Ideal Factorization Method

Applications

臣

On Near Butson-Hadamard Matrices

Oğuz Yayla

joint work with Sibel Kurt

Hacettepe University Department of Mathematics Ankara, Turkey

July, 2017

- Introduction
- Ideal Factorization Method
- Application to matrices and sequences

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Near Butson-Hadamard Matrices

- $\mathcal{E}_m = \{1, \zeta_m, \zeta_m^2, \dots, \zeta_m^{m-1}\}$
- A Butson-Hadamard matrix is a square matrix H of order v with entries in \mathcal{E}_m such that $H\overline{H}^T = vI$.
- denoted by BH(v, m).
- BH(v, 2) is so called Hadamard matrix of order v
- Near Butson-Hadamard matrix $BH_{\gamma}(v, m)$ of type γ :

Near Butson-Hadamard Matrices

•
$$\mathcal{E}_m = \{1, \zeta_m, \zeta_m^2, \dots, \zeta_m^{m-1}\}$$

- A Butson-Hadamard matrix is a square matrix H of order v with entries in \mathcal{E}_m such that $H\overline{H}^T = vI$.
- denoted by BH(v, m).
- BH(v, 2) is so called Hadamard matrix of order v
- Near Butson-Hadamard matrix $BH_{\gamma}(v, m)$ of type γ : $H\overline{H}^{T} = (v - \gamma)I + \gamma J$ for a $\gamma \in \mathbb{R} \cap \mathbb{Z}[\zeta_{m}]$.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

Example 1

BH_{γ}(5,5) exists for $\gamma \in \{-\xi_5^3 - \xi_5^2 + 2, 0, 5, \xi_5^3 + \xi_5^2 + 3\}$ with $|\gamma| \in \{1.38, 0, 5, 3.61\}$, respectively.

・ロト ・四ト ・ヨト ・ヨト

3

Example 1

BH_{$$\gamma$$}(5,5) exists for $\gamma \in \{-\xi_5^3 - \xi_5^2 + 2, 0, 5, \xi_5^3 + \xi_5^2 + 3\}$ with $|\gamma| \in \{1.38, 0, 5, 3.61\}$, respectively. For instance, the matrix *H* has $\gamma = -\xi_5^3 - \xi_5^2 + 2$ with $|\gamma| = 1.38$

$$H = \begin{bmatrix} 1 & 1 & -\xi_5^2 & 1 & 1 \\ 1 & 1 & 1 & -\xi_5^2 & 1 \\ 1 & 1 & 1 & 1 & -\xi_5^2 \\ -\xi_5^2 & 1 & 1 & 1 & 1 \\ 1 & -\xi_5^2 & 1 & 1 & 1 \end{bmatrix}.$$

・ロト ・日本・ ・ ヨト・ ・ ヨト・

Ideal Factorization Method

Main equation

Example 2

Similarly, we obtained by an exhaustive search that $BH_{\gamma}(8,5)$ exists for $\gamma \in \{-\xi_5^3 - \xi_5^2 + 5, -\xi_5^3 - \xi_5^2, 8, \xi_5^3 + \xi_5^2 + 1, \xi_5^3 + \xi_5^2 + 6\}$ with $|\gamma| \in \{6.61, 1.61, 8, 0.61, 4.38\}$, respectively.

・ロト ・ 同ト ・ ヨト ・ ヨト

Ideal Factorization Method

Applications

Main equation

Example 2

Similarly, we obtained by an exhaustive search that $BH_{\gamma}(8,5)$ exists for $\gamma \in \{-\xi_5^3 - \xi_5^2 + 5, -\xi_5^3 - \xi_5^2, 8, \xi_5^3 + \xi_5^2 + 1, \xi_5^3 + \xi_5^2 + 6\}$ with $|\gamma| \in \{6.61, 1.61, 8, 0.61, 4.38\}$, respectively. In particular, the matrix H has $\gamma = -\xi_5^3 - \xi_5^2 + 2$ with $|\gamma| = 0.61$

$$H = \begin{bmatrix} 1 & 1 & \zeta_{5}^{2} & \zeta_{5}^{3} & 1 & \zeta_{5}^{3} & \zeta_{5} & 1 \\ 1 & 1 & 1 & \zeta_{5}^{2} & \zeta_{5}^{3} & 1 & \zeta_{5}^{3} & \zeta_{5} \\ \zeta_{5} & 1 & 1 & 1 & \zeta_{5}^{2} & \zeta_{5}^{3} & 1 & \zeta_{5}^{3} \\ \zeta_{5}^{3} & \zeta_{5} & 1 & 1 & 1 & \zeta_{5}^{2} & \zeta_{5}^{3} & 1 \\ 1 & \zeta_{5}^{3} & \zeta_{5} & 1 & 1 & 1 & \zeta_{5}^{2} & \zeta_{5}^{3} \\ \zeta_{5}^{3} & 1 & \zeta_{5}^{3} & \zeta_{5} & 1 & 1 & 1 & \zeta_{5}^{2} \\ \zeta_{5}^{2} & \zeta_{5}^{3} & 1 & \zeta_{5}^{3} & \zeta_{5} & 1 & 1 & 1 \\ 1 & \zeta_{5}^{2} & \zeta_{5}^{3} & 1 & \zeta_{5}^{3} & \zeta_{5} & 1 & 1 \end{bmatrix}$$

