the selection 1/4* = z. To ensure (1.8) as well, select
q* =1 — € in Lemma 2.2 and select a = ¢*. This completes the proof of Theorem 1.1. O



3. Recurrent random walk on Z! and Z? with slowly
varying truncated Green function

Let {U,}2, be a recurrent symmetric random walk on the integer lattice Z¢, d = 1,2, i.e.
U, = >p_o Yk, where the random variables Y;, ¢ = 1,2, ... are independent symmetric and
identically distributed, taking values in Z?. We suppose that the law of Y; is not supported
on a proper subgroup of Z.

Define the local time of the walk by

(3.1) E(z,n) =#{k; 0<k <n, U, =z}

The transition probabilities of the walk are denoted by p,(z,y) = pn(x—y), and the truncated
Green function is defined as

(3.2) o) = 3 ph(0)

We can extend g(t) to be a continuous monotone increasing function of ¢ > 0, and we will
denote the inverse of g(t) by ¢*(t). Let

(33) Po = 0, Pk — inf{n; n Z Pk—1; Un = 0, k= 1,2, }
then clearly {p; — p; 1}2, are i.i.d. random variables.

Let
7(n) =P(p1 > n).
Then considering the last return to the origin before time n we have

n

(3.4) > v(n—k)pr(0) =1,

k=0

where we used the strong Markov property and the fact, that if the last return before n is
in k(= 0,1,2...n), then the next return must be later than n — k, hence it has the same
probability as {p; > n — k}.

Consequently
(3:5) v(n) Y pe(0) <1,
k=0
implying that
(3.6) P(p1 >n) < 1/g(n).

9



For d = 2 a much more precise result than (3.6) is known (see [10], Lemma 3, where the
above argument comes from).

We will use the following bound for the upper tail of £(0,n) of Marcus and Rosen [24],
Lemma 2.5.

(3.7) P (65(();:)1) > x) <CvVzx+1le™ forallz >0, n>1.

This result is true for d = 1,2 but for d = 2 again much more is known, namely the limit
distributon of £(0,n) is (see e.g. Gantert and Zeitouni [17])

(3.8) lim P (’5(0’”) > x) = e,

noo \ g(n)

but for our purpose (3.7) will be enough. We make the following assumptions:
For d =1 we suppose that

(a) pn(0) is regularly varying at infinity with index minus one, which implies that g(n) is
slowly varying at infinity, and we also assume that

dim g(n) = +o0,

which is equivalent with the recurrence of the walk. (see [24], Proposition 3.1 for examples
and details on these assumptions.)

(b)

59)  gn/loglogg(n) _
If d = 2, then it is known (see e.g. [24], Proposition 2.14) that
C
(3.10) pa(0) < —,  g(n) < Clogn.

For d = 2 we suppose that
(c) g() is slowly varying at infinity and

lim g(n) = +o0.

10



This is satisfied if Y] is in the domain of attraction of a nondegenerate R? valued Gaussian
random variable. In the case d = 2 (3.9) always holds true (see the proof of Theorem 1.1.
in [24]).
Consequently for d = 1,2 under the above assumptions according to [24] Theorem 1.3,
we have
(3.11) lim sup &0,n)
nooo g(n)loglogg(n)
First we prove the following

=1 a.s.

Lemma 3.1. Let {U,}>°, be a random walk on Z' or Z? satisfying the above conditions.
For K >0, v>0 let

(3.12) an =g ((gm) ), ba=g" ((9(n))").

Then for any k > 1 we have

(3.13) sup (£(0,a + [by]) — £(0,a)) = O ((g(n))"™) a.s.

a<an

Proof. Let ny = [¢*(k)]. Then clearly we have that

=P(wp@@a+mﬂ%f®ﬂﬂ>wmmmw>§

a<an,c

P(sw €0, pi+ b)) — mm»>wmhm“)s

5 pi<an,,

P( sup (£(0, pi + [bn,]) = £(0, 21)) > (9(n-1))"",£(0, @) < (g(ank))3/2> +

,pl<ank

( 0 ank - ank))S/Z).

