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Let v = {a1, . . . , an} be a set of n non-zero numbers and ξ1, . . . , ξn
be i.i.d random Bernoulli variables. Define

S :=
n∑

i=1

ξiai .

Discrete. Define pv(a) := P(S = a) and

pv := sup
a∈Z

pv(a).

Continuous. Define pv,β(a) := P(|S − a| ≤ β) and

p(v, β) := sup
a∈R

pv,β(a).



In their study of random polynomials, Littlewood and Offord
(1940s) raised the question of bounding p(v) and p(v, β). They
showed

pv = O(
log n√

n
).

Very soon after, Erdős, using Sperner’s lemma, proved



Theorem (Littlewood-Offord-Erdős)

Let a1, . . . , an be non-zero numbers and ξi be i.i.d Bernoulli
random variables. Then

pv ≤

( n
bn/2c

)
2n

= O(
1√
n

).

Notice that the bound is sharp, as can be seen from the example
v := {1, . . . , 1}, in which case S has a binomial distribution.
By Freiman’s isomorphism, in the discrete version we can assume
that the ai are integers.



Theorem LOE is a classical result in combinatorics and has
generated lots of research, in particular from the 1960s to late
1980s. It has been realized that while the bound is sharp, it can be
improved significantly under additional assumptions on v.

Erdős and Moser (1960s) showed that if the ai are distinct,
then

pv = O(n−3/2 ln n).

They conjectured that the logarithmic term is not necessary
and this was confirmed by Sárközy and Szemerédi (1960s) .
Again, the bound is sharp (up to a constant factor), as can be
seen by taking a1, . . . , an to be a proper arithmetic progression
such as 1, . . . , n.

Stanley gave a different proof (based on the hard Lefchetz
theorem in algebraic geometry) that also classified the
extremal cases, which turns out to be Arithmetic progressions
(any algebraic proof was given later by Proctor).



Halász obtained a general theorem, which, among others, showing
that if one forbids more and more additive structure in the ai , then
one gets better and better bounds on pv.

Theorem (Halász 1970s)

Consider v = {a1, . . . , an}. Let Rk be the number of solutions to
the equation

ε1ai1 + · · ·+ ε2kai2k
= 0

where εi ∈ {−1, 1} and i1, . . . , i2k ∈ {1, 2, . . . , n}. Then

pv = Ok(n−2k−1/2Rk).

Many related results: Katona, Kleitman,
Griggs-Lagarias-Odlyzko-Shearer, Füredi-Frankl, Sali, Beck,
Wooley et. al etc.



Inverse Theory. (Tao-V. 05) Instead of trying to improve the
bound further by imposing new assumptions, we aim to find the
underlying reason for the probability pv to be large (say,
polynomial in n).

Intuition. The (multi)-set v has 2n subsums, and pv ≥ n−C mean
that at least 2n/nC among these take the same value. This
suggests that the set has strong additive structure.

In order to determine this structure, we first study examples of v
where pv is large. For a set A, we denote by lA the set

lA := {a1 + · · ·+ al |ai ∈ A}.
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Example 1. Let I = [−N,N] and a1, . . . , an be elements of I .
Since S ∈ nI , by the pigeon hole principle, pv ≥ 1

n|I | = Ω( 1
nN ).

In fact, a short consideration yields a better bound. Notice that
with probability at least .99, we have S ∈ 10

√
nI , thus again by

the pigeonhole principle, we have pv = Ω( 1√
nN

). If we set N = nC

for some constant C , then

pv = Ω(
1

nC+1/2
). (1)
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The next, and more general, construction comes from additive
combinatorics.
A set Q of numbers is a GAP of rank d (Generalized Arithmetic
Progression) if it can be expressed as in the form

Q = {a0 + x1a1 + · · ·+ xdad |0 ≤ xi ≤ Mi for all 1 ≤ i ≤ d}

for some a0, . . . , ad ,M1, . . . ,Md .
It is convenient to think of Q as the image of an integer box
B := {(x1, . . . , xd) ∈ Zd |0 ≤ mi ≤ Mi} under the linear map

Φ : (x1, . . . , xd) 7→ a0 + x1a1 + · · ·+ xdad .

The numbers ai are the generators of P, and Vol(Q) := |B| is the
volume of B. We say that Q is proper if this map is one to one, or
equivalently if |Q| = Vol(Q). For non-proper GAPs, we of course
have |Q| < Vol(Q).



Example 2. Let Q be a proper GAP of rank d and volume V . Let
a1, . . . , an be (not necessarily distinct) elements of P. The random
variable S =

∑n
i=1 ξiai takes values in the GAP nP. Since

|nP| ≤ Vol(nB) = ndV , the pigeonhole principle implies that
pv ≥ Ω( 1

ndV
).

