##
PAUL TURÁN MEMORIAL LECTURES

##
(Turán Pál emlékelőadások)

##
1978

21 and 24 November, 1978

** ALAN BAKER ** (Trinity College, Cambridge)

Applications of transcendence I-II.
##
1980

**K. F. ROTH** (Imperial College, London)
Irregularities of distribution and related questions
##
1981

7-9 November, 1981

** LENNART CARLESON** (Sweden)
Recent results in Hp-theory
##
1984

3 and 5 April, 1984

** WOLFGANG M. SCHMIDT ** (Boulder, USA)
Lecture 1. Small zeros of quadratic forms
Lecture 2. Diophantine problems in many variables
Lecture 3. Exponential sums

9-11 October, 1984

** ANDRZEJ SCHINZEL** (Warsaw)
Reducibility of polynomials over an arbitrary field and over the rationals

31 October, 1 and 2 November, 1984

** JEAN-PIERRE KAHANE ** (Paris)
Lecture 1. Multiplicative chaos
Lecture 2. Value distribution of a Gaussian (random) analytic function
Lecture 3. Greek mathematics and quadratic fields
##
1985

30 and 31 January, 1 February, 1985

** JA. G. SINAY **
Lecture 1. Application of the Renormatization Group Method
Lecture 2. Mechanical models of Brownian motion
Lecture 3. Hydrodynamical limit transitions

18-20 September, 1985

** ATLE SELBERG** (Institute for Advanced Study, Princeton)
Lectures on sieves
##
1987

28-30 September, 1987

** ENRICO BOMBIERI ** (Princeton Institute for Advanced Study)
On the distribution of primes in large arithmetic progressions
##
1989

16-18 January, 1989

** G. A. MARGULIS ** (Institute Problemy Peredatchi Informacii)

Discrete subgroups and ergodic theory
##
1992

21-23 April, 1992

** R.A. ASKEY** (Madison University)
Lecture 1. Inequalities for Polynomials
Lecture 2. Extensions of Gamma and Beta Integrals and the Related Orthogonal
Polynomials
Lecture 3. Ramanujan: Who was he, what did he do, and why do we still care?
##
1994

18-20 May, 1994

** ROBERT TIJDEMAN ** (University of Leiden)
Lecture 1. The abc-conjecture
Lecture 2. Arithmetic progressions with equal products I
Lecture 3. Arithmetic progressions with equal products II
##
1995

31 October, 1 and 2 November, 1995

** HENRYK IWANIEC ** (Rutgers University)
Lecture 1. Equidistribution of roots of quadrativ congruences to prime
moduli
Lecture 2. The lattice points inside a sphere
Lecture 3. Gaussian primes
##
1996

20, 21, and 23 May, 1996

**LAX PÉTER ** (New York University)
Lecture 1. The distribution of lattice points in Euclidean spaces
Lecture 2. The distribution of lattice points in Hyperbolic spaces
Lecture 3. Factorization of bounded analytic functions
##
1998

17-19 February, 1998

** SHARON SHELAH** (Hebrew University Jerusalem)
Lecture 1. Hilbert's First Problem Revisited
Lecture 2. Non structure Theory
Lecture 3. Nine Forcing Notions: The theory of iteration for the continuum
##
2000

3-5 October, 2000

** H. L. MONTGOMERY** (Univ. of Michigan)
Lecture 1. The local distribution of prime numbers and the zeros of the
Reimann zeta function
Lecture 2. Beuring's generalized primes
Lecture 3. Greedy sums of distinct squares
##
2002

26-28 November, 2002

** P. SARNAK** (Univ. of Princeton)
Lecture 1. Sums of squares and Hilbert's 11th problem
Lecture 2. The spectra of modular surfaces
Lecture 3. The spectra of modular surfaces continued
##
2004

26-28 May, 2004

** EFIM ZELMANOV **(Univ. of California)
Lecture 1. Profinite groups I: The Golod-Shafarevich condition
Lecture 2. Profinite groups II. Linear pro-p groups
Lecture 3. Lie (super)algebras graded by root systems
##
2006

21-23 November, 2006

**HILLEL FÜRSTENBERG** (Einstein Institute of Mathematics, The Hebrew
University of Jerusalem)
Lecture 1. Number Theory, Combinatorics
and Recurrence in Dynamical Systems; the Correspondence Principle
Lecture 2. Ergodicity, Mixing,
Conventional and non-Conventional Ergodic Theorems
Lecture 3. The Long Term Memory of Dynamical Systems and the Strange Role of
Nilpotent Groups and Nilflows
##
2007

24-26 September, 2007

** MIKHAIL GROMOV ** (IHS, France and the Courant Institute, NY, USA)
Combinatorics and Morse Theory
##
2009

17-19 February, 2009

** NOGA ALON ** (Tel Aviv University, Israel)

Lecture 1. The Probabilistic Method
Lecture 2. Polynomials in Discrete Mathematics
Lecture 3. The Structure of Large Graphs
##
2011

1-3 June, 2011

** Yuval Peres** (Microsoft Research; Adjunct Professor at The University of Washington and at UC Berkeley)

Lecture 1. Laplacian growth
Lecture 2. Mysteries of the abelian sandpile
Lecture 3. Gravitational allocation to Poisson points