Now observe that by the strong Markov property the first probability above can be overes-
timated by (g(ay,))?/? times the probability P (£(0, [b,,]) > (g(nx_1))"") . By the definition
of ng and (3.12) we have that

9(an,) = 9 (9" ((9(n))) = (9(me))™ < (g (9" ()" = k.

11



Combining this observation with (3.7) we conclude that

P(k) < (9(a))"*P (€0, Buy]) > (9(ne))™) + P (€00, an,) > (9(a.))*"?) <

k3K/2 exp (—(1 - 5)%) + exp (—(1 — 6)kK/2) <

(3.14)  K**?exp (—(1 — (5*)/€7(“_1)) + exp (—(1 — 5)/§K/2) .
for any 6* > § > 0 and £ big enough.

According to the last line of (3.14) we get that > P(k) is convergent for k > 1 and we
get (3.13) by Borel-Cantelli lemma combined with the usual monotonicity argument. O

We define the additive functional

(3.15) Zy, = an f(Uk),

k=0

where f(-) is a real-valued function on Z! or Z2. Define

Pi
(3.16) Xi=2Zp =2y = > f(Uk)

pi—1+1

Then clearly {X;}°, are i.i.d. random variables. We suppose that for some § > 0

(317 EQéumeﬁ<m.

For the expectation of X; we have

(3.18) f=E(X)=E Zd £z, p1) f(z) = de(a;)
(3.19) E(&(z, p1)) =1, z € Z°

(see Spitzer [27], Auer [1]).
Theorem 3.1. For any random walk {U,}* on Z' or Z? satisfying our conditions (a)-

(b) or (c) respectively, and for any real valued function f(-) satisfying (3.17) there exists
a probability space where we can redefine {U,}3° together with its local time process £(0,n),

12



and with the corresponding additive functional Z,, on such a way that on the same probability
space there is

(i) a standard Wiener process {W(t),t > 0}

(i1) and a process

(£D0,n) n=0,1,2,..} 2 {£(0,n) n=0,1,2,...}

such that {W(t),t > 0} and {£M(0,n) n=0,1,2,...} are independent and we have

(3.20) Zn — fE(0,n) = aW(EM(0,7n)) + O(g°(n)) a.s.
and
(3.21) €D(0,7) - £(0,n)| = O(g(n))  as.

as n — oo, where 02 = Var(Xy), X, is defined by (3.16), s < 1/2, and p < 1.
Proof of Theorem 3.1. Define
(322) Ti = Pi — Pi-1;, 1= 1a27"'

Now we want to apply our Theorem 1.1 for the sequence of vectors (X;,7;)2,. Clearly
they satisfy the conditions (1.5) with § = 2+ 4, and h(z) = g(x). Consequently for S, =
Yoh—o Xk and p, = Yp_, Tk, we have, that on an appropriate probability space one can
construct independent processes (S, p{l)) and (S2), p()), such that

(3'23) (Snapn) 2 (Sy(lj),p%j)) n=1,2.. ] =1,2
3.24 sup | Sy — S@ = o (n/# a.s.
k
k<n
(3.25) igp |pk _ p](cl)‘ =0 (g*(na)) as.

where §* > 2, and o < 1. Apply now the Komlés-Major-Tusnddy theorem [23] (see also
Csorgé and Révész [12], Theorem 2.6.6, pp. 108) for S](\?) — Nf to get by (3.17), that

(3.26) SY = NFf—oW(N)| =0 (NY@&))  as,
as N — oo, where 02 = Var(X;) (the existence of which follows from (3.17)). Denote
min(2+46,8%) =2+n

13



to get from (3.24) and (3.26) that
(3.27) Sy = Nf —oW(N)|=0 (Nl/(2+")) a.s.