ヘロト ヘヨト ヘヨト

•
$$H\overline{H}^T = (v - \gamma)I + \gamma J$$

イロト イポト イヨト イヨト

•
$$H\overline{H}^T = (v - \gamma)I + \gamma J$$

• $\det(H) \in \mathbb{Z}[\zeta_m]$

イロン イヨン イヨン イヨン

•
$$H\overline{H}^T = (v - \gamma)I + \gamma J$$

•
$$\det(H) \in \mathbb{Z}[\zeta_m]$$

•
$$\det(H\overline{H}^T) = \det(H)\overline{\det(H)} = ((\gamma+1)\nu - \gamma)(\nu - \gamma)^{\nu-1}.$$

イロト イポト イヨト イヨト

•
$$H\overline{H}^T = (v - \gamma)I + \gamma J$$

- $\det(H) \in \mathbb{Z}[\zeta_m]$
- $\det(H\overline{H}^T) = \det(H)\overline{\det(H)} = ((\gamma + 1)\nu \gamma)(\nu \gamma)^{\nu 1}.$
- Therefore, we want to find criteria for the unsolvability of the equation

$$\alpha \overline{\alpha} = ((\gamma + 1)\nu - \gamma)(\nu - \gamma)^{\nu - 1}$$
(1)

over $\mathbb{Z}[\zeta_m]$.

イロト イポト イヨト イヨト

臣

Previous Work

Checking solvability of this kinds of equations was studied in:

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Previous Work

Checking solvability of this kinds of equations was studied in:

self conjugate condition [Brock,1988]
 Brock said that for a positive integer w there exists no solution α to the equation αā = w over Q(ζ_m) if the square-free part of w is divisible by a prime which is self-conjugate modulo m in his work.

・ 同 ト ・ ヨ ト ・ ヨ ト

Previous Work

Checking solvability of this kinds of equations was studied in:

- self conjugate condition [Brock,1988] Brock said that for a positive integer w there exists no solution α to the equation αā = w over Q(ζ_m) if the square-free part of w is divisible by a prime which is self-conjugate modulo m in his work.
- Principal ideal decomposition [(Winterhof,Yayla,Ziegler),2014] Existence of γ -Butson Hadamard matrices for $\gamma \in \mathbb{Z}$ condition is studied under an equation $D = \alpha \overline{\alpha}$ with parameters m, v and $\gamma \in \mathbb{Z}$.

Our Motivation

• What about the case $\gamma \in \mathbb{R} \cap \mathbb{Z}[\zeta_m] \setminus \mathbb{Z}$?

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Our Motivation

- What about the case $\gamma \in \mathbb{R} \cap \mathbb{Z}[\zeta_m] \setminus \mathbb{Z}$?
- $\bullet~{\rm Obtain}~{\rm BH}_{\gamma}$ matrices having $|\gamma|$ as small as possible

臣

 Problem - 1 : For which parameters m, v ∈ Z⁺ does a BH_γ exists if γ is noninteger?

・ロト ・日本 ・モート ・モート

Problems

• Problem - 1 :

For which parameters $m, v \in \mathbb{Z}^+$ does a BH_{γ} exists if γ is noninteger?

• Problem - 2 :

What can be said about conference matrices and sequences?

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

 A new result stating necessary conditions for the nonexistence of a near Butson-Hadamard matrix (γ ∈ ℝ ∩ ℤ[ζ_m]).

臣

A new result stating necessary conditions for the nonexistence of a near Butson-Hadamard matrix (γ ∈ ℝ ∩ ℤ[ζ_m]). Examples of nonexistence and existence cases by computer search.

A = A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

∃ ►

Results

- A new result stating necessary conditions for the nonexistence of a near Butson-Hadamard matrix (γ ∈ ℝ ∩ ℤ[ζ_m]). Examples of nonexistence and existence cases by computer search.
- Consequences of our results applied to the concept of sequences and conference matrices. Examples of existence cases for nearly perfect sequences.

Main Theorem

A condition for the non-existence of a solution $\alpha \in \mathbb{Z}[\zeta_m]$ to this equation is presented in Theorem 3.

Theorem 3

Let $D \in \mathbb{Z}[\zeta_m] \cap \mathbb{R}$ such that $D = tq^{2e+1}$

- where $q, t \in \mathbb{Z}[\zeta_m]$ and q is squarefree, provided that every prime ideal $\mathfrak{t} \triangleleft \mathbb{Z}[\zeta_m]$ with $\mathfrak{t}|(t)$ is principal,
- $(q) = q_1q_2$ where q_1 , q_2 are non-principal prime ideals of $\mathbb{Z}[\zeta_m]$, e > 0 be rational integer,
- $gcd(2e+1-2k, h_m) = 1$ for $0 \le k \le e-1$ and
- gcd(N(q), N(t)) = 1.

Then, there exists no $\alpha \in \mathbb{Z}[\zeta_m]$ satisfying $D = \alpha \overline{\alpha}$.

・ロト ・回ト ・ヨト ・ヨト

Proof

Proof.

