Informational power of the Hoggar SIC-POVM

Anna Szymusiak, Wojciech Słomczyński

Institute of Mathematics, Jagiellonian University, Kraków, Poland

5th Workshop on Real and Complex Hadamard Matrices and Applications 10-14 July, 2017, Budapest

Phys. Rev. A 94, 012122 (2016)

POVM, SIC-POVM, Hoggar's SIC-POVM

Anna Szymusiak, Wojciech Słomczyński Informational power of the Hoggar SIC-POVM

A (10) A (10)

Pure quantum states:

$$\mathbb{CP}^{d-1}$$
 – rays in \mathbb{C}^d

or, equivalently,

 $\mathcal{P}(\mathbb{C}^d)$ – rank-1 orthogonal projections.

Mixed quantum states – all convex combinations of pure states General quantum measurement – POVM (positive operator-valued measure) Special case:

A normalized rank-1 POVM $\Pi = {\Pi_j}_{j=1}^k$ is a set of *k* subnormalized rank-one projections $\Pi_j = (d/k)|\psi_j\rangle\langle\psi_j|$ satisfying the identity decomposition:

$$\frac{d}{k}\sum_{j=1}^{k}|\psi_{j}\rangle\langle\psi_{j}|=\mathbb{I}.$$

 $\psi_j \in \mathbb{C}^d$, $|\psi_j| = 1$ for $j = 1, \ldots, k$

One can identify such POVMs with configurations of pure quantum states.

イベト イモト イモト

Definition

A symmetric informationally complete POVM (SIC-POVM) consists of d^2 subnormalized rank-one projections $\prod_j = |\psi_j\rangle \langle \psi_j|/d$ with equal pairwise Hilbert-Schmidt inner products:

$$\operatorname{tr}(\Pi_i^*\Pi_j) = \frac{|\langle \psi_i | \psi_j \rangle|^2}{d^2} = \frac{1}{d^2(d+1)} \quad \text{for } i \neq j.$$

< 回 > < 回 > < 回 > -

- first studied in the context of equiangular lines in C^d or complex spherical 2-designs (e.g. Hoggar's papers 1978-82)
- extensively examined by Zauner in his PhD Thesis (1999) under the name of *regular quantum designs with degree 1*
- independently studied by Renes et al. (2003), the notion of SIC-POVMs introduced
- the existence of SIC-POVMs in every dimension still an open problem
 - analytical solutions known for d = 2 24, 28, 30, 31, 35, 37, 39, 43, 48 (results by Scott & Grassl (2010), Appleby et al. (2017) and Chien (2015))
 - numerical confirmation up to d = 151 plus few other up to d = 323 (code designed and written by Scott)
 - simple interpretation in terms of metric spaces: the equilateral dimension (i.e., the maximum number of equidistant points) of \mathbb{CP}^{d-1} endowed with the Fubini-Study metric is d^2
 - difficulty: how to inscribe a regular (d² − 1)-simplex in ℝ^{d²−1} into the (2d − 2)-dimensional subset of the (d² − 2)-sphere?
- d = 3 the only known dimension with infinite family of nonequivalent SIC-POVMs

- First construction: complexification of diameters of certain quaternionic polytope in ℍ⁴.
 - S. G. Hoggar, Math. Scand. 43, 241 (1978)
- It can be obtained by taking the orbit of fiducial vector

$$\psi = \frac{1}{\sqrt{6}} (1+i,0,-1,1,-i,-1,0,0)^T$$

under action of the three-qubit Pauli group (isomorphic to $(\mathbb{Z}_2 \otimes \mathbb{Z}_2)^3$).

G. Zauner, "Quantendesigns. Grundzüge einer nichtkommutativen Designtheorie", Ph.D. thesis, Universität Wien (1999)

 The only known SIC-POVM that is not group-covariant with respect to the finite Weyl-Heisenberg group (isomorphic to Z₈ ⊗ Z₈).

H. Zhu, "Some decision theoretic generalizations of information measures", Ph.D. thesis, National University of Singapore (2012)

• There exist exactly 3 *supersymmetric* SIC-POVMs (any two elements can be transformed into any two elements via symmetry group action): d = 2, d = 3 (the Hesse configuration), d = 8 (the Hoggar lines).

H. Zhu, Ann. Phys. (N.Y.) 362, 311 (2015)

• New simple construction using Hadamard matrices.