Observe that in (3.26) the Wiener process is the one which was constructed to the process
(2), hence independent from process (). Clearly, (3.27) and (3.11) imply that for any €; > 0

_ 1+e
(3.28) Setom) — JE(0,1) = SW(£(0,n)) + O ((g(n)) H;) as.
As our next step, we want to get an almost sure upper bound for |Z,, — S¢on)|- We have
(3.29) Peon) < N < Pe(on)+1
and denoting
Pk+1
Xp= > lfWl,
i=pp+1
Pe(0,n)+1
(3.30) |Zn = Seom| < 32 1F(U] = XEo -
1=pg(o,n) 1
By condition (3.17) for any e; > 0
" 1ten C
(3.31) P(X;> k) < o
So by Borel-Cantelli lemma we have
1+eo
(3.32) X;=0 (k = ) as.
as k — oo, i.e. for any €3 > €9 > 0 we have
l+eg
(3.33) Xiom =0 ((g(n)) 5 ) as.
(3.28), (3.30) and (3.33) imply that for any € > €3
(3.34) Zn — FE(0,n) = oW (£(0,n)) + O(g(n))*7  aus.

holds as well. To finish our proof we only have to show that on the right hand side of (3.34)
we can replace £(0,n) by £€1)(0,n) by the price of a posssible small increase in the order of
the error term in the approximation.

To accomplish this goal we prove

14



Lemma 3.2. There exists a p < 1 such that

(3.35) €9(0,n) — €(0,n)] = O(¢g*(n))  as.

(2) (0.m) is the time of the last return to zero before time n of the

Proof. First observe that Peci) (0.

walk ), hence
1
g(l) (Oa n) = 5(1) (Oa pé(z)(o’n))'

Also, since £(0, px) = k, we have

g(l) (01 n) = g(oa pf(l)(O,n))'

As /ﬁ%(o,n) < n, we see that
1 1
f(l) (O, TL) — f(oa TL) S é-(l) (Oa pé(z)(o,n)) - 5(0’ pé(z)(o,n)) -
1
(336) 6(0, P§(1>(0,n)) - é-(0’ p§(2>(o,n))'

Now observe that by (3.11) £M(0,n) < (g(n))'*? for any ¢ > 0 if n is big enough. Conse-
quently by (3.25), for some o < 1 we have

3.37 W(om) — Po0 < sup i — o < g ((g(n))+¥e a.s.
(3:37)  |peom) = Petirom] < i = pY] < g7 ((9(n) )

Now apply Lemma 3.1 with b, = ¢g*((g(n))**%)*) and a,, = n (being pgf)(o ny < n). Thus we
get by (3.36) and (3.37) that for any x > 1

£1(0,n) — £(0,n) = O((g(m)*Y™)  as.

Repeat now the argument for £(0,n) — &1 (0,7n), and observe that we can select ¢ > 0 small
enough, and k¥ > 1 close enough to 1 such that

p=(1+vY)ka<1

should hold, and we have the lemma. O
Using now the result of our lemma and Theorem 1.2.1 of [12] on the maximal increment
of the Wiener process, we get from (3.34) that for any 1 > p* > p

(3:38)  Zu— JE(O.m) = oW (ED(O,m) +0 (g ) + 0 ((9m) ) as.

15



Select now € > 0 small enough, that

1+e 1
2+ 2
should hold, then with
1+e€ p* 1
(3.39) § = max <m, 3) <3
we get
(3.40) Zyn — FE0,n) = oW (ED(0,n)) + O(¢*(n))  as.

asn — oo. O

4. Recurrent random walk on Z! in the domain of at-
traction of a stable law.

Let {U,}%, be a recurrent symmetric random walk on Z', ie. U, = Y}_, Yk, where
Y;, ¢ = 1,2,... are independent, symmetric and identically distributed, with EY; = 0.
Suppose futhermore that

(d) Y7 is in the domain of attraction of a stable law of index 1/(1 — ), where 0 < a < 1/2.

