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Quantum Theory: basic notation

Quantum States (in a finite dimensional Hilbert space)

a) pure states: normalized elements of the complex Hilbert space,
|ψ〉 ∈ HN with ||ψ||2 = 〈ψ|ψ〉 = 1,
defined up to a global phase, |ψ〉 ∼ e iα|ψ〉,
thus the set ΩN of all pure states forms
a complex projective space CPN−1, e.g. Ω2 = CP1 = S2

b) mixed states: convex combinations of projectors onto pure states,
ρ =

∑
i pi |ψi 〉〈ψi | with

∑
i pi = 1, pi ≥ 0, so that the states are:

Hermitian, ρ = ρ∗, positive, ρ ≥ 0 and normalized, Trρ = 1.

Unitary Quantum Dynamics

a) pure states: |ψ′〉 = U|ψ〉,

b) mixed states: ρ′ = UρU∗,
where unitary U ∈ U(N) is called a quantum gate, (can be complex).

In the case N = 2 it is called a single qubit quantum gate.
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Hadamard matrices ⇒ real quantum gates

Hadamard matrices are orthogonal (up to a rescaling)

as they consist of mutually orthogonal row and columns,

HH∗ = N1 ⇒ H ′ := H/
√

N is unitary

N = 2 Hadamard matrix ⇒ one–qubit Hadamard gate

H2 =

[
1 1
1 −1

]
so that H ′2 = 1√

2

[
1 1
1 −1

]
is orthogonal.

The most often used gate in Quantum Information Theory,
as it forms a quantum superposition

H2|0〉 = 1√
2

(|0〉+ |1〉)
and

H2|1〉 = 1√
2

(|0〉 − |1〉).

[in quantum information one denotes H2 (no primes) for unitary]
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Quantum computing

The basic building step is based on Hadamard matrices:

one qubit Hadamard matrix, H2 (of size two)

multi–qubit Hadamard matrix, H2n = H⊗n
2 (of size N = 2n)

Examples:
a) two qubits, n = 2
Note that H4|0, 0〉 = (H2 ⊗ H2)|0〉 ⊗ |0〉 = 1

2 [|00〉+ |01〉+ |10〉+ |11〉]
corresponds to the superposition: 0 + 1 + 2 + 3.

b) n qubits: consider the n–qubit state
|ψ〉 = H⊗n

2 |0, . . . 0〉 (∗∗)

which leads to the uniform superposition, |ψ〉 = 1√
2n

∑2n−1
x=0 |x〉

and allows to process all N = 2n numbers ”in parallel”.
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Otton Nikodym & Stefan Banach,

talking at a bench in Planty Garden, Cracow, summer 1916
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Complex Hadamard matrices

Hadamard matrices of the Butson type

composed of q-th roots of unity; H ∈ H(N, q) iff

HH∗ = N 1 , (Hij)
q = 1 for i , j = 1, . . .N (1)

Butson, 1962

special case: q = 4
H ∈ H(N, 4) iff HH∗ = N 1 and Hij = ±1,±i

(also called complex Hadamard matrices, Turyn, 1970)

Complex Hadamard matrices (general case)

HH∗ = N 1 and |Hij | = 1,
hence Hij = exp(iφij) with an arbitrary complex phase.
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Complex Hadamard matrices do exist for any N !

example: the Fourier matrix

(FN)jk := exp(ijk2π/N) with j , k = 0, 1, . . . ,N − 1. (2)

special case : N = 4

F4 =


1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i

 ∈ H(4, 4) (3)

The Fourier matrices are constructed of N–th root of unity, so they are
of the Butson type,

FN ∈ H(N,N).
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Equivalent Hadamard matrices

H ′ ∼ H
iff there exist permutation matrices P1 and P2 and
diagonal unitary matrices D1 and D2 such that

H ′ = D1P1 H P2D2 . (4)

Dephased form of a Hadamard matrix

H1,j = Hj ,1 = 1 for j = 1, . . . ,N. (5)

Any complex Hadamard matrix can be brought to the dephased form
by an equivalence relation.

example for N = 3, here α ∈ [0, 2π) while w = exp(i · 2π/3), so w3 = 1

F ′3 = e iα

 w 1 w2

1 1 1
w2 1 w

 ∼
 1 1 1

1 w w2

1 w2 w

 =: F3 , (6)
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Classification of Complex Hadamard matrices I