We first assume that there exists $\alpha \in \mathbb{Z}[\zeta_m]$ such that $\alpha \bar{\alpha} = tq^{2e+1}$ such that

$$(\alpha) = \mathfrak{t}_1 \mathfrak{q}_1^{2e+1-k} \mathfrak{q}_2^k, (\bar{\alpha}) = \mathfrak{t}_2 \mathfrak{q}_1^k \mathfrak{q}_2^{2e+1-k}$$

for some $\mathfrak{t} \lhd \mathbb{Z}[\zeta_m]$. We have

$$(\alpha) = \mathfrak{t}_1 \mathfrak{q}_1^{2e+1-k} \mathfrak{q}_2^k = \mathfrak{t}_1 \mathfrak{q}_1^{2e+1-2k} q^k$$

We know that t_1 and q are principal ideals of $\mathbb{Z}[\zeta_m]$ but $\mathfrak{q}_1^{2e+1-2k}$ is nonprincipal since $gcd(2e+1-2k,h_m)=1$. Hence we get a contradiction. Next, we assume that $\alpha = \mathfrak{t}_1 q^s$, $\bar{\alpha} = \mathfrak{t}_2 q^{2e+1-s}$ for some principal ideals $\mathfrak{t}_1, \mathfrak{t}_2 \triangleleft \mathbb{Z}[\zeta_m]$ and $s \in \mathbb{Z}^+ \cup \{0\}$, $s \leq e$. Then, $q^{2e+1-2s}|\mathfrak{t}_1$. However, this contradicts to $gcd(N(q), N(\mathfrak{t})) = 1$.

Class Number Table

Table: The class number h_m of $\mathbb{Q}(\zeta_m)$ for $m \leq 70$ [Washington1997].

m	h _m	т	h _m	m	h _m	т	h _m	m	h _m	т	h _m	т	h _m
1	1	11	1	21	1	31	9	41	121	51	5	61	76301
2	1	12	1	22	1	32	1	42	1	52	3	62	9
3	1	13	1	23	3	33	1	43	211	53	48891	63	7
4	1	14	1	24	1	34	1	44	1	54	1	64	17
5	1	15	1	25	1	35	1	45	1	55	10	65	64
6	1	16	1	26	1	36	1	46	3	56	2	66	1
7	1	17	1	27	1	37	37	47	695	57	9	67	853513
8	1	18	1	28	1	38	1	48	1	58	8	68	8
9	1	19	1	29	8	39	2	49	43	59	41421	69	69
10	1	20	1	30	1	40	1	50	1	60	1	70	1

・ロト ・部ト ・ヨト ・ヨト

Example 4

$$D = ((-\zeta_{23} - \zeta_{23}^{22})5 + 1 + \zeta_{23} + \zeta_{23}^{22})(6 + \zeta_{23} + \zeta_{23}^{22})^4 \in \mathbb{Z}[\zeta_{23}]$$

< = >

Ideal Factorization Method

Example

Example 4

$$D = ((-\zeta_{23} - \zeta_{23}^{22})5 + 1 + \zeta_{23} + \zeta_{23}^{22})(6 + \zeta_{23} + \zeta_{23}^{22})^4 \in \mathbb{Z}[\zeta_{23}]$$

v = 5, m = 23, $\gamma = -1 - \zeta_{23} - \zeta_{23}^{22}$

< = >

< = >

Example 4

$$D = ((-\zeta_{23} - \zeta_{23}^{22})5 + 1 + \zeta_{23} + \zeta_{23}^{22})(6 + \zeta_{23} + \zeta_{23}^{22})^4 \in \mathbb{Z}[\zeta_{23}]$$

$$v = 5, m = 23, \gamma = -1 - \zeta_{23} - \zeta_{23}^{22}$$

$$D = \mathfrak{p}_1^4 \mathfrak{p}_2 \mathfrak{p}_3^4 \mathfrak{q}_4 \mathfrak{q}_5 \text{ where } \mathfrak{p}_1, \mathfrak{p}_2, \mathfrak{p}_3 \triangleleft \mathbb{Z}[\zeta_{23}] \text{ are principal prime ideals}$$

$$\mathfrak{q}_4, \mathfrak{q}_5 \in \mathbb{Z}[\zeta_{23}] \text{ are the non-principal prime ideals.}$$

< = >

Example 4

$$\begin{split} D &= ((-\zeta_{23} - \zeta_{23}^{22})5 + 1 + \zeta_{23} + \zeta_{23}^{22})(6 + \zeta_{23} + \zeta_{23}^{22})^4 \in \mathbb{Z}[\zeta_{23}]\\ v &= 5, \ m = 23, \ \gamma = -1 - \zeta_{23} - \zeta_{23}^{22}\\ D &= \mathfrak{p}_1^4 \mathfrak{p}_2 \mathfrak{p}_3^4 \mathfrak{q}_4 \mathfrak{q}_5 \text{ where } \mathfrak{p}_1, \mathfrak{p}_2, \mathfrak{p}_3 \lhd \mathbb{Z}[\zeta_{23}] \text{ are principal prime ideals}\\ \mathfrak{q}_4, \mathfrak{q}_5 \in \mathbb{Z}[\zeta_{23}] \text{ are the non-principal prime ideals.}\\ \text{There is no } \alpha \in \mathbb{Z}[\zeta_m] \text{ satisfying } D = \alpha \bar{\alpha}. \end{split}$$

$$D = ((-\zeta_{23} - \zeta_{23}^{22})5 + 1 + \zeta_{23} + \zeta_{23}^{22})(6 + \zeta_{23} + \zeta_{23}^{22})^4$$

$$p_1^4 \qquad p_2 \qquad p_3^4 \qquad q_4 \qquad q_5$$

Figure: Ideal Decomposition of D for value $v = 5, \gamma = 1 - \zeta_{23} - \zeta_{23}^{22}$