We define &(z,n), pg, Tk, g(n) and Z, as in Section 3. It is known (see Jain and Pruitt
[19] ) that under condition (i) we have for 7, = p; that

1
n*L(n)’

(4.1) P(r >n) ~ n— 0.

where L(n) is slowly varying at infinity. We remark that the above condition also implies
that
(4.2) g(n) ~ n“L*(n)

where L*(n) is also slowly varying at infinity. (see [19]). Furthermore, we have under our
condition (d) (see Jain and Pruitt [18]) that for any ¢; > 0

(4.3) £(0,n) = O(n®0+e)y  as,

In fact more exact LIL type results are also given in [18]. Define now f(-) and X;, i = 1.2...
as in in Section 3. We will prove the following

16



Theorem 4.1. For any random walk {U,}* on Z' satisfying our condition (d) and for
any real valued function f(-) satisfying (3.17) there ezists a probability space where we can
redefine {U, }$° together with its local time process £(0,n), and with the corresponding additive
functional Z,, on such a way that on the same probability space there are

(i) a standard Wiener process {W (t),t > 0}

(i1) and a process

{5(1)(0’ n)’ n= OJ ]" 2, "'} 2 {6(0, n), n= OJ ]" 2, "'}

such that {W(t),t > 0} and {€MW(0,n), n=0,1,2,...} are independent and we have

(1.4) Zn = FE(0,m) = oW (ED(0,0)) + O(n™)  as.
and
(4.5) D(0,n) — £(0,n)| = O(n?)  as.

as n — 0o, where 0? = Var(X1), s < 1/2, and p < 1.

Proof of Theorem 4.1. Considering the sequence of random vectors {X;, 7;}2,, where X;,
7; are defined by (3.16) and by (3.22) respectively, it is easy to see, that under the conditions
of our theorem the conditions of Theorem 1.A are met. Hence we can find an appropriate
probability space such that on this space there exist three sequences of random vectors
{X,L-(j),Ti(j)} i=1,2...and j = 1,2 with {X;,7;} i = 1,2... such that for the corresponding
partial sum processes we have

(4.6) (S pn) 2 (SD, p0)y  p=1,2.. j=1,2
a7 w5~ 5120 (17)  as
(4.8) sup px — pi| = O (nl/a*) a.s.

k<n

as n — 0o, where o > o and 8* > 2 and the processes (S, o) (S p(2)) are indepen-
dent. Apply now Komldés-Major-Tusnady [23] theorem and (4.7) as in the previous section
to get

(4.9) Sy = Nf —oW(N)| =0 (NY®)  as,

where
min(2+6,8") =2 +1n.
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Following further the argument of the previous section we get by (4.3) that

(4.10) Setom) — FE(O,n) = W (€(0,n)) + O (n"‘(éié“) as.

1+e¢

Now let X} as in Section 3, then as X} = O (anQ> a.s. (see (3.32)), we get by (4.3)

a(l4eg)
(4.11) Zom =0 (n T ) a.s.

for any €3 > €, > 0. Thus by (4.10) and (4.11) and (3.30) we have that

(4.12) Zy, — FE(0,n) = oW (£(0,n)) + O (naé:*;f))

for any € > e3. Clearly one can select €;, €5 €3 and € small enough such that

1+e€ 1

4.1
(4.13) 24n 2

should hold. Just like in the previous section, to finish our proof we have to replace £(0,n)
by ¢€M(0,n), and we need the following

Lemma 4.1. There exists a 0 < p < 1 such that
(4.14) ED(0,n) — £(0,n)] = O(n®?)  as.
as n — oo.

Proof. Proceed like in Lemma 3.2, and based on (4.8) and (4.3) we get similarly to (3.37)
that for any ¢; > 0

1 a(lter)
(4.15) |Pew0,m) — ,og(f)(o,nﬂ < sup |pi— pg )\ =0 (n ot ) a.s.

iSna(H—el)

Now we need a result from Jain and Pruitt [19] again about the increments of £(0,n).
According to their Theorem 6.1 for any ¢, = n?, where ¢ < 1

(4.16) sup (E(k+t,) —€E(k)) =0 (naQ(H-’Y))

k+t,<n

for any v > 0.