N = 2

all complex Hadamard matrices are equivalent to the real Hadamard
(Fourier) matrix

H2 = F2 =

[
1 1
1 −1

]
. (7)

N = 3

all complex Hadamard matrices are equivalent to the Fourier matrix

F3 =

 1 1 1
1 w w2

1 w2 w

 , w = e2πi/3. (8)

U. Haagerup, Orthogonal maximal abelian ∗-subalgebras of the N × N
matrices and cyclic N–rots,
in Operator Algebras and Quantum Field Theory, 1996.
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Classification of Complex Hadamard matrices II

N = 4

Lemma (Haagerup). For N = 4 all complex Hadamard matrices are
equivalent to one of the matrices from the following 1–d orbit, w = i

F
(1)
4 (a) =


1 1 1 1
1 w1 · exp(i · a) w2 w3 · exp(i · a)
1 w2 1 w2

1 w3 · exp(i · a) w2 w1 · exp(i · a)

 , a ∈ [0, π].

N = 5

All N = 5 complex Hadamard matrices are equivalent to
the Fourier matrix F5 (Haagerup 1996).

N ≥ 6

Several orbits of Complex Hadamard matrices are known, but the problem
of their complete classification remains open!
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1-d family by Beauchamp & Nicoara, April 2006

B
(1)
6 (y) =



1 1 1 1 1 1
1 −1 −1/x −y y 1/x
1 −x 1 y 1/z −1/t
1 −1/y 1/y −1 −1/t 1/t
1 1/y z −t 1 −1/x
1 x −t t −x −1


where y = exp(i s) is a free parameter and

x(y) =
1 + 2y + y2 ±

√
2
√

1 + 2y + 2y3 + y4

1 + 2y − y2

z(y) =
1 + 2y − y2

y(−1 + 2y + y2)
; t(y) = xyz

W. Bruzda discovered this family independenty in May 2006
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For Complex Hadamard matrices of size N = 2, . . . 16

see online Catalog at
http://chaos.if.uj.edu.pl/∼karol/hadamard

(brand new 2016 engine by Wojciech Bruzda, some new data...)

If you know about new complex Hadamard matrices
(or you found a misprint in the catalogue)

please let know Wojtek (and me)
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Wawel castle in Cracow
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D.& K. Ciesielscy theorem
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D.& K. Ciesielscy theorem: For any ε > 0 there exist η > 0 such that
with probability 1− ε the bench Banach talked to Nikodym in 1916 was
localized in η-neighbourhood of the red arrow.
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Plate commemorating the discussion between
Stefan Banach and Otton Nikodym (Kraków, summer 1916)
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Composed systems & entangled states

bi-partite systems: H = HA ⊗HB

separable pure states: |ψ〉 = |φA〉 ⊗ |φB〉
entangled pure states: all states not of the above product form.

Two–qubit system: 2× 2 = 4

Maximally entangled Bell state |ϕ+〉 := 1√
2

(
|00〉+ |11〉

)
distinguished by

the fact that reduced states are maximally mixed,
e.g. ρA = TrB |ϕ+〉〈ϕ+| = 1

212.

Maximally entangled states of d × d system

Define bi-partite pure state by a matrix of coefficients,
|ψ〉 =

∑d
i ,j=1 Γij |i , j〉.
Then reduced state ρA = TrB |ψ〉〈ψ| = ΓΓ†.

It represents a maximally entangled state if ρA = ΓΓ† = 1d/d , which is
the case if the matrix U =

√
dΓ of size d is unitary.
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Multipartite entangled states

k– uniform state of n subsystems

Consider a state of n subsystems with d levels each, |ψ〉 ∈ H⊗n
d .

