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Latin squares

A latin square of order n is a matrix in which each of n symbols
occurs exactly once in each row and column.

e.g.

♠ ♥ ♦ ♣
♥ ♠ ♣ ♦
♣ ♦ ♥ ♠
♦ ♣ ♠ ♥

is a Latin square of order 4.
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Transversals

A transversal of a latin square is a set of entries which includes
exactly one entry from each row and column and one of each
symbol.

♠ ♥ ♦ ♣
♥ ♠ ♣ ♦
♣ ♦ ♥ ♠
♦ ♣ ♠ ♥

Transversals are intimately connected with “orthogonality”.

Alon et al. [1995] lamented that

“There have been more conjectures than theorems on
latin transversals in the literature.”
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Graph theoretic interpretation

A latin square is equivalent to a proper edge colouring of Kn,n with
n colours.

Then a transversal is a rainbow perfect matching.
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Some squares have ’em, some squares don’t

♠ ♥ ♦ ♣
♥ ♠ ♣ ♦
♣ ♦ ♥ ♠
♦ ♣ ♠ ♥

♠ ♥ ♦ ♣
♥ ♣ ♠ ♦
♣ ♦ ♥ ♠
♦ ♠ ♣ ♥

Thrm: [Euler] The addition table for Zn has a transversal iff n is
odd.

Thrm: [Cavenagh/W.’17] There are at least nn
3/2(1/2−o(1))

species of transversal-free latin squares, for even n→∞.

Conj: [Ryser] Every latin square of odd order has a transversal.

Conj: [Brualdi] Every latin square has a near transversal.
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Ryser’s conjecture

Ryser’s original conjecture was that the number of transversals is
congruent to n mod 2.

Thrm: [Balasubramanian ’90] Even order LSs have an even
number of transversals.

However, the odd case of Ryser’s original conjecture fails.
So it has been weakened to “odd order LS have transversals”.

If true, it is barely so:

1 2 3 4 5
2 1 4 5 6
3 4 6 2 1
4 5 1 6 3
6 3 5 1 2

1 2 3 4 5 6 7
2 1 4 3 6 7 5
3 4 1 2 7 5 6
4 5 6 7 1 2 3
5 3 7 6 2 1 4
6 7 2 5 3 4 1
7 6 5 · 4 3 2
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Permanents

In an n × n matrix A = [ai ,j ], a diagonal is a selection of n entries
from different rows and columns.

The permanent of A is defined by

per(A) =
∑
σ

n∏
i=1

ai ,σ(i)

where the sum is over all permutations σ of {1, 2, . . . , n}.
In other words, the sum of the diagonal products.

Example:

per

1 2 3
4 5 6
7 8 9

 = 1.5.9+1.6.8+2.4.9+2.6.7+3.5.7+3.4.8 = 450
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Justifying my existence

Let
f (n) =

∑
k>1

b2−knc

be the number of factors of 2 which divide n!.

Conj: A Hadamard matrix H of order n > 4 has per(H) divisible
by 2f (n) but not by 2f (n)+1.

True for n < 32 and for type 1, 2 or 3 Hadamard matrices of order
32.

By a result of Kräuter and Seifter we know that

2n−blog2(n+1)c

divides per(H).
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Notation

Let Λk
n denote the set of (0, 1)-matrices of order n, where each row

and column sums to k .

Fix a Latin square L for consideration. n will be the order of L.

Let Ei be the number of diagonals of L that have exactly i symbols
on them. (So En is the number of transversals)

Let Ri be the sum, over all choices of i symbols of L, of the
permanent of the matrix in Λi

n obtained by replacing those symbols
by 1’s and all other symbols by 0’s.

By inclusion-exclusion, En =
n∑

i=0

(−1)n−iRi .

Define Dn by the same formula, but using determinants.



Notation

Let Λk
n denote the set of (0, 1)-matrices of order n, where each row

and column sums to k .

Fix a Latin square L for consideration. n will be the order of L.

Let Ei be the number of diagonals of L that have exactly i symbols
on them. (So En is the number of transversals)

Let Ri be the sum, over all choices of i symbols of L, of the
permanent of the matrix in Λi

n obtained by replacing those symbols
by 1’s and all other symbols by 0’s.

By inclusion-exclusion, En =
n∑

i=0

(−1)n−iRi .

Define Dn by the same formula, but using determinants.



Notation

Let Λk
n denote the set of (0, 1)-matrices of order n, where each row

and column sums to k .

Fix a Latin square L for consideration. n will be the order of L.

Let Ei be the number of diagonals of L that have exactly i symbols
on them. (So En is the number of transversals)

Let Ri be the sum, over all choices of i symbols of L, of the
permanent of the matrix in Λi

n obtained by replacing those symbols
by 1’s and all other symbols by 0’s.