 $D = ((-\zeta_{23} - \zeta_{23}^{22})46 + 1 + \zeta_{23} + \zeta_{23}^{22})(47 + \zeta_{23} + \zeta_{23}^{22})^{45} \in \mathbb{Z}[\zeta_{23}]$

Ideal Factorization Method

Example 5

$$D = ((-\zeta_{23} - \zeta_{23}^{22})46 + 1 + \zeta_{23} + \zeta_{23}^{22})(47 + \zeta_{23} + \zeta_{23}^{22})^{45} \in \mathbb{Z}[\zeta_{23}]$$

for $v = 46$, $m = 23$, $\gamma = -1 - \zeta_{23} - \zeta_{23}^{22}$

$$\begin{split} D &= ((-\zeta_{23} - \zeta_{23}^{22})46 + 1 + \zeta_{23} + \zeta_{23}^{22})(47 + \zeta_{23} + \zeta_{23}^{22})^{45} \in \mathbb{Z}[\zeta_{23}] \\ \text{for } v &= 46, \ m = 23, \ \gamma = -1 - \zeta_{23} - \zeta_{23}^{22} \\ D &= \mathfrak{p}_1 \mathfrak{p}_2^{45} \mathfrak{p}_3^{45} \mathfrak{q}_4 \mathfrak{q}_5 \mathfrak{q}_6 \mathfrak{q}_7 \text{ where } \mathfrak{p}_1, \mathfrak{p}_2, \mathfrak{p}_3 \lhd \mathbb{Z}[\zeta_{23}] \text{ are principal prime} \\ \text{ideals and } \mathfrak{q}_4, \mathfrak{q}_5, \mathfrak{q}_6, \mathfrak{q}_7 \lhd \mathbb{Z}[\zeta_{23}] \text{ are the non-principal ideals.} \end{split}$$

$$\begin{split} D &= ((-\zeta_{23} - \zeta_{23}^{22})46 + 1 + \zeta_{23} + \zeta_{23}^{22})(47 + \zeta_{23} + \zeta_{23}^{22})^{45} \in \mathbb{Z}[\zeta_{23}] \\ \text{for } v &= 46, \ m = 23, \ \gamma = -1 - \zeta_{23} - \zeta_{23}^{22} \\ D &= \mathfrak{p}_1 \mathfrak{p}_2^{45} \mathfrak{p}_3^{45} \mathfrak{q}_4 \mathfrak{q}_5 \mathfrak{q}_6 \mathfrak{q}_7 \text{ where } \mathfrak{p}_1, \mathfrak{p}_2, \mathfrak{p}_3 \lhd \mathbb{Z}[\zeta_{23}] \text{ are principal prime} \\ \text{ideals and } \mathfrak{q}_4, \mathfrak{q}_5, \mathfrak{q}_6, \mathfrak{q}_7 \lhd \mathbb{Z}[\zeta_{23}] \text{ are the non-principal ideals.} \\ \text{The methodology in Example 4 does not work for this example.} \end{split}$$

 $\begin{array}{l} D = ((-\zeta_{23} - \zeta_{23}^{22})46 + 1 + \zeta_{23} + \zeta_{23}^{22})(47 + \zeta_{23} + \zeta_{23}^{22})^{45} \in \mathbb{Z}[\zeta_{23}] \\ \text{for } v = 46, \ m = 23, \ \gamma = -1 - \zeta_{23} - \zeta_{23}^{22} \\ D = \mathfrak{p}_1 \mathfrak{p}_2^{45} \mathfrak{p}_3^{45} \mathfrak{q}_4 \mathfrak{q}_5 \mathfrak{q}_6 \mathfrak{q}_7 \text{ where } \mathfrak{p}_1, \mathfrak{p}_2, \mathfrak{p}_3 \triangleleft \mathbb{Z}[\zeta_{23}] \text{ are principal prime} \\ \text{ideals and } \mathfrak{q}_4, \mathfrak{q}_5, \mathfrak{q}_6, \mathfrak{q}_7 \triangleleft \mathbb{Z}[\zeta_{23}] \text{ are the non-principal ideals.} \\ \text{The methodology in Example 4 does not work for this example.} \\ \text{Note that } (\alpha) = \mathfrak{t}_1 \mathfrak{q}_5 \mathfrak{q}_7^{38} \text{ is a principal ideal and satisfies } D = \alpha \bar{\alpha} \\ \text{for a convenient principal ideal } \mathfrak{t}_1 \triangleleft \mathbb{Z}[\zeta_{23}] \text{ such that } \mathfrak{t}_1 \mid D. \end{array}$

$$D = ((-\zeta_{23} - \zeta_{23}^{22})46 + 1 + \zeta_{23} + \zeta_{23}^{22})(47 + \zeta_{23} + \zeta_{23}^{22})^{45}$$

$$p_1 \qquad p_2^{45} \qquad p_3^{45} \qquad q_4 \qquad q_5 \qquad q_6 \qquad q_7$$

Figure: Ideal Decomposition of D for value $v = 46, \gamma = 1 - \zeta_{23} - \zeta_{23}^{22}$