J. Jedwab, A. Wiebe, in Algebraic Design Theory and Hadamard Matrices, ed. by C. Colbourn (Springer Verlag, 2015), pp. 159-169

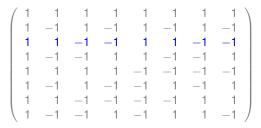
Construction by Jedwab and Wiebe

Take an Hadamard matrix



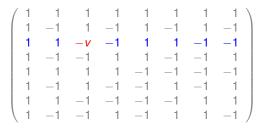
Construction by Jedwab and Wiebe

Pick a row



Construction by Jedwab and Wiebe

• Multiply one of the entries by some $v \in \mathbb{C}$



- Take an Hadamard matrix
- Pick a row
- Multiply one of the entries by some $v \in \mathbb{C}$
- Do the same with all rows and all entries

Denote by $H(v) := \{H_{jk}(v)\}_{j,k=1}^{d}$ the obtained set of d^2 vectors such that $H_{jk}(v)$ is the *j*-th row of complex Hadamard matrix *H* with the *k*-th coordinate multiplied by $v \in \mathbb{C}$.

Theorem (Jedwab, Wiebe)

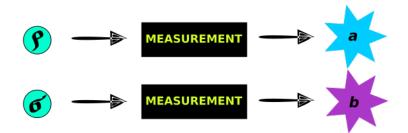
H(v) is a set of d^2 equiangular lines (i.e. H(v) defines a SIC-POVM) if and only if

- d = 2 and $v \in \{(1/2)(1 \pm \sqrt{3})(1 + i), (-1/2)(1 \pm \sqrt{3})(1 + i), (1/2)(1 \pm \sqrt{3})(1 i), (-1/2)(1 \pm \sqrt{3})(1 i)\}, or$
- d = 3 and $v \in \{0, -2, 1 \pm \sqrt{3}i\}$, or
- d = 8, H is equivalent to a real Hadamard matrix and $v \in \{-1 \pm 2i\}$.

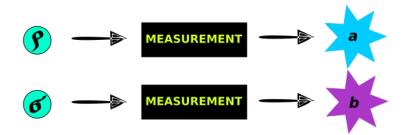
In particular, the obtained set of equiangular lines for d = 8 is unitarily equivalent to the set of Hoggar lines.

Informational power of POVM

3 1 4 3



æ



How to quantify the **indeterminacy** of the measurement outcomes?

MEASURE OF RANDOMNESS – THE SHANNON ENTROPY

The state before measurement: ρ .

The probability of obtaining *j*-th outcome is given by $tr(\rho \Pi_j) = (d/k) \langle \psi_j | \rho | \psi_j \rangle$.

The **Shannon entropy of measurement** Π is defined as the Shannon entropy of the probability distribution of the measurement outcomes:

$$H(\rho, \Pi) := \sum_{j=1}^{k} \eta(\operatorname{tr}(\rho \Pi_j)),$$

for an initial state ρ , where $\eta(x) := -x \ln x \ (x > 0), \ \eta(0) = 0.$

- $H(\cdot, \Pi)$ attains its minima in pure states.
- $H(\rho, \Pi)$ is maximal for maximally mixed state $\rho_* := \frac{1}{d}\mathbb{I}$.
- Our aim: to find the minimizers of the entropy among pure states.

What if we consider an ensemble of possible initial states?

不同 トイモトイモ

 $V := \{\pi_i, \rho_i\}_{i=1}^l$ – an ensemble of initial states, $\Pi = \{\Pi_j\}_{j=1}^k$ – a POVM

How much information can be extracted from V by measurement Π ?

Definition

The mutual information between V and Π is given by

$$I(V,\Pi) := \sum_{i=1}^{l} \eta\left(\sum_{j=1}^{k} P_{ij}\right) + \sum_{j=1}^{k} \eta\left(\sum_{i=1}^{l} P_{ij}\right) - \sum_{i=1}^{l} \sum_{j=1}^{k} \eta(P_{ij}),$$

where $P_{ij} = \pi_i tr(\rho_i \Pi_j)$ for i = 1, ..., I and j = 1, ..., k, and $\eta(x) := -x \ln x$ (x > 0), $\eta(0) = 0$.

What is the capability of extracting information by given measurement?

Definition

The informational power of Π is denoted by $W(\Pi)$ and given by

$$W(\Pi) := \max_{V - \text{ensemble}} I(V, \Pi).$$

M. Dall'Arno, G.M. D'Ariano, and M.F. Sacchi, Phys. Rev. A 83, 062304 (2011)

O. Oreshkov, J. Calsamiglia, R. Muñoz Tapia, and E. Bagan, New J. Phys. 13, 073032 (2011)

A B A B A B A
 A B A
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A

- There exists a maximally informative ensemble consisting of pure states only
- The informational power and the Shannon entropy of measurement Π are *in many cases* related by

 $W(\Pi) = \ln k - \min_{\rho} H(\rho, \Pi)$

- The cases in which the informational power has been computed analytically so far:
 - all highly symmetric POVMs in dimension 2: seven sporadic measurements³, including the 'tetrahedral' SIC-POVM^{1,2}, and one infinite series^{2,3},
 - all SIC-POVMs in dimension three⁴,
 - the POVM consisting of four MUBs in dimension three⁵,
 - the Hoggar SIC-POVM⁶