Such a state is called k-uniform if for any choice of part X consisting of k
subsystems out of n the partial trace over the part X̄ consisting of
remaining n − k subsystems is maximally mixed,

TrX̄ |ψ〉〈ψ| =
1

dk
1dk . (9)

Examples

a) 2–qubit state |00〉+ |01〉+ |10〉 − |11〉 is 1–uniform (Bell-like)

(as the coefficient matrix Γ =

[
1 1
1 −1

]
is Hadamard !)

b) 3–qubit state |GHZ 〉 = (|000〉+ |111〉) is 1–uniform

c) there are no 2–uniform states of 4 qubits,
but they exist for larger systems...
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Hadamard matrices & quantum states

A Hadamard matrix H8 = H⊗3
2 of order N = 8 implies

1 1 1 1 1 1 1 1
1 −1 1 −1 1 −1 1 −1
1 1 −1 −1 1 1 −1 −1
1 −1 −1 1 1 −1 −1 1
1 1 1 1 −1 −1 −1 −1
1 −1 1 −1 −1 1 −1 1
1 1 −1 −1 −1 −1 1 1
1 −1 −1 1 −1 1 1 −1


→

1 1 1 1 1 1 1
0 1 0 1 0 1 0
1 0 0 1 1 0 0
0 0 1 1 0 0 1
1 1 1 0 0 0 0
0 1 0 0 1 0 1
1 0 0 0 0 1 1
0 0 1 0 1 1 0

This ’orthogonal array’
allows us to construct a 2–uniform state of 7 qubits:

|Φ7〉 = |1111111〉+ |0101010〉+ |1001100〉+ |0011001〉+

|1110000〉+ |0100101〉+ |1000011〉+ |0010110〉.

a simplex state |Φ7〉
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Examples of 2–uniform states obtained form H12

8 qubits

|Φ8〉 = |00000000〉+ |00011101〉+ |10001110〉+ |01000111〉+

|10100011〉+ |11010001〉+ |01101000〉+ |10110100〉+

|11011010〉+ |11101101〉+ |01110110〉+ |00111011〉.

9 qubits

|Φ9〉 = |000000000〉+ |100011101〉+ |010001110〉+ |101000111〉+

|110100011〉+ |011010001〉+ |101101000〉+ |110110100〉+

|111011010〉+ |011101101〉+ |001110110〉+ |000111011〉.

10 qubits

|Φ10〉 = |0000000000〉+ |0100011101〉+ |1010001110〉+ |1101000111〉+

|0110100011〉+ |1011010001〉+ |1101101000〉+ |1110110100〉+

|0111011010〉+ |0011101101〉+ |0001110110〉+ |1000111011〉,
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Higher dimensions: uniform states of qutrits, d = 3,
and ququarts, d = 4

A pair of orthogonal Latin squares of size 3,

0α 1β 2γ

1γ 2α 0β

2β 0γ 1α

=

A♠ K♣ Q♦
K♦ Q♠ A♣
Q♣ A♦ K♠

.

yields a 2–uniform state of 4 qutrits:

|Ψ4
3〉 = |0000〉+ |0112〉+ |0221〉+

|1011〉+ |1120〉+ |1202〉+

|2022〉+ |2101〉+ |2210〉.

Corresponding Quantum Code: |0〉 → |0̃〉 := |000〉+ |112〉+ |221〉
|1〉 → |1̃〉 := |011〉+ |120〉+ |202〉
|2〉 → |2̃〉 := |022〉+ |101〉+ |210〉
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Combinatorial designes

=⇒ An introduction to ”Quantum Combinatorics”

A classical example:
Take 4 aces, 4 kings, 4 queens and 4 jacks
and arrange them into an 4× 4 array, such that

a) - in every row and column there is only a single card of each suit

b) - in every row and column there is only a single card of each rank

Two mutually orthogonal Latin squares of size N = 4
2 MOLS(4) = Graeco–Latin square !
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Mutually ortogonal Latin Squares (MOLS)

♣) N = 2. There are no orthogonal Latin Square
(for 2 aces and 2 kings the problem has no solution)

♥) N = 3, 4, 5 (and any power of prime) =⇒ there exist (N − 1) MOLS.
♠) N = 6. Only a single Latin Square exists (No OLS!).

Euler’s problem: 36 officers of six different ranks from six different units
come for a military parade Arrange them in a square such that: in each
row / each column all uniforms are different.

No solution exists ! (conjectured by Euler), proof by:
Gaston Terry ”Le Probléme de 36 Officiers”. Compte Rendu (1901).

