ON GENERALIZED RAMSEY NUMBERS

Vojta Rödl

Department of Mathematics and Computer Science

Budapest August 2–7, 2010

On generalized Ramsey numbers

REGULAR PARTITIONS OF GRAPHS

by

E. Szemerédi

STAN-CS-75-489 APR IL 1975

COMPUTER SCIENCE DEPARTMENT School of Humanities and Sciences STANFORD UNIVERSITY

On generalized Ramsey numbers

あっよ B120 Zd (2 - B). h. B.M. (2-3,) B, K = K (2-6,)6, 21 制)トマス L

On generalized Ramsey numbers

 $H \to (G)_r^{\mathsf{edge}}$

$$H \to (G)_r^{\mathsf{edge}}$$

Every r-coloring of E(H) yields a monochromatic copy of G.

$$H \rightarrow (G)_2^{edge}$$

Every 2-coloring of E(H) yields a monochromatic copy of G.

$H \rightarrow G$

Goal: for given G, minimize H.

$$H \rightarrow G$$

Goal: for given *G*, *minimize H*. Two variants:

• Ramsey numbers: min. # of vertices of H

$$r(G) = \min\{n : K_n \to G\}.$$

$$H \rightarrow G$$

Goal: for given *G*, *minimize H*. Two variants:

• Ramsey numbers: min. # of vertices of H

$$r(G) = \min\{n : K_n \to G\}.$$

• Size-Ramsey numbers: min. # of edges of H

$$\hat{r}(G) = \min\{e(H) : H \to G\}.$$

A question of Erdős, Faudree, Rousseau and Schelp

Question (1978): For the path P_n ,

$$\frac{\hat{r}(P_n)}{n} \to \infty ? \quad \frac{\hat{r}(P_n)}{n^2} \to 0 ?$$

A question of Erdős, Faudree, Rousseau and Schelp

Question (1978): For the path P_n ,

$$\frac{\hat{r}(P_n)}{n} \to \infty ? \quad \frac{\hat{r}(P_n)}{n^2} \to 0 ?$$

COMBINATORIAL PROBLEMS

Bondy and I [7] conjectured

 $r(C_n, C_n, C_n) \leq 4n-3.$

It is easy to see that if (3) is true then for odd n it is best possible. Vera Rosta [72] and independently R. Faudree and Schelp [44] determined $r(C_n, C_m)$ for every n and m.

A problem of Faudree, Rousseau, Schelp and myself: Let $f(P_n)$ be the smallest integer for which there is a graph \mathscr{G} of $f(P_n)$ edges so that if we color the edges of \mathscr{G} with two colors, there is always a monochromatic path P_n of length *n*. Is it true that

(4)
$$f(P_n)/n \to \infty, \quad f(P_n)/n^2 \to 0?$$

Both of these questions seemed very interesting to us but we had no success at all with (4). It would be useful to have an asymptotic formula or at least a good inequality for $\ell(P_n)$, but the first step is clearly to settle (4). I offer 100 dollars for a proof or disproof of (4).

Just one more problem of Hajnal, Rado and myself: Is it true that

 $\log \log r(K^{(8)}(n), K^{(3)}(n)) > cn?$

(5)

Let $\mathcal{G}_{n,\Delta}$ be the set of all graphs G on n vertices with $\Delta(G) \leq \Delta$.

Let $\mathcal{G}_{n,\Delta}$ be the set of all graphs G on n vertices with $\Delta(G) \leq \Delta$.

Theorem [Chvátal-R-Szemerédi-Trotter (1983)]:

 $r(G) < c_{\Delta}n$ for every $G \in \mathcal{G}_{n,\Delta}$

Let $\mathcal{G}_{n,\Delta}$ be the set of all graphs G on n vertices with $\Delta(G) \leq \Delta$.

Theorem [Chvátal-R-Szemerédi-Trotter (1983)]:

 $r(G) < c_{\Delta}n$ for every $G \in \mathcal{G}_{n,\Delta}$

Same proof yields:

$$\widehat{r}(G)=o(n^2)$$
 for every $G\in \mathcal{G}_{n,\Delta}$

Let $\mathcal{G}_{n,\Delta}$ be the set of all graphs G on n vertices with $\Delta(G) \leq \Delta$.