18



Clearly as o* > « in (4.15) we can take €; small enough that ¢ = w < 1 should

hold. Hence by (4.16) we have from (3.36), and (4.15) that
(417)  €9(0,m) = £(0,7) < £(0, perom) = £(0. o) = O (1°90H7)  as.

Repeating this argument for £(0,n) — £1(0,n), and selecting > 0 small enough such that
p=q(1+ ) < 1 should hold, we get the lemma. O
Using again Theorem 1.2.1 of [12] we get from (4.12) and Lemma 4.1 that

a(l+te)

(4.18) Z, — FE(0,n) = aW(W(0,n)) + O(n°?" /) + O(n 7% ") a.s.
for any 1 > px > p > 0. Hence taking
(L P 1
(4.19) s_max<2+n, 2)<2
we get ~
(4.20) Zn — f€(0,n) = oW (ED(0,n)) + O(n®) a.s.

Lemma 4.1 and (4.20) give our theorem. O

5. Applications

In this section we will obtain some limit theorems for random walks on Z' or Z? based on
our approximation theorems. These results in case of simple symmetric walk on the plane
were presented in [9]. In this section we will suppose that

The random walk on Z' or Z?, the real valued funcion f(-), and the corresponding additive
functional satisfy the conditions of our Theorem 3.1, and the local time £(0,n) of the walk
has the limiting distribution formulated in (3.8).

Remark. If the walk is on Z? then our conditions in Theorem 3.1 ensure (3.8), if it is on Z'
then the extra condition that p(0,n) < C/n is enough for (3.8) to hold, (see [17]) that is, if
the walk is in the domain of attraction of a Cauchy random variable. Clearly this condition
is not much more restrictive than our original condition (a) in Section 3.

It follows from (3.20) that the limiting distribution of

Zn - fé-(oa TL)

oy/g(n)

19



should be the same as that of
W (£ (0,n))

g(n)
Obviously we have from (3.8) that

WEhn) _WEDm) €00 s

Jo) e \ )

as n — 0o, where U is a standard normal r.v. and £ is an exponential r.v. with parameter 1,
U and £ are independent. The independence of U and £ is a straightforward consequence of
our Theorem 3.1, which provides the idependence of W (-) and £()(-) hence by normalizing

the first factor by 1/£()(-) we achieve the independence of U and £. One can obtain similarly

(W (D (n))] 2 UWVE,
g(n

~—

V9(n)

W (M (k
Supk§n| (5 ( ))| E)T\/E
g(n)
as n — oo, where 7" has the distribution of sup,., [W(s)| and is independent of £.

Furthermore it is easy to see that the distribution of U VE is two-sided exponential with
parameter /2, i.e. its density function is

(5.1) k(r) = \/gek”"/5 — 00 < < 00.

and

The distribution of |U|v/€ is exponential with parameter v/2. Finally using a well-known
formula for the distribution of 7', we get by straightforward calculations that (cf. [9])

1

(5.2) H(z)=P(ITVE<z)=1- pr -

Hence we have the following limiting distributions:
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Theorem 5.1.

(5.3) lim P (Zn — J£(0.) a:) = /x k(u) du,

s .

IN

where k(z) is given by (5.1).

: |Z,, — J€(0,n)]
(5.4) lim P ( < x) =1 — exp(—zV/2),
5.5 L (suplgkgn 12— FEO. 0] _ x) _ H),
e a4/9(n) N

Turning now to the problem of strong limit theorems for the additive functionals we can
apply our Theorem 3.1 together with the second order LIL result of Marcus and Rosen ([24],
Theorem 1.3) to get the conclusion that

lim sup Zn — J€(0,) — lim sup W (EM(0,n))
n=o0 g4/g(n)loglog g(n) n—00 g(n)loglog g(n)
f(a, n) - f(o,n) 1

= lim sup -
=% g,4/g(n)loglogg(n) V2

where o, is a constant (see [24]).
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