Ideal Factorization Method ○○○○○●○

Example 6

$$D = ((-\zeta_{23} - \zeta_{23}^{22})39 + 1 + \zeta_{23} + \zeta_{23}^{22})(40 + \zeta_{23} + \zeta_{23}^{22})^{38} \in \mathbb{Z}[\zeta_{23}]$$
for $v = 39, m = 23, \gamma = -1 - \zeta_{23} - \zeta_{23}^{22}$

Example 6

$$\begin{split} D &= ((-\zeta_{23} - \zeta_{23}^{22})39 + 1 + \zeta_{23} + \zeta_{23}^{22})(40 + \zeta_{23} + \zeta_{23}^{22})^{38} \in \mathbb{Z}[\zeta_{23}] \\ \text{for } v &= 39, \ m = 23, \ \gamma = -1 - \zeta_{23} - \zeta_{23}^{22} \\ D &= \mathfrak{p}_1 \mathfrak{p}_2 \mathfrak{p}_3 \mathfrak{p}_4 \mathfrak{p}_5^2 \mathfrak{p}_6^{38} \mathfrak{p}_7^{38} \mathfrak{p}_8^{38} \mathfrak{q}_9 \mathfrak{q}_{10} \mathfrak{q}_{11}^{38} \mathfrak{q}_{12}^{38} \text{ where} \\ \mathfrak{p}_1, \mathfrak{p}_2, \mathfrak{p}_3, \mathfrak{p}_4, \mathfrak{p}_5, \mathfrak{p}_6, \mathfrak{p}_7, \mathfrak{p}_8 \lhd \mathbb{Z}[\zeta_{23}] \text{ are principal ideals and} \\ \mathfrak{q}_9, \mathfrak{q}_{10}, \mathfrak{q}_{11}, \mathfrak{q}_{12} \lhd \mathbb{Z}[\zeta_{23}] \text{ are non-principal ideals.} \end{split}$$

Example 6

 $\begin{array}{l} D = ((-\zeta_{23} - \zeta_{23}^{22})39 + 1 + \zeta_{23} + \zeta_{23}^{22})(40 + \zeta_{23} + \zeta_{23}^{22})^{38} \in \mathbb{Z}[\zeta_{23}] \\ \text{for } v = 39, \ m = 23, \ \gamma = -1 - \zeta_{23} - \zeta_{23}^{22} \\ D = \mathfrak{p}_1 \mathfrak{p}_2 \mathfrak{p}_3 \mathfrak{p}_4 \mathfrak{p}_5^2 \mathfrak{p}_6^{38} \mathfrak{p}_7^{38} \mathfrak{p}_8^{38} \mathfrak{q}_9 \mathfrak{q}_{10} \mathfrak{q}_{11}^{38} \mathfrak{q}_{12}^{38} \text{ where} \\ \mathfrak{p}_1, \mathfrak{p}_2, \mathfrak{p}_3, \mathfrak{p}_4, \mathfrak{p}_5, \mathfrak{p}_6, \mathfrak{p}_7, \mathfrak{p}_8 \lhd \mathbb{Z}[\zeta_{23}] \text{ are principal ideals and} \\ \mathfrak{q}_9, \mathfrak{q}_{10}, \mathfrak{q}_{11}, \mathfrak{q}_{12} \lhd \mathbb{Z}[\zeta_{23}] \text{ are non-principal ideals.} \\ \text{Note that } (\alpha) = \mathfrak{t}_1 \mathfrak{q}_{10} \mathfrak{q}_{12}^{38} \text{ is a principal ideal and satisfies } D = \alpha \bar{\alpha} \\ \text{for a convenient principal ideal } \mathfrak{t}_1 \lhd \mathbb{Z}[\zeta_{23}] \text{ such that } \mathfrak{t}_1 \mid D. \end{array}$

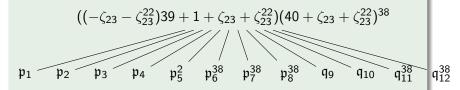


Figure: Ideal Decomposition of D for value $v = 39, \gamma = 1 - \zeta_{23} - \zeta_{23}^{22}$

Four Nonprincipal ideals

- Let $q_1, q_2, q_3, q_4 \triangleleft \mathbb{Z}[\zeta_m]$ be non-principal prime ideals of $\mathbb{Z}[\zeta_m]$ dividing D.
- Assume that $q_1q_2, q_3q_4, q_1q_3, q_2q_4$ are all principal in $\mathbb{Z}[\zeta_m]$.
- If $gcd(N(q_1q_2), N(q_3q_4)) = 1$, $gcd(N(q_1q_3), N(q_2q_4)) = 1$,
- Then we can conclude that there exists no solution.

(4) (日本) (日本) (日本)

Conference Matrix

Definition 7

A square matrix *C* of order *v* with 0 on the diagonal and all off-diagonal entries in \mathcal{E}_m is called a *near conference matrix* $C_{\gamma}(v, m)$ if $C\overline{C}^{T} = (v - 1 - \gamma)I + \gamma J$ for a $\gamma \in \mathbb{R} \cap \mathbb{Z}[\zeta_m]$.