Theorem [Chvátal-R-Szemerédi-Trotter (1983)]:

 $r(G) < c_{\Delta}n$ for every $G \in \mathcal{G}_{n,\Delta}$

Same proof yields:

$$\widehat{r}(G)=o(n^2)$$
 for every $G\in {\mathcal G}_{n,\Delta}$

Problem [Beck]: $\hat{r}(G) \stackrel{???}{\leq} c_{\Delta} n$ for every $G \in \mathcal{G}_{n,\Delta}$?

Let $\mathcal{G}_{n,\Delta}$ be the set of all graphs G on n vertices with $\Delta(G) \leq \Delta$.

Theorem [Chvátal-R-Szemerédi-Trotter (1983)]:

 $r(G) < c_{\Delta}n$ for every $G \in \mathcal{G}_{n,\Delta}$

Same proof yields:

$$\widehat{r}(G)=o(\mathit{n}^2)$$
 for every $G\in\mathcal{G}_{\mathit{n},\Delta}$

Problem [Beck]: $\hat{r}(G) \stackrel{???}{\leq} c_{\Delta} n$ for every $G \in \mathcal{G}_{n,\Delta}$?

Answer [R-Szemerédi]: No

Let $\mathcal{G}_{n,\Delta}$ be the set of all graphs G on n vertices with $\Delta(G) \leq \Delta$.

Theorem [Chvátal-R-Szemerédi-Trotter (1983)]:

 $r(G) < c_{\Delta}n$ for every $G \in \mathcal{G}_{n,\Delta}$

Same proof yields:

$$\widehat{r}({\it G})=o({\it n}^2)$$
 for every ${\it G}\in {\cal G}_{{\it n},\Delta}$

Problem [Beck]: $\hat{r}(G) \stackrel{???}{\leq} c_{\Delta} n$ for every $G \in \mathcal{G}_{n,\Delta}$?

Answer [R-Szemerédi]: No, i.e., $\hat{r}(G) \gg n$ for some $G \in \mathcal{G}_{n,3}$.

Goal: construct G on n vertices with $\Delta(G) = 3$ such that

 $H \not\rightarrow G$ if $e(H) \leq n(\log n)^{1/30}$.

Goal: construct G on n vertices with $\Delta(G) = 3$ such that

$$H \not\rightarrow G$$
 if $e(H) \leq n(\log n)^{1/30}$.

Proof: Take *t* and $m = 2^{t-1}$ satisfying

$$\frac{2\log n}{\log\log n} \le m \le \frac{4\log n}{\log\log n}$$

Building block: binary tree of height t - 1.

Tree T

$$\# ext{ of vertices } = 2 + \sum_{i=1}^{t} 2^{i} = 2^{t+1} = 4m$$

+

Automorphisms of T

Automorphisms of T

Number of choices $=2^{2^0}$

Automorphisms of T

Number of choices
$$=2^{2^0} imes 2^{2^1}$$

Automorphisms of T

Number of choices $= 2^{2^0} \times 2^{2^1} \times 2^{2^2}$

Automorphisms of T

$$|\operatorname{Aut}(T)| = 2^{1+2+\dots+2^{t-1}} = 2^{2^t-1}.$$

Basic component G^i of G:

 $G^{i} = T + C^{i}$, where C^{i} is a Hamiltonian cycle on the 2m leaves of T.

Two isomorphic components

of possible (labeled) Hamiltonian cycles on 2m leaves

 $=\frac{(2m)!}{2m}$

of possible (labeled) Hamiltonian cycles on 2m leaves

$$=\frac{(2m)!}{2m}$$

of non-isomorphic basic components

$$\frac{(2m)!}{2m |\operatorname{Aut}(T)|} > \frac{(2m-1)!}{2^{2^t}} = \frac{(2m-1)!}{2^{2m}} > \dots > m^m > n > \frac{n}{4m} =: q$$

since $m \ge \frac{2\log n}{\log \log n}$.
G = disjoint union of q pairwise non-isomorphic $G^i = T + C^i$.