Using the same idea as in the previous example, one can improve
the bound to Ω( 1

nd/2V
). If we set N = nC for some constant C ,

then

pv = Ω(
1

nC+d/2
). (2)
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The above examples show that if the elements of v belong to a
proper GAP with small rank and small cardinality then pv is large.

This turns out to be (essentially) the only reason !

Theorem (Weak inverse theorem, Tao-V. 06)

Let C , 1 > ε > 0 be arbitrary constants. There are constants d and
C ′ depending on C and ε such that the following holds. Assume
that v = {a1, . . . , an} is a multiset of integers satisfying pv ≥ n−C .
Then there is a GAP Q of rank at most d and volume at most nC ′

which contains all but at most n1−ε elements of v (counting
multiplicities).
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The presence of the small set of exceptional elements is not
completely avoidable.

We call the above theorem weak inverse as the dependence
between the parameters is not optimal and does not yet reflect the
relations in (1) and (2).
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Theorem (Strong inverse theorem, Tao-V. 08)

Let C and 1 > ε be positive constants. Assume that

pv ≥ n−C .

Then there exists a GAP Q of rank d = OC ,ε(1) which contains all
but Od(n1−ε) elements of v (counting multiplicity), where

|Q| = OC ,ε(nC− d
2

+ε).



Main tools. Fourier analysis, theory of random walks and a
replacement principle.

The ε error term seems to be the limit of the method.



The Optimal Inverse Theorem.

Using a different approach

Theorem (Optimal inverse theorem, Nguyen-V. 09)

Let C and 1 > ε be positive constants. Assume that

ρ := pv ≥ n−C .

Then there exists a GAP Q of rank d = OC ,ε(1) which contains all
but εn elements of v (counting multiplicity), where

|Q| = O(ρ−1n−d/2) = O(nC− d
2 ).

Main tools. Fourier analysis, Halász level set argument, long
range Freiman theorem.



Continuous version

The continuos version asserts that the numbers ai lie close to the
points of a GAP with small dimension and volume.

Theorem (Optimal inverse Littlewood-Offord theorem, continuous
case, Nguyen-V. 09)

Let δ,C ,C ′ > 0 be arbitrary constants and β ≥ n−C ′
be a

parameter that may depend on n. Suppose that v = {a1, . . . , an}
are vectors in Rd of norm at least one and

p(v, 1) ≥ n−C .

Then there exists a proper symmetric GAP Q of rank r = O(1)
which is O( log n

n1/2 )-close to all but at most δn elements of v
(counting multiplicity), where

|Q| = O(ρ−1n(−r+d)/2).



Related works

One can also have inverse theorems under a different assumption
or weaker assumption.

Tao-Vu (2005): Similar characterization, under a different
assumption.

Rudelson-Vershynin (07): Different characterization involving only
AP (not GAP), but allow ρ := p(v) to be exponentially small in n;
require some extra conditions such as the ai are comparable in
order of magnitude.



Long range Freiman theorem

Theorem (Freiman’s inverse theorem)

Let γ be a positive constant and X a subset of a torsion-free group
such that |2X | ≤ γ|X |. Then there is a proper symmetric GAP Q
of rank at most r = Oγ(1) and cardinality Oγ(|X |) such that
X ⊂ Q.

In our analysis, we will need to deal with an assumption of the
form |kX | ≤ kγ |X |, where γ is a constant, but k is not. (Typically,
k will be a positive power of |X |.)

Theorem (Long range Freiman theorem)

Let γ > 0 be constant. Assume that X is a subset of a torsion-free
group such that 0 ∈ X and |kX | ≤ kγ |X | for some positive integer
k ≥ 2. Then there is proper symmetric GAP Q of rank r = O(γ)
and cardinality Oγ(k−r |kX |) such that X ⊂ Q.

Tools. Szmerédi-V. iteration argument.



Proof of optimal theorem

Embed the problem into Fp for some large prime p.

By the assumption

ρ := n−C ≤ 1

p

∑
ξ∈Fp

n∏
i=1

| cos 2πaiξ/p| ≤ 1

p

∑
ξ∈Fp

exp(−
n∑

i=1

c‖aiξ‖2),

where ‖x‖ is the distance from x/p to 0.

Level set Sm := {ξ|
∑n

i=1 c‖aiξ‖2 ≤ m}. There is a large level
set Sm such that

|Sm| exp(−m/2) ≥ ρp

for some m.



On the other hand
∑n

i=1

∑
ξ∈Sm

‖aiξ‖2 ≤ m|Sm| by definition.
So, for most ai ∑

ξ∈Sm

‖aiξ‖2 ≤ C0m

n
|Sm|

for some large constant C0.

Assume that all ai ∈ v have this property. By
Cauchy-Schwartz, for any a ∈ kv∑

ξ∈Sm

‖aξ‖2 ≤ k2 C0m

n
Sm.