・ロト ・ 日 ・ ・ 目 ・ ・ 日 ・ ・

Conference Matrix

Definition 7

A square matrix *C* of order *v* with 0 on the diagonal and all off-diagonal entries in \mathcal{E}_m is called a *near conference matrix* $C_{\gamma}(v, m)$ if $C\overline{C}^T = (v - 1 - \gamma)I + \gamma J$ for a $\gamma \in \mathbb{R} \cap \mathbb{Z}[\zeta_m]$.

A matrix *C* with entries in \mathcal{E}_3 and having the first row $(0, \zeta_3^2, \zeta_3^2, \zeta_3^2, 1, \zeta_3^2, \zeta_3, \zeta_3, \zeta_3^2, 1, \zeta_3^2, \zeta_3^2, \zeta_3^2, \zeta_3^2)$ is an example of a circulant conference matrix. Note that $C\overline{C}^T = 10I + 2J$.

Conference Matrix

Similar to the case near Butson-Hadamard matrices, we obtain that a near conference matrix $C = C_{\gamma}(v, m)$ satisfies

$$\mathsf{det}(\mathcal{C})\overline{\mathsf{det}(\mathcal{C})} = (\gamma+1)(
u-1)(
u-1-\gamma)^{
u-1}$$

and hence we have

$$\alpha \overline{\alpha} = (\gamma + 1)(\nu - 1)(\nu - 1 - \gamma)^{\nu - 1}.$$
 (2)

イロト イポト イヨト イヨト

臣

Sequences

•
$$\underline{a} = (a_0, a_1, \dots, a_{\nu-1}, \dots)$$
 v-periodic sequence

• an *m*-ary sequence if

$$a_0, a_1, \dots, a_{v-1} \in \mathcal{E}_m = \{1, \zeta_m, \zeta_m^2, \dots, \zeta_m^{m-1}\}$$

• an almost m-ary sequence if $a_0 = 0$ and $a_1, \ldots, a_{\nu-1} \in \mathcal{E}_m$.

イロン イヨン イヨン イヨン

Sequences

- an almost m-ary sequence if $a_0 = 0$ and $a_1, \ldots, a_{\nu-1} \in \mathcal{E}_m$.
- For 0 ≤ t ≤ v − 1, the autocorrelation function C_a(t) is defined by

$$C_{\underline{a}}(t) = \sum_{i=0}^{\nu-1} a_i \overline{a_{i+t}},$$

where \overline{a} is the complex conjugate of a.

• Perfect Sequence (PS) if $C_{\underline{a}}(t) = 0$ for all $1 \le t \le v - 1$.

イロン イヨン イヨン イヨン

- Perfect Sequence (PS) if $C_{\underline{a}}(t) = 0$ for all $1 \le t \le v 1$.
- Nearly Perfect Sequence (NPS) of type γ if $C_{\underline{a}}(t) = \gamma$ for all $1 \le t \le v 1$.

イロト イポト イヨト イヨト

- Perfect Sequence (PS) if $C_{\underline{a}}(t) = 0$ for all $1 \le t \le v 1$.
- Nearly Perfect Sequence (NPS) of type γ if $C_{\underline{a}}(t) = \gamma$ for all $1 \le t \le v 1$.
- For instance, $(0, \zeta_3^2, \zeta_3^2, \zeta_3^2, 1, \zeta_3^2, \zeta_3, \zeta_3, \zeta_3^2, 1, \zeta_3^2, \zeta_3^2, \zeta_3^2)$ is a 3-ary NPS of period 13 and type $\gamma = 2$.

イロト イポト イヨト イヨト

If a NPS of type γ exists, then γ is a real number.

イロン イヨン イヨン イヨン

If a NPS of type γ exists, then γ is a real number.

Remark 8

 NPSs are equivalent to circulant γ-Butson-Hadamard matrices and conference matrices.

イロト イポト イヨト イヨト

If a NPS of type γ exists, then γ is a real number.

Remark 8

- NPSs are equivalent to circulant γ-Butson-Hadamard matrices and conference matrices.
- Let $\underline{a} = (a_0, a_1, \dots, a_{v-1}, \dots)$ be an m-ary NPS of period v.

・ロト ・四ト ・ヨト ・ヨト

If a NPS of type γ exists, then γ is a real number.

Remark 8

- NPSs are equivalent to circulant γ-Butson-Hadamard matrices and conference matrices.
- Let $\underline{a} = (a_0, a_1, \dots, a_{v-1}, \dots)$ be an m-ary NPS of period v.
- Let H = (h_{i,j}) be a circulant matrix defined by h_{0,j} = a_j for j = 0, 1, ..., v - 1 then H is a circulant near Butson-Hadamard matrix of order v.

イロト イポト イヨト イヨト

If a NPS of type γ exists, then γ is a real number.

Remark 8

- NPSs are equivalent to circulant γ-Butson-Hadamard matrices and conference matrices.
- Let $\underline{a} = (a_0, a_1, \dots, a_{v-1}, \dots)$ be an m-ary NPS of period v.
- Let H = (h_{i,j}) be a circulant matrix defined by h_{0,j} = a_j for j = 0, 1, ..., v - 1 then H is a circulant near Butson-Hadamard matrix of order v.
- Similarly, an almost m-ary NPS is equivalent to a circulant near conference matrix.