Construction of the graph G

• every vertex of *G* has degree either 2 or 3;

• every vertex of G has degree either 2 or 3;

•
$$|V(G)| = n$$
 and $|E(G)| \le \frac{3n}{2};$

- every vertex of *G* has degree either 2 or 3;
- |V(G)| = n and $|E(G)| \le \frac{3n}{2};$

- every vertex of G has degree either 2 or 3;
- $|V(G)| = n \text{ and } |E(G)| \le \frac{3n}{2};$ • $\alpha(G) \le \frac{3n}{5}.$

Let I be a maximum independent set of G.

$$e(I, V(G) \setminus I) \ge 2|I| = 2\alpha$$
$$e(I, V(G) \setminus I) \le 3|V(G) \setminus I| = 3(n - \alpha)$$
Therefore

$$2\alpha \leq 3(n-\alpha)$$

and $\alpha \leq \frac{3n}{5}$.

Let $\ell = (\log n)^{1/30}$ and suppose *H* has $n\ell$ edges. Then $H \not\rightarrow G$.

Let $\ell = (\log n)^{1/30}$ and suppose H has $n\ell$ edges. Then $H \not\rightarrow G$. Define $k = 10\ell$ and $V_{\text{high}} = \{x \in V(H) : \deg_H(x) > k\}$ $V_{\text{low}} = \{x \in V(H) : \deg_H(x) \le k\}.$

Note: $|V_{\text{high}}| < \frac{n}{5}$.

An edge $e \in H[V_{\text{low}}]$ can see the cycle C^i , if there is a copy of G^i in $H[V_{\text{low}}]$ in which the edge e is the "root edge" of T.

On generalized Ramsey numbers

Question: How many cycles can an edge e see?

On generalized Ramsey numbers

Question: How many cycles can an edge e see?

Question: How many cycles can an edge e see?

 $k^{2}\binom{k}{2}^{(2+\cdots)}$.

Question: How many cycles can an edge e see?

$$k^{2}\binom{k}{2}^{(2+\cdots+2^{t-1})}\cdots$$

Question: How many cycles can an edge e see?

On generalized Ramsey numbers

Question: How many cycles can an edge e see?

On generalized Ramsey numbers

Question: How many cycles can an edge e see? Answer: at most k^{6m} .

Question: How many cycles can an edge e see? Answer: at most k^{6m} .

$$k^{6m} \leq n^{4/5+o(1)}$$
.

Recall

$$k = 10(\log n)^{1/30}, \quad m \le \frac{4\log n}{\log\log n}$$

Question: How many cycles can an edge e see? Answer: at most k^{6m} .

$$k^{6m} \leq n^{4/5+o(1)}$$
.

Claim: $\exists i_0 \in [q]$ for which C^{i_0} can be seen by at most $n^{5/6}$ edges.

Question: How many cycles can an edge e see? Answer: at most k^{6m} .

$$k^{6m} \leq n^{4/5+o(1)}$$
.

Claim: $\exists i_0 \in [q]$ for which C^{i_0} can be seen by at most $n^{5/6}$ edges.

Proof: On average a cycle can be seen by at most

$$\frac{1}{q}|E(H[V_{\text{low}}])|\cdot k^{6m}$$

edges.

Question: How many cycles can an edge e see? Answer: at most k^{6m} .

$$k^{6m} \leq n^{4/5+o(1)}$$
.

Claim: $\exists i_0 \in [q]$ for which C^{i_0} can be seen by at most $n^{5/6}$ edges.

Proof: On average a cycle can be seen by at most

$$\frac{1}{q}|E(H[V_{\text{low}}])| \cdot k^{6m} \leq \frac{n\ell \cdot n^{4/5+o(1)}}{q} \underbrace{=}_{q=\frac{n}{4m}} \underbrace{(4m) \cdot \ell}_{\text{low}} \cdot n^{4/5+o(1)} < n^{5/6}$$

edges.

The coloring:

The coloring:

Red edges:

• edges incident to V_{high}

The coloring:

Red edges:

• edges incident to V_{high}

•
$$E_{i_0} = \{e \in H[V_{\mathsf{low}}] : e \text{ can see } C^{i_0}\}, \quad |E_{i_0}| \le n^{5/6}.$$

The coloring:

Red edges:

- edges incident to V_{high}
- $E_{i_0} = \{e \in H[V_{\mathsf{low}}] \ : \ e \ \mathsf{can} \ \mathsf{see} \ C^{i_0}\}, \quad |E_{i_0}| \le n^{5/6}.$

All other edges are blue.

No BLUE copy of G since no blue edge can see the cycle C^{i_0} .