KŻ (IF UJ/CFT PAN ) Structured Hadamard matrices 11.07.2017 23 / 46



Mutually ortogonal Latin Squares (MOLS)

♣) N = 2. There are no orthogonal Latin Square
(for 2 aces and 2 kings the problem has no solution)

♥) N = 3, 4, 5 (and any power of prime) =⇒ there exist (N − 1) MOLS.
♠) N = 6. Only a single Latin Square exists (No OLS!).

Euler’s problem: 36 officers of six different ranks from six different units
come for a military parade Arrange them in a square such that: in each
row / each column all uniforms are different.

No solution exists ! (conjectured by Euler), proof by:
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Mutually ortogonal Latin Squares (MOLS)

An apparent solution of the N = 6 Euler’s problem of 36 officers.
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State |Ψ6
4〉 of six ququarts can be generated by three
mutually orthogonal Latin cubes of order four!

(three quarts + three address quarts = 6 quarts in 43 = 64 terms)
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Six ququarts

The 3–uniform state of 6 ququarts:
read from three mutually orthogonal Latin cubes

|Ψ6
4〉 =

|000000〉+ |001111〉+ |002222〉+ |003333〉+ |010123〉+ |011032〉+

|012301〉+ |013210〉+ |020231〉+ |021320〉+ |022013〉+ |023102〉+

|030312〉+ |031203〉+ |032130〉+ |033021〉+ |100132〉+ |101023〉+

|102310〉+ |103201〉+ |110011〉+ |111100〉+ |112233〉+ |113322〉+

|120303〉+ |121212〉+ |122121〉+ |123030〉+ |130220〉+ |131331〉+

|132002〉+ |133113〉+ |200213〉+ |201302〉+ |202031〉+ |203120〉+

|210330〉+ |211221〉+ |212112〉+ |213003〉+ |220022〉+ |221133〉+

|222200〉+ |223311〉+ |230101〉+ |231010〉+ |232323〉+ |233232〉+

|300321〉+ |301230〉+ |302103〉+ |303012〉+ |310202〉+ |311313〉+

|312020〉+ |313131〉+ |320110〉+ |321001〉+ |322332〉+ |323223〉+

|330033〉+ |331122〉+ |332211〉+ |333300〉.
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k–uniform states and k–unitary matrices

Consider a 2–uniform state of four parties A,B,C ,D with d levels each,
|ψ〉 =

∑d
i ,j ,l ,m=1 Γijlm|i , j , l ,m〉

It is maximally entangled with respect to all three partitions:
AB|CD and AC |BD and AD|BC .

Let ρABCD = |ψ〉〈ψ|. Hence its three reductions are maximally mixed,
ρAB = TrCDρABCD = ρAC = TrBDρABCD = ρAD = TrBCρABCD = 1d2/d2

Thus matrices Uµ,ν of order d2 obtained by reshaping the tensor dΓijkl are
unitary for three reorderings:

a) µ, ν = ij , lm, b) µ, ν = im, jl , c) µ, ν = il , jm.

Such a tensor Γ is called perfect.

Corresponding unitary matrix U of order d2 is called two–unitary
if reordered matrices UR1 and UR2 remain unitary.

Unitary matrix U of order dk with analogous property is called k–unitary
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Exemplary multiunitary matrices

Two–unitary permutation matrix of size 9 = 32

associated to 2 MOLS(3) and 2–uniform state |Ψ4
3〉 of 4 qutrits

U = U ij
ml

=



1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1
0 0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0


∈ U(9)

Furthermore, also two reordered matrices
(by partial transposition and reshuffling) remain unitary:
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UT1 = U il
mj

=



1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1
0 0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0 0


∈ U(9)

UR = U im
jl

=



1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0


∈ U(9)
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Are there multiunitary Hadamard matrices?

no for d = 2 and N = d2 = 4 (to many constraints!)
Yes for d = 3 and N = d2 = 9 and for d = 2 and N = d3 = 8
Example: 3–unitary real Hadamard matrix of size N = 23 = 8
associated to the 3–uniform state |Ψ6

2〉 of 6 qubits

H ijk
lmn

=
1√
8



−1 −1 −1 1 −1 1 1 1
−1 −1 −1 1 1 −1 −1 −1
−1 −1 1 −1 −1 1 −1 −1
1 1 −1 1 −1 1 −1 −1
−1 1 −1 −1 −1 −1 1 −1
1 −1 1 1 −1 −1 1 −1
1 −1 −1 −1 1 1 1 −1
1 −1 −1 −1 −1 −1 −1 1