Ideal Factorization Method

Corollary 9

Let $v, m \in \mathbb{Z}^+$ and $\gamma \in \mathbb{Z}[\zeta_m] \cap \mathbb{R}$ such that $D = ((\gamma + 1)v - \gamma)(v - \gamma)^{v-1}$ and $D = tq^{2e+1}$ where $q, t \in \mathbb{Z}[\zeta_m]$ and qis squarefree. Suppose that (i) to (iv) are satisfied.

- (i) Every prime ideal $\mathfrak{t} \triangleleft \mathbb{Z}[\zeta_m]$ with $\mathfrak{t}|(t)$ is principal.
- (ii) $(q) = q_1q_2$ where q_1 and q_2 are non-principal prime ideals of $\mathbb{Z}[\zeta_m]$.
- (iii) e > 0 be rational integer, $gcd(2e + 1 2k, h_m) = 1$ for $0 \le k \le e 1$.
- (iv) gcd(N(q), N(t)) = 1.

Corollary 9

Let $v, m \in \mathbb{Z}^+$ and $\gamma \in \mathbb{Z}[\zeta_m] \cap \mathbb{R}$ such that $D = ((\gamma + 1)v - \gamma)(v - \gamma)^{v-1}$ and $D = tq^{2e+1}$ where $q, t \in \mathbb{Z}[\zeta_m]$ and qis squarefree. Suppose that (i) to (iv) are satisfied.

- (i) Every prime ideal $\mathfrak{t} \triangleleft \mathbb{Z}[\zeta_m]$ with $\mathfrak{t}|(t)$ is principal.
- (ii) $(q) = q_1q_2$ where q_1 and q_2 are non-principal prime ideals of $\mathbb{Z}[\zeta_m]$.
- (iii) e > 0 be rational integer, $gcd(2e + 1 2k, h_m) = 1$ for $0 \le k \le e 1$.
- (iv) gcd(N(q), N(t)) = 1.

Then the following hold:

- (i) there exists no $BH_{\gamma}(v, m)$.
- (ii) there exists no v-periodic m-ary NPS of type γ .

Corollary 10

Let $v, m \in \mathbb{Z}^+$, $\gamma \in \mathbb{Z}[\zeta_m] \cap \mathbb{R}$ such that $D = (\gamma + 1)(v - 1)(v - 1 - \gamma)^{v-1}$ and $D = tq^{2e+1}$ where $q, t \in \mathbb{Z}[\zeta_m]$ and q is squarefree. If the conditions (i) - (iv) given in Corollary 9 are satisfied, then

Corollary 10

Let $v, m \in \mathbb{Z}^+$, $\gamma \in \mathbb{Z}[\zeta_m] \cap \mathbb{R}$ such that $D = (\gamma + 1)(v - 1)(v - 1 - \gamma)^{v-1}$ and $D = tq^{2e+1}$ where $q, t \in \mathbb{Z}[\zeta_m]$ and q is squarefree. If the conditions (i) - (iv) given in Corollary 9 are satisfied, then

- There exists no $\mathrm{C}_{\gamma}(v,m)$,
- There exists no v-periodic an almost m-ary NPS of type γ .

Example 11

Consider BH_{$$\gamma$$}(67, 23), $\gamma = -1 - \zeta_{23}$, $v = 67$ and $m = 23$.

$$lpha\overline{lpha} = (1 - 66\zeta_{23})(68 + \zeta_{23})^{66}$$

Every prime ideal dividing $(68 + \zeta_{23})^{66}$ is principal. $(1 - 66\zeta_{23})$ has the non-principal ideal decomposition over $\mathbb{Z}[\zeta_{23}]$. Hence, BH_{γ}(67, 23) does not exist by Corollary 9.

Example 11

Consider BH_{$$\gamma$$}(67, 23), $\gamma = -1 - \zeta_{23}$, $v = 67$ and $m = 23$.

$$\alpha \overline{\alpha} = (1 - 66\zeta_{23})(68 + \zeta_{23})^{66}$$

Every prime ideal dividing $(68 + \zeta_{23})^{66}$ is principal. $(1 - 66\zeta_{23})$ has the non-principal ideal decomposition over $\mathbb{Z}[\zeta_{23}]$. Hence, BH_{γ}(67, 23) does not exist by Corollary 9. Furthermore, we conclude that a 23-ary NPS of period 67 and $\gamma = -1 - \zeta_{23}$ does not exist.

A = A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Table: Samples of perfect sequences with non-integer correlations