No RED copy of G: any subgraph of H_{red} of order n has an independent set of size

$$\geq n - |V_{\mathsf{high}}| - \Big| \bigcup_{e \in E_{i_0}} e \Big| \geq n - \frac{n}{5} - 2n^{5/6} > \frac{3n}{5}.$$

On the other hand $\alpha(G) \leq \frac{3n}{5}.$

$$\mathcal{G}_{n,\Delta} = \{G : |V(G)| = n, \Delta(G) \le \Delta\}$$
$$\hat{r}_{n,\Delta} = \max\{\hat{r}(G) : G \in \mathcal{G}_{n,\Delta}\}.$$

$$\mathcal{G}_{n,\Delta} = \{G : |V(G)| = n, \Delta(G) \le \Delta\}$$
$$\hat{r}_{n,\Delta} = \max\{\hat{r}(G) : G \in \mathcal{G}_{n,\Delta}\}.$$

• Just proved: $\hat{r}_{n,3} \ge n(\log n)^{1/30} \gg n$.

$$\mathcal{G}_{n,\Delta} = \{G : |V(G)| = n, \Delta(G) \le \Delta\}$$
$$\hat{r}_{n,\Delta} = \max\{\hat{r}(G) : G \in \mathcal{G}_{n,\Delta}\}.$$

- Just proved: $\hat{r}_{n,3} \ge n(\log n)^{1/30} \gg n$.
- Conjecture [R-Szemerédi (2000)]:

$$\forall \Delta \geq 3 \exists \varepsilon > 0, \quad n^{1+\varepsilon} \leq \hat{r}_{n,\Delta} \leq n^{2-\varepsilon}.$$

$$\mathcal{G}_{n,\Delta} = \{G : |V(G)| = n, \Delta(G) \le \Delta\}$$
$$\hat{r}_{n,\Delta} = \max\{\hat{r}(G) : G \in \mathcal{G}_{n,\Delta}\}.$$

- Just proved: $\hat{r}_{n,3} \ge n(\log n)^{1/30} \gg n$.
- Conjecture [R-Szemerédi (2000)]:

$$\forall \ \Delta \geq 3 \ \exists \ \varepsilon > 0, \quad n^{1+\varepsilon} \leq \hat{r}_{n,\Delta} \leq n^{2-\varepsilon}.$$

• Theorem [Kohayakawa-R-Schacht-Szemerédi (2010)]:

$$\widehat{r}_{n,\Delta} \leq n^{2-1/\Delta+o(1)}$$
 for all $\Delta \geq 3$

Universal Ramsey graphs

$$H \to \mathcal{G}_{n,\Delta} \quad \Leftrightarrow \quad H \to G \text{ for all } G \in \mathcal{G}_{n,\Delta}.$$

$$H o \mathcal{G}_{n,\Delta} \quad \Leftrightarrow \quad H o G \text{ for all } G \in \mathcal{G}_{n,\Delta}.$$

Theorem [KRSS]: For all $\Delta \geq 3$ there exist an *H* such that

 $H \rightarrow \mathcal{G}_{n,\Delta}$

and

 $|E(H)| \leq n^{2-1/\Delta+o(1)}.$

$$H \to \mathcal{G}_{n,\Delta} \quad \Leftrightarrow \quad H \to G \text{ for all } G \in \mathcal{G}_{n,\Delta}.$$

Theorem [KRSS]: For all $\Delta \geq 3$ there exist an *H* such that

 $H \to \mathcal{G}_{n,\Delta}$

and

 $|E(H)| \le n^{2-1/\Delta+o(1)}.$ Fact: If $H \supseteq G$ for every $G \in \mathcal{G}_{n,\Delta}$ then

 $|E(H)| \geq n^{2-2/\Delta}.$

$$H \to \mathcal{G}_{n,\Delta} \quad \Leftrightarrow \quad H \to G \text{ for all } G \in \mathcal{G}_{n,\Delta}.$$

Theorem [KRSS]: For all $\Delta \geq 3$ there exist an *H* such that

 $H \to \mathcal{G}_{n,\Delta}$

and

 $|E(H)| \le n^{2-1/\Delta+o(1)}.$ Fact: If $H \supseteq G$ for every $G \in \mathcal{G}_{n,\Delta}$ then

 $|E(H)| \geq n^{2-2/\Delta}.$

Question: Is $\hat{r}_{n,\Delta} < n^{1.99}$ for every Δ ?

On generalized Ramsey numbers

On generalized Ramsey numbers