On the other hand, let v∗ := {a|
∑

ξ∈Sm
‖aξ‖2 ≤ c0|Sm|} for

some small c0. Then one can show

|v∗| = O(p/|Sm|).

(One can consider the toy case Sm = {1, . . . , L}.)
Set k = c1

√
n/m, for a properly chosen c1, we have kv ⊂ v∗,

so |kv| is small.

Use long range Freiman theorem.



Applications

Application 1 Reprove many asymptotic forward results.

For instance, let us reprove Sárközy-Szemerédi theorem that if the
ai are different, then ρ := pv ≤ Kn−3/2 (for some constant K > 0).

The Optimal Inverse Theorem implies that most of v is contained
in a GAP Q of rank d and cardinality at most

O(ρ−1n−d/2) = O(ρ−1n−1/2) = O(K−1n).

Set K be sufficiently large constant, the RHS is less than 1
2 n, a

contradiction.
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Applications

Applications 2. Random matrix theory

Singularity bound for random Bernoulli matrices (Tao-V. 05,
Bourgain-V. -Wood 09).

Least singular value (Tao-V. 06, Rudelson-Vershynin 07).

Circular law (β-net lemma) (Tao-V. 08).

Multiplicities of eigenvalues (Tao-V. 10).



Applications

Application 3. Precise results.

Use the structure theorem as a base to obtain sharp result.



Stanley revisited

Stanley result shows that in the case the ai are different, the
extremal set is an arithmetic progression.
Argument: There is an operator T that transforms a set v in a
better set v′. The fixed point is an arithmetic progression.

This does not give numerics bound: (C + o(1))n−3/2. What is C ?

Equivalent problem: How many subsets of {−n/2, ..., n/2}
sums up to zero ?
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Lemma (Asymptotic bound, Nguyen 09)

C =
√

24/π.

Theorem (Stability Theorem, Nguyen 09)

Let ε > 0 be a sufficiently small constant. Assume that V is a set
of size n such that pv ≥ (1− ε)Cn−3/2. Then there exists k such
that v = k · v′ and

∑
w∈v′ |w |2 ≤ (1 + ε′)n3/12, where ε′ tends to

zero with ε.

The proof, in a sense, shows that to make p(v) large, one would
need the variance a2

1 + · · ·+ a2
n to be small. The minimum is

obtained by {−bn/2c, . . . , bn/2c}.



Lemma (Asymptotic bound, Nguyen 09)

C =
√

24/π.

Theorem (Stability Theorem, Nguyen 09)

Let ε > 0 be a sufficiently small constant. Assume that V is a set
of size n such that pv ≥ (1− ε)Cn−3/2. Then there exists k such
that v = k · v′ and

∑
w∈v′ |w |2 ≤ (1 + ε′)n3/12, where ε′ tends to

zero with ε.

The proof, in a sense, shows that to make p(v) large, one would
need the variance a2

1 + · · ·+ a2
n to be small. The minimum is

obtained by {−bn/2c, . . . , bn/2c}.



Frankl-Füredi conjecture

General question. Determine exactly the maximum probability
that the random sum S :=

∑n
i=1 aiξi is contained in a ball of

radius ∆ (p(v,Delta)).
Define s := b∆c+ 1. Consider v := {a1, . . . , an}, |ai | ≥ 1.

Theorem (Erdős, 40s)

Let S(n,m) denote the sum of the largest m binomial coefficients(n
i

)
, 0 ≤ i ≤ n. Then

p(v,∆) = 2−nS(n, s).



The situation for higher dimension is more complicated. Frankl
and Füredi (88) sharpening several results proved

Theorem (Frankl-Füredi)

Consider v := {a1, . . . , an}, ai ∈ R2, ‖ai‖ ≥ 1.

p(v,∆) = (1 + o(1))2−nS(n, s)

Question. Can one have the exact estimate p(v,∆) = 2−nS(n, s)
?



In general this is not true. It was observed (Kleiman, FF) that the
exact estimate fails if s ≥ 2 and

∆ >
√

(s − 1)2 + 1.

Example. Take v1 = · · · = vn−1 = e1 and vn = e2, where e1, e2 are
two orthogonal unit vectors. For this system, there is a ball B of
radius ∆ such that P(S ∈ B) > S(n, s).

Conjecture Let ∆, d be fixed. If s − 1 ≤ ∆ <
√

(s − 1)2 + 1 and
n is sufficiently large, then p(n,∆) = 2−nS(n, s).

Confirmed: s = 1 (Kleitman); s = 2, 3 (Frankl and Füredi).
Frankl and Füredi also showed that the precise bound holds under
a stronger assumption that s − 1 ≤ ∆ ≤ (s − 1) + 1

10s2 .