v	m	γ	$ \gamma $	a
3	5	$\frac{\zeta_{5}^{3} + \zeta_{5}^{2} + 1}{\zeta_{7}^{5} + \zeta_{7}^{2} + 1}$	0.61	$1, 1, \zeta_{5}^{2}$
3	7	$\frac{\zeta_{5}^{3} + \zeta_{5}^{2} + 1}{\zeta_{7}^{5} + \zeta_{7}^{2} + 1}$	0.55	$\zeta_{7}^{2}, \zeta_{7}^{2}, 1$
4	5	$\zeta_{5}^{3} + \zeta_{5}^{2} + 2$	0, 38	$1, 1, 1, \zeta_5^2$
4	7	$\frac{\zeta_{5}^{3} + \zeta_{5}^{2} + 2}{\zeta_{7}^{4} + \zeta_{7}^{3} + 2}$	0, 19	$\zeta_7^2, \zeta_7^2, \zeta_7^2, \zeta_7^5$
5	5	$\zeta_{5}^{3} + \zeta_{5}^{2} + 3$	1, 38	$1, 1, 1, 1, \zeta_{5}^{2}$
5	7	$-\zeta_{7}^{5}-\zeta_{7}^{2}$	0,44	$\zeta_7^2, \zeta_7^2, \zeta_7^3, \zeta_7^6, \zeta_7^3$
25	5	$\zeta_{5}^{3} + \zeta_{5}^{2} + 23$	21, 38	$\frac{\zeta_7^2, \zeta_7^2, \zeta_7^3, \zeta_7^6, \zeta_7^3}{1, \dots, 1, \zeta_5^2}$
125	5	$\frac{\zeta_{5}^{3} + \zeta_{5}^{2} + 23}{\zeta_{5}^{3} + \zeta_{5}^{2} + 123}$	121, 38	$1, \ldots, 1, \zeta_{\rm E}^2$
6	5	$\zeta_{5}^{3} + \zeta_{5}^{2} + 4$	2, 38	$1, 1, 1, 1, 1, \zeta_5^2$
6	6	-1	1	$\zeta_6^4, 1, \zeta_6^4, \zeta_6^2, \zeta_6, \zeta_6^2$
6	7	$\zeta_{7}^{4} + \zeta_{7}^{3} + 4$	2, 19	$\begin{array}{c} \zeta_7^2, \zeta_7^2, \zeta_7^2, \zeta_7^2, \zeta_7^2, \zeta_7^5 \\ \hline 1, 1, 1, \zeta_5^2, 1, \zeta_5^2, \zeta_5^2 \\ \end{array}$
7	5	$2\zeta_5^3 + 2\zeta_5^2 + 3$	0,23	$1, 1, 1, \zeta_5^2, 1, \zeta_5^2, \zeta_5^2$
7	7	$2\zeta_7^4 + 2\zeta_7^3 + 3$	0,60	
8	5	$\zeta_{5}^{3} + \zeta_{5}^{2} + 1$	0,61	$\frac{\zeta_7^2, \zeta_7^2, \zeta_7^2, \zeta_7^2, \zeta_7^2, \zeta_7^2, \zeta_7^3, \zeta_7^3}{1, 1, 1, \zeta_5^2, \zeta_5^3, 1, \zeta_5^3, \zeta_5}$
8	7	$\zeta_{7}^{4} + \zeta_{7}^{3} + 6$	4, 19	$\zeta_{7}^{2}, \zeta_{7}^{2}, \zeta_{7}^{2}, \zeta_{7}^{2}, \zeta_{7}^{2}, \zeta_{7}^{2}, \zeta_{7}^{2}, \zeta_{7}^{2}, \zeta_{7}^{5}$
8	8	0	0	8, 18, 18, 18, 18, 18, 18, 18, 18, 18, 1
9	7	$\zeta_{7}^{4} + \zeta_{7}^{3} + 7$	5,19	C ⁰ C ⁵
9	9	$\zeta_{9}^{5} + \zeta_{9}^{4} + 7$	5,12	$\zeta_{9}^{6}, \zeta_{9}^{6}, \zeta_{9}^{6}, \zeta_{9}^{6}, \zeta_{9}^{6}, \zeta_{9}^{6}, \zeta_{9}^{6}, \zeta_{9}^{6}, \zeta_{9}^{6}, \zeta_{9}^{2}$
10	5	$\frac{\zeta_{9}^{5} + \zeta_{9}^{4} + 7}{\zeta_{5}^{3} + \zeta_{5}^{2} + 8}$ $\zeta_{7}^{4} + \zeta_{7}^{3} + 8$	6,38	$\zeta_5^2, \zeta_5^2, \zeta_5^2, \zeta_5^2, \zeta_5^2, \zeta_5^2, \zeta_5^2, \zeta_5^2, \zeta_5^2, \zeta_5^2, 1$
10	7	$\zeta_{7}^{4} + \zeta_{7}^{3} + 8$	6,19	$\zeta_7^2, \zeta_7^2, \zeta_7^2, \zeta_7^2, \zeta_7^2, \zeta_7^2, \zeta_7^2, \zeta_7^2, \zeta_7^2, \zeta_7^2, \zeta_7^2$
10	10	$\zeta_{10}^3 - \zeta_{10}^2 + 7$	6,38	$\zeta_{10}^{8}, \zeta_{10}^{8}, \zeta_{10}^{8}, \zeta_{10}^{8}, \zeta_{10}^{8}, \zeta_{10}^{8}, \zeta_{10}^{8}, \zeta_{10}^{8}, \zeta_{10}^{8}, \zeta_{10}^{8}, \zeta_{10}^{2}, \zeta_{10}^{2}$
11	11	$3\zeta_{11}^{6} + 3\zeta_{11}^{5} + 5$	0.75	$1, 1, 1, \zeta_{11}^{6}, 1, 1, \zeta_{11}^{6}, 1, \zeta_{11}^{6}, \zeta_{11}^{6}, \zeta_{11}^{6}, \zeta_{11}^{6}$
11	11	0	0	$ 1, 1, \zeta_{11}, \zeta_{11} $
11	11	$\zeta_{11}^{6} + \zeta_{11}^{5} + 9$	7,08	$1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \zeta_{11}^{0}$
				· · · · · · · · · · · · · · · · · · ·

Oğuz Yayla

Thanks for your attention.

イロン イヨン イヨン イヨン