∈ H8

This unitary matrix remains unitary after any of 1
2

(6
3

)
= 10 reorderings

related to different decomposition of the hypercube with 82 = 26 = 64
entries.
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H ijk
lnm

=
1√
8



−1 −1 −1 1 −1 1 1 1
−1 −1 1 −1 −1 1 −1 −1
−1 −1 −1 1 1 −1 −1 −1
1 1 −1 1 −1 1 −1 −1
−1 1 −1 −1 −1 −1 1 −1
1 −1 −1 −1 1 1 1 −1
1 −1 1 1 −1 −1 1 −1
1 −1 −1 −1 −1 −1 −1 1


∈ H8

H ijk
nlm

=
1√
8



−1 −1 −1 1 −1 1 1 1
−1 1 −1 −1 −1 −1 1 −1
−1 −1 −1 1 1 −1 −1 −1
1 −1 1 1 −1 −1 1 −1
−1 −1 1 −1 −1 1 −1 −1
1 −1 −1 −1 1 1 1 −1
1 1 −1 1 −1 1 −1 −1
1 −1 −1 −1 −1 −1 −1 1


∈ H8
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Open issue I

Multi–unitary Hadamard (and other unitary) matrices

Let H be a Hadamard matrix of size N = dk

It is called multi–unitary
if the corresponding tensor (of size d with 2k indices) is perfect,

which means that all its 1
2

(2k
k

)
reorderings also form a Hadamard matrix

To be done: Identify and classify

a) multi–unitary real Hadamard matrices

b) multi–unitary complex Hadamard matrices

c) all multi–unitary matrices
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N = 36 Euler–like conjecture

Euler 36–officers problem: no 2 MOLS(6) ⇔
there are no 2–unitary permutation matrices of order N =62= 36.

Is there at all a 2–unitary matrix of order N = 36 ?
(= a set of 36 ”entangled officers” of Euler) ??

basing on numerical results by Z. Pucha la and W. Bruzda
we advance the following

Conjecture

There are no two–unitary matrices of order N = 62 = 36.

A proof of this conjecture would imply
the N = 6 non-existence theorem of Euler – Terry.
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Cracow

and Tatra mountains in the background
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Open issue II

H2 reducible Hadamard matrices, (Bengt R. Karlsson, 2011)

A Hadamard matrix of size N = 2m is called H2 reducible,
if each of its 2× 2 blocks forms a Hadamard matrix.

Example: complex Hadamard matrix of size N = 6 defined by the tensor
product F3 ⊗ H2 is H2 reducible as it consists of 9 blocks of size two,
each of them forming a (complex) Hadamard matrix.

Task II: Identify and classify

a) H2 reducible complex Hadamard matrices
(done by Karlsson, 2011 for N = 6 = 2× 3.)

b) H3 reducible complex Hadamard matrices
(done by Karlsson, 2016 for N = 9 = 3× 3.)

This issue is helpful in classyfying all
complex Hadamard matrices of order N
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Robust Hadamard matrices I

Definition

A Hadamard matrix H of size N will be called robust
if any of its projection onto 2-dimensional subspace forms a

Hadamard matrix.

Equivalently, if

a) for any choice of indices i , j the truncated matrix H2 =

[
Hii Hij

Hji Hjj

]
is Hadamard,

b) any principal minor of H is extremal, |det(H2)| = 2

Example N = 4: HR
4 =


1 1 1 1
1 −1 −1 1
1 1 −1 −1
1 −1 1 −1

.

A problem of robust matrices with N(N − 1)/2 constraints, differs from
Karlsson’s problem of H2-reducible matrices with N2/4 constraints.
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Robust Hadamard matrices II

a) doubly even dimension, N = 4m

Skew Hadamard matrix satisfies: HS + HT
S = 21.

Proposition: A real Hadamard matrix H is robust if it is sign–equivalent
to a skew Hadamard matrix, HR = DHSD ′ with D,D ′ diagonal sign
matrices.

Existence: For m < 69 there exists a skew Hadamard matrix of size 4m.

b) even dimension, N = 4m + 2

Conference matrix of size N satisfies: CCT = (N − 1)1 with Cij = ±1.