Proof of FF conjecture

Tao-V. (10) confirm the conjecture for s > 3, using the following
inverse theorem

Theorem

Assume ai ∈ Rd having norm at least one. If p(v, 1) ≥ Ck−d/2,
then all but k elements of v has distance less than one to a
hyperplane. (C = C (d) is a sufficiently chosen constant.)



Let’s first reprove FF asymptotic theorem, using induction on d .
The case d = 1 was done by Erdős. Assume that d ≥ 2; need to
show

p(n,∆) ≤ (1 + ε)2−nS(n, s).

Suppose the claim failed, then there exists ∆ > 0 such that for
arbitrarily large n, there exist a family v = {a1, . . . , an} of vectors
in Rd of length at least 1 and a ball B of radius ∆ such that (with
S :=

∑n
i=1 aiξi )

P(S ∈ B) ≥ (1 + ε)2−nS(n, s) = Ω(n−1/2).

By the pigeonhole principle, there is a ball B1 of radius 1
log n

P(S ∈ B1) = Ω(n−1/2 log−d n) ≥ Ck−d/2,

with k := n2/3, as d ≥ 2.



Applying Inverse theorem in the contrapositive (rescaling by log n),
find a hyperplane H such that dist(ai ,H) ≤ 1/ log n for at least
n − k values of i = 1, . . . , n.

Let v′ be the orthogonal projection to H of ai with
dist(vi ,H) ≤ 1/ log n. By conditioning on the signs of all the ξi
with dist(vi ,H) > 1/ log n, and then projecting the sum S onto H,
we conclude that there is a d − 1-dimensional ball B ′ in H of
radius ∆ such that

P(S ′ ∈ B ′) ≥ (1 + ε)2−nS(n, s) ≥ (1 + ε/2)2−n′
S(n′, s).

Notice the vectors in v′ have magnitude at least 1− 1/ log n.
Rescaling the v′ by (1− 1/ log n)−1 (which does not change s),
one obtains a contradiction on d − 1 dimension.



Now we consider the conjecture. Assume s ≥ 3. If the conjecture
failed, then there exist a family v = {a1, . . . , an} of vectors in Rd

of length at least 1 and a ball B of radius ∆

P(XV ∈ B) > 2−nS(n, s).

By iterating the previous argument, we may find a one-dimensional
subspace L of Rd such that dist(vi , L) ≤ 1/ log n for
i = 1, . . . , n − k , k = O(n2/3. Let π : Rd → L be the orthogonal
projection map.

Case 1. |π(vi )| > ∆
s for all 1 ≤ i ≤ n. Use the trivial bound

P(S(v) ∈ B) ≤ P(S(π(v)) ∈ π(B)).

Rescale Erdős’ theorem by a factor slightly less than s/∆ (notice
that b∆( s

∆ − ε)c = s − 1 for any ε > 0), we have

P(S(π(v)) ∈ π(B)) ≤ 2−nS(n, s),

a contradiction.



Case 2. |π(vn)| ≤ ∆/s. We let v′ be the vectors a1, . . . , an−k . By
conditioning on the ξn−k+1, . . . , ξn−1, there is a ball B ′ of radius ∆
such that

P(S(v′) + ξnvn ∈ B ′) ≥ P(S(v) ∈ B).

Let xB′ be the center of B ′. Observe that if S(v′) + ξnvn ∈ B ′ (for
any value of ξn) then |S(π(V ′))− π(xB′)| ≤ ∆ + ∆

s .

Furthermore, if |S(π(v′))− π(xB′)| >
√

∆2 − 1, then the
parallelogram law shows that S(v′) + vn and S(v′)− vn cannot
both lie in B ′. Conditioned on |S(π(V ′))− π(xB′)| >

√
∆2 − 1

P(S(v′) + ξnvn ∈ B ′) ≤ 1/2.



We conclude that

P(XV ′ + ξnvn ∈ B ′)

≤ P(|Xπ(V ′) − π(xB′)| ≤
√

∆2 − 1) +
1

2
P(
√

∆2 − 1 < |Xπ(V ′) − π(xB′)| ≤ ∆ +
∆

s
)

=
1

2

(
P(|Xπ(V ′) − π(xB′)| ≤

√
∆2 − 1) + P(|Xπ(V ′) − π(xB′)| ≤ ∆ +

∆

s
)
)
.

By the assumption ∆ satisfies√
∆2 − 1 < s − 1 ≤ ∆ < ∆ +

∆

s
< s.

By Erdős’ theorem, we conclude that

P(|Xπ(V ′) − π(xB′)| ≤
√

∆2 − 1) ≤ 2−(n−k)S(n − k , s − 1)

P(|π(XV ′)− π(xB′)| ≤ ∆ +
∆

s
) ≤ 2−(n−k)S(n − k, s).

The contradiction follows by Sterling formula; the gain of 1
2 is

essential.



Happy Birth Day, Endre !!