By inclusion-exclusion, En =
n∑

i=0

(−1)n−iRi .

Define Dn by the same formula, but using determinants.



Notation

Let Λk
n denote the set of (0, 1)-matrices of order n, where each row

and column sums to k .

Fix a Latin square L for consideration. n will be the order of L.

Let Ei be the number of diagonals of L that have exactly i symbols
on them. (So En is the number of transversals)

Let Ri be the sum, over all choices of i symbols of L, of the
permanent of the matrix in Λi

n obtained by replacing those symbols
by 1’s and all other symbols by 0’s.

By inclusion-exclusion, En =
n∑

i=0

(−1)n−iRi .

Define Dn by the same formula, but using determinants.



Notation

Let Λk
n denote the set of (0, 1)-matrices of order n, where each row

and column sums to k .

Fix a Latin square L for consideration. n will be the order of L.

Let Ei be the number of diagonals of L that have exactly i symbols
on them. (So En is the number of transversals)

Let Ri be the sum, over all choices of i symbols of L, of the
permanent of the matrix in Λi

n obtained by replacing those symbols
by 1’s and all other symbols by 0’s.

By inclusion-exclusion, En =
n∑

i=0

(−1)n−iRi .

Define Dn by the same formula, but using determinants.



Notation

Let Λk
n denote the set of (0, 1)-matrices of order n, where each row

and column sums to k .

Fix a Latin square L for consideration. n will be the order of L.

Let Ei be the number of diagonals of L that have exactly i symbols
on them. (So En is the number of transversals)

Let Ri be the sum, over all choices of i symbols of L, of the
permanent of the matrix in Λi

n obtained by replacing those symbols
by 1’s and all other symbols by 0’s.

By inclusion-exclusion, En =
n∑

i=0

(−1)n−iRi .

Define Dn by the same formula, but using determinants.



New results

Thrm: If n ≡ 2 mod 4 then En ≡ 0 mod 4.

Proof sketch: (1) Show that Dn ≡ 0 mod 4.

(2) Classify transversals into type T00,T01,T10,T11 according to
the parity of the 2 permutations that

(a) map row→col or
(b) map col→sym.

(3) Deduce from (1) that T00 + T01 − T10 − T11 ≡ 0 mod 4.
But also that T00 − T01 + T10 − T11 ≡ 0 mod 4,
and that T00 − T01 − T10 + T11 ≡ 0 mod 4.

(4) Conclude that T00 + T01 + T10 + T11 ≡ 0 mod 4.

Conj: For n ≡ 0 mod 4, we have En ≡ Dn mod 4 and
T00 ≡ T01 ≡ T10 ≡ T11 mod 2.
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New results

Thrm: Let n ≡ 0 mod 4. Then

E1 + E3 + · · ·+ En−1 ≡ E2 + E4 + · · ·+ En ≡ 0 mod 4.

Thrm: Let n ≡ 0 mod 4. Then E2i−1 ≡ E2i mod 2 for each i .
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New results

Let tij be the number of transversals in the array formed by
deleting the ith row and jth column.

Thrm: tij ≡ tk` mod 2 for all i , j , k , `.

Corollary: Let L be an (n − 1)× n latin rectangle with n even.
Then the number of transversals in L is even.

Thrm: If n ≡ 1 mod 2 then trc ≡ En mod 2 for any r and c .
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Is this known?

Thrm: per(A) ≡ 0 mod 4 for A ∈ Λ4k
n , where n is odd.

Prf: Ryser’s formula for computing the permanent of A is:

per(A) =
∑

S⊆{1,...,n}

(−1)n−|S |
n∏

i=1

Xi .

where
Xi =

∑
j∈S

aij .

Consider the terms coming from S and its complement together

(−1)n−|S|
(∏

Xi −
∏

(4k − Xi )
)
≡ ±2

∏
Xi mod 4.

But at least one Xi is even since
∑
i

Xi = 4k |S |.
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Conjectures

Conj: tik + tjk + ti` + tj` ≡ 0 mod 4 for all i , j , k , `.

Conj: Let n ≡ 0 mod 2. Then 2tij ≡ En−1 mod 4 for all i , j .

Conj: Let n ≡ 0 mod 4. Then En−1 + 2En−2 ≡ 0 mod 4 and
En ≡ En−1 ≡ 2tij mod 4 for all i , j .

Conj: Let n ≡ 1 mod 2. Then En−1 ≡ 0 mod 4 and
R4i+2 + 2Rn−(4i+2) ≡ 0 mod 4.



Our story ends...