Construction with symmetric conference matrix C = CT . The matrix
HR = C + iI is robust complex Hadamard

as its main minors read det
([ i ±1
±1 i

])
= −2
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Robust Hadamard matrices III

Example. Robust Complex Hadamard for N = 6
Using a symmetric conference matrix C6 we obtain

HR
6 = C6 + iI =



i 1 1 1 1 1
1 i 1 −1 −1 1
1 1 i 1 −1 −1
1 −1 1 i 1 −1
1 −1 −1 1 i 1
1 1 −1 −1 1 i

 .

Hence robust complex Hadamard matrices exist for
N = 6, 10, 14, 18, 26..., for which symmetric conference matrices exist.

Question: Is there a complex robust Hadamard for N = 22 ?
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A more general set-up to Hadamard matrices

Birkhoff Polytope & Unistochastic matrices

Let B be a bistochastic matrix of order n, so that
∑

i Bij =
∑

j Bij = 1
and Bij ≥ 0 (also called doubly stochastic).
B is called unistochastic if there exist a unitary U such that Bij = |Uij |2
what implies B = f (U)

Existence problem: Which B is unistochastic?

Every B of size N = 2 is unistochastic, for N = 3 it is not the case
(Schur). Constructive conditions for unistochasticity are known for N = 3
Au-Yeung and Poon 1979, but for N = 4 this problem remains open.

Classification problem: Assume B is unistochastic

Find all preimages U such that f −1(B) = U.
Special case: Flat matrix of van der Waerden of size N, so Wij = 1/N.
Then the problem of classification of all preimages of W reduces to the
search for all complex Hadamard matrices of size N.
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Robust Hadamard matrices & unistochasticity

Consider the Birkhoff polytope PN containing bistochastic matrices of
size N with the flat matrix W at its center.

Its ray r is formed by convex combinations of a given permutation matrix
P and the center, B = aP + (1− a)W ∈ r

Unistochastic and orthostochastic rays

Proposition i) If there exists a robust real Hadamard matrix of size N
any ray r of PN is orthostochastic.

ii) If there exists a robust complex Hadamard matrix of size N
any ray of PN is unistochastic.

Thus for all even cases N = 2, 4, 6, . . . , 20 the rays are unistochastic.

Open questions: a) What about N = 22?

b) Is the set UN of unistochastic matrices star shaped ?

c) For which N there exists a unistochastic ball around the center WN ?
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Open issue III

Real and complex robust Hadamard matrices

A Hadamard matrix H of size N is called robust
if any of its projection onto 2-dimensional subspace forms a

Hadamard matrix.

Task III: Identify and classify

a) robust real Hadamard matrices
(exist e.g. for N for which a skew Hadamard matrix exists)

b) robust complex Hadamard matrices
(exist e.g. for N for which complex skew Hadamard matrix exists)

This issue is helpful in solving the
unistochasticity problem:

What bistochastic matrix B of order N is uni–(orto–)stochastic.
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Bench commemorating the discussion between
Otton Nikodym and Stefan Banach (Kraków, summer 1916)

Sculpture: Stefan Dousa Fot. Andrzej Kobos

opened in Planty Garden, Cracow, Oct. 14, 2016
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A quick quiz

What quantum state can be associated with this design ?
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Hints

Two mutually orthogonal Latin squares of size N = 4

Three mutually orthogonal Latin squares of size N = 4
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The answer

Bag shows three mutually orthogonal Latin squares of size N = 4
with three attributes A,B,C of each of 42 = 16 squares.
Appending two indices, i , j = 0, 1, 2, 3 we obtain a 16× 5 table,
A00,B00,C00, 0, 0
A01,B01,C01, 0, 1
.........................
A33,B33,C33, 3, 3.
It forms an orthogonal array OA(16,5,4,2)
leading to the 2–uniform state of 5 ququarts,

|Ψ5
4〉 = |00000〉+ |12301〉+ |23102〉+ |31203〉

|13210〉+ |01111〉+ |30312〉+ |22013〉+

|21320〉+ |33021〉+ |02222〉+ |10123〉+

|32130〉+ |20231〉+ |11032〉+ |03333〉

related to the Reed–Solomon code of length 5.
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