Commutators of projectors, mutually unbiased bases and projective geometry.

A.Kocherova¹ and I.Zhdanovskiy²

¹Department of Higher Mathematics Moscow Institute of Physics and Technologies (MIPT)

²Department of Higher Mathematics Moscow Institute of Physics and Technologies (MIPT), Lab. of algebraic geometry Higher School of Economics (HSE)

5th workshop on real and complex Hadamard matrices, 2017

Fix point $t = (t_{11} : t_{12} : t_{21} : t_{22}) \in \mathbb{P}^3$. Consider unital associative algebra A(t) generated by pairs of orthogonal projectors π_1, π_2 and ρ_1, ρ_2 :

$$\pi_1\pi_2 = \pi_2\pi_1 = \rho_1\rho_2 = \rho_2\rho_1 = 0.$$

Also, generators π_i , ρ_i , i, j = 1, 2 satisfy to relation:

$$\sum_{i,j=1}^{2} t_{ij}[\pi_i, \rho_j] = 0.$$
 (1)

< 個 → < 注 → < 注 → … 注

Theorem

$\dim_{\mathbb{C}} A(t) = 18$ and $A(t) \cong \mathbb{C}^{\oplus 9} \oplus Mat_3(\mathbb{C})$ for general $t \in \mathbb{P}^3$.

There are exceptional cases: for some points $t \in \mathbb{P}^3$ algebra A(t) is infinite-dimensional. For example, algebra $A(t_0)$ for $t_0 = (1 : 0 : 0 : -1)$ is infinite-dimensional. There is a connection of algebra $A(t_0)$ and Petrescu's construction of mutually unbiased bases in dimension 7.

「ロトス部トス語トス語ト」語

Projectors and MUBs.

Consider two sets of orthogonal Hermitian projectors $p_1, ..., p_n$ and $q_1, ..., q_n$ of rank 1, acting in n-dimensional vector space V. Assume that

$$p_i q_j p_i = \frac{1}{n} p_i, q_i p_j q_i = \frac{1}{n} q_i$$
(2)

for any *i*, *j*. These relations mean that $\operatorname{Tr} p_i q_j = \frac{1}{n}$. Choose $e_i \in \operatorname{Im} p_i$, i = 1, ..., n and $f_j \in \operatorname{Im} q_j$, j = 1, ..., n such that $|e_i| = |f_j| = 1$. Orthogonality of p_i 's and q_j 's mean that e_i , i = 1, ..., n and f_j , j = 1, ..., n are orthonormal bases in V

Fact

Two bases e_i and f_i are mutually unbiased.

Note that if e_i and f_j are mutually unbiased bases then we can construct two sets of Hermitian projectors p_i , q_j satisfying to (2).

御下 不管下 不管下 一層

MUB in dimension 7

Suppose that n = 7. It is well-known that there is one-dimensional family of MUBs (up to natural equivalence). This family is given by transition matrix P(x):

$$P(x) = \frac{1}{\sqrt{7}} \begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & w \cdot x & w^4 \cdot x & w^5 & w^3 & w^3 & w \\ 1 & w^4 \cdot x & w \cdot x & w^3 & w^5 & w^3 & w \\ 1 & w^5 & w^3 & \frac{w}{x} & \frac{w^4}{x} & w & w^3 \\ 1 & w^3 & w^5 & \frac{w^4}{x} & \frac{w}{x} & w & w^3 \\ 1 & w^3 & w^3 & w & w & w^4 & w^5 \\ 1 & w & w & w^3 & w^3 & w^5 & w^4 \end{pmatrix},$$
(3)

where $x \in \mathbb{C}^*$, |x| = 1 and w is a primitive root of unity of degree 6. If $x \in \mathbb{C}^*$ then P(x) is a one-dimensional family of generalized Hadamard matrices of order 7. This family of complex Hadamard matrices was discovered by Petrescu.

< 個 → < 注 → < 注 → … 注

Nicoara proved that if $\{e_i\}_{i=1}^7, \{f_j\}_{j=1}^7$ are mutually unbiased bases with transition matrix P(x), then Hermitian projectors $p_i, q_j, i, j = 1, ..., 7$ satisfy to relation:

$$[p_1 + p_2, q_1 + q_2] = [p_3 + p_4, q_3 + q_4].$$
(4)

Denote by \mathcal{N} the algebra generated by p_i and q_j satisfying to relations (2) and (4). It is easy that pairs of projectors $p_1 + p_2$, $p_3 + p_4$ and $q_1 + q_2, q_3 + q_4$ are orthogonal. Denote by $A(t_0)$ the algebra A(t) for $t_0 = (1:0:0:-1)$. It is easy that there is a morphism: $A(t_0) \rightarrow \mathcal{N}$ given by formulas: $\pi_1 \mapsto p_1 + p_2, \pi_2 \mapsto p_3 + p_4$ and $\rho_1 \mapsto q_1 + q_2, \rho_2 \mapsto q_3 + q_4$.

白 と (日) (主) (主) (主)

Let us note the following properties of $A(t_0)$:

Properties of $A(t_0)$

- Algebra $A(t_0)$ is infinite-dimensional
- Algebra $A(t_0)$ has 9 one-dimensional modules
- Dimension of irreducible representations of $A(t_0)$ is less or equal 2
- Algebra $A(t_0)$ has infinite-dimensional center Z, SpecZ is a union of three lines in 3-dimensional affine space
- Irreducible $A(t_0)$ -modules are parameterized by points of SpecZ.

Using representation theory of $A(t_0)$, one can construct Petrescu's family

・ 同 ト ・ ヨ ト ・ ヨ ト … ヨ

Consider orthogonal projectors π_1, π_2 of rank 1 acting in 3-dimensional space V. It is easy that $\pi_1, \pi_2, \pi_3 = 1 - \pi_1 - \pi_2$ are orthogonal projectors of rank 1.

As we know, projector is defined by its image and kernel. Images of π_1, π_2, π_3 are 1-dimensional subspaces of V, and hence, these images define points S_1, S_2, S_3 of $\mathbb{P}V$ respectively.

Description of orthogonal projectors

Three orthogonal projectors of rank 1 acting in 3-dimensional space V are defined by 3 independent points (don't lie on the same line) in $\mathbb{P}V$

Actually, image of π_i is defined by point S_i and kernel is defined by subspace corresponding to line passing through $S_k, S_l, k, l \neq i$.

Analogous to the case of π_1, π_2, π_3 , we get that projectors ρ_1, ρ_2 and $\rho_3 = 1 - \rho_1 - \rho_2$ are defined by 3 independent points $T_1, T_2, T_3 \in \mathbb{P}V$. Therefore,

Description of two sets of projectors

Two sets of orthogonal projectors: π_1, π_2, π_3 and ρ_1, ρ_2, ρ_3 are defined by 6 points S_1, S_2, S_3 ; $T_1, T_2, T_3 \in \mathbb{P}V$

Of course, action of GL(V) by conjugation on 6 projectors is compatible with action of PGL(V) on 6 points of $\mathbb{P}V$.

Consider space generated by commutators of two sets of three 1-dimensional orthogonal projectors π_1, π_2, π_3 and ρ_1, ρ_2, ρ_3 . Using formulas $\pi_3 = 1 - \pi_1 - \pi_2$ and $\rho_3 = 1 - \rho_1 - \rho_2$, we get that this space is generated by $[\pi_i, \rho_j], i, j = 1, 2$, and hence, dimension of this space is not more than 4.

Theorem

Commutators of projectors $\pi_1, \pi_2, \rho_1, \rho_2$ are linear dependent (i.e.satisfy to relation:

$$\sum_{i,j=1}^{2} t_{ij}[\pi_i,\rho_j] = 0$$

for some $t = (t_{11} : t_{12} : t_{21} : t_{22}) \in \mathbb{P}^3$ if and only if there is a conic passing through 6 points $S_1, S_2, S_3; T_1, T_2, T_3$.

Consider Cartan subalgebra of gl(V), dim V = 3. It is well-known that there is a basis in which Cartan subalgebra is a subalgebra of diagonal matrices. This basis defines 3 points of $\mathbb{P}V$. Thus, Cartan subalgebras are parameterized by 3 non-ordered points of $\mathbb{P}V$.

Consider one-dimensional family of Cartan subalgebras $\mathcal{H}_x, x \in \mathbb{P}^1$. Taking all 3 points of $\mathbb{P}V$ corresponding to bases in which Cartan subalgebras \mathcal{H}_x are diagonal subalgebra, we get the curve $C \subset \mathbb{P}V$. Note that this curve is non-degenerated (i.e. is not a line). Also, we have map: $C \to \mathbb{P}^1$ of degree 3. We can rewrite the relation (1) in the following manner:

$$[x_0\pi_1 + x_1(-t_{21}\rho_1 - t_{22}\rho_2), x_0\pi_2 + x_1(t_{11}\rho_1 + t_{12}\rho_2)] = 0$$
 (5)

for any $x = (x_0 : x_1) \in \mathbb{P}^1$. Consider Cartan subalgebras $\mathcal{H}_0, \mathcal{H}_1$ of gl(V) generated by π_1, π_2 and ρ_1, ρ_2 respectively. Relation (5) means that there is one-dimensional family of Cartan subalgebras $\mathcal{H}_x, x \in \mathbb{P}^1$ in subspace $\mathcal{H}_0 + \mathcal{H}_1$.

Theorem

Consider 1-dimensional family of Cartan subalgebras $\mathcal{H}_x, x \in \mathbb{P}^1$. Denote by C the curve corresponding to bases in which \mathcal{H}_x are diagonal. Denote by $\langle \mathcal{H}_x \rangle \subset gl(V)$ the space generated by all elements of \mathcal{H}_x . Thus, dim $\langle \mathcal{H}_x \rangle \leq 5$ iff curve C is a conic. This statement has the following generalization.

Consider one-dimensional family of Cartan subalgebras $\mathcal{H}_x, x \in \mathbb{P}^1$ of gl_n . C is a curve corresponding to bases of \mathcal{H}_x . In this case we have morphism: $C \to \mathbb{P}^1$ of degree n. Also, $C \subset \mathbb{P}^{n-1}$ is non-degenerated curve (i.e. is not contained in any hyperplane).

Theorem

dim $< \mathcal{H}_x > \leq 2n - 1$ iff curve $C \subset \mathbb{P}^{n-1}$ has degree n - 1.

Let us formulate the following general idea:

Idea

Any commutativity (or "almost" commutativity) has geometrical nature, i.e it can be formulated in geometrical terms.

A = A = A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A

Consider pair of operators A, B acting in finite-dimensional vector space V. Assume that each of these operators has n different eigenvalues. Thus, operators A and B define 2n points $a_1, ..., a_n$; $b_1, ..., b_n$ of $\mathbb{P}^{n-1} = \mathbb{P}V$ corresponding to eigenspaces of A and B respectively.

- There are n-1 pair of independent polynomials f_i, g_i, i = 1, ..., n 1 such that [f_i(A) + g_i(B), f_j(A) + g_j(B)] = 0 for any i, j if and only if there is a curve of degree n 1 passing through a₁, ..., a_n; b₁, ..., b_n.
- It can be formulated in terms of quantum mechanics

→ ★課 → ★ 注 → ★ 注 → … 注

THANK YOU!

◆□> ◆舂> ◆注> ◆注> □注