¹M. Dall'Arno, G.M. D'Ariano, and M.F. Sacchi, Phys. Rev. A 83, 062304 (2011)

²O. Oreshkov, J. Calsamiglia, R. Muñoz Tapia, and E. Bagan, New J. Phys. 13, 073032 (2011)

³W. Słomczyński and AS, Quantum Inf. Process. 15, 565-606 (2016)

⁴AS, J. Phys. A **47**, 445301 (2014)

⁵M. Dall'Arno, Phys. Rev. A 90, 052311 (2014)

⁶AS and W. Słomczyński, Phys. Rev. A 94, 012122 (2016)

イロト イポト イラト イラ

Informational power of SIC-POVMs

• Upper bound for 2-designs: $\ln \frac{2d}{d+1}$.

```
M. Dall'Arno, Phys. Rev. A 92, 012328 (2015)
```

• The optimal probability distribution of the measurement outcomes for SIC-POVM, if achievable, should be of the form:

$$\left(\frac{2}{d(d+1)},\ldots,\frac{2}{d(d+1)},0,\ldots,0\right)$$

with $\frac{d(d-1)}{2}$ zeros.

P. Harremoës and F. Topsøe, IEEE Trans. Inform. Theory 47, 2944 (2001)

- The upper bound is satisfied for d = 2, 3.
- Numerical calculations in low dimensions higher than 3 indicate that it is not always the case.
- Our result: the upper bound is achieved again in dimension 8 for the Hoggar SIC-POVM.

< ロ > < 四 > < 回 > < 回 > < 回 >

Theorem

Let H' be a complex Hadamard matrix in dimension $d \in \{2, 8\}$, equivalent to a real Hadamard matrix H, and v such that $H'(v) = H'_{jk}(v)$ is a set of equiangular vectors. Then the entropy of SIC-POVM generated by these vectors is minimized by states defined by $H'(\bar{v})$.

Sketch of the proof.

- The general case is easily reduced to the one concerning a real Hadamard matrix.
- For real Hadamard matrix H we write

$$H_{jk}(v) = \sum_{l=1}^{d} h_{jl} e_l + (v-1)h_{jk} e_k,$$

where the canonical basis in \mathbb{C}^d is denoted by $(e_l)_{l=1}^d$.

• We show that for every m, n = 1, ..., d the sequence $T_{mn} := (|H'_{jk}(v) \cdot H'_{mn}(\bar{v})|^2)^d_{j,k=1}$ consists of two elements, one of which is 0, appearing with the desired multiplicity (d - 1)d/2.

Theorem

Under the assumptions of previous theorem,

the informational power of the SIC-POVM corresponding to H'(v) is equal to $\ln(2d/(d+1))$, and the elements of $H'(\bar{v})$ constitute an equiprobable maximally informative ensemble.

Particularly, the informational power of Hoggar lines is $2\ln(4/3)$.

How does the set $H(\bar{v})$ looks like and what is its relation with H(v)?

- $H(\bar{v})$ is also a SIC-POVM ('tetrahedral' for d = 2 and Hoggar's for d = 8)
- Let $C : \mathbb{C}^d \to \mathbb{C}^d$ be a complex conjugation with respect to the basis $(e'_l)_{l=1}^d$, i.e., an antiunitary involutive map keeping the basis invariant, given by $C(\sum_{l=1}^d x_l e'_l) = \sum_{l=1}^d \bar{x}_l e'_l$. Then

 $H_{jk}(\bar{v}) = C(H_{jk}(v))$ for $j, k = 1, \dots, d$

- In the Bloch representation:
 - For *d* = 2 we get two dual regular tetrahedra, that together form *stella octangula*.

• For *d* = 8 we get two regular 63-dimensional simplices inscribed in the unit sphere in a 63-dimensional real vector space, where one is the image of the other under a reflection through a 35-dimensional linear subspace.

< 回 > < 三 > < 三 >

A closer look at the localization of 28 zeros for 64 minimizers:

- Label the elements of *H*(*v*) by the elements of Σ := Z³₂ ⊗ Z³₂ (binary notation).
- Assume that *H* is the (real) Sylvester-Hadamard matrix *H*₃; in this case we have

$$h_{\iota\kappa} = (-1)^{\iota_1\kappa_1 + \iota_2\kappa_2 + \iota_3\kappa_3}$$
 for $\iota, \kappa \in \mathbb{Z}_2^3$.

• Consider the blocks of zeros of $T_{\mu\nu}$:

$$B_{\mu\nu} := \{(\iota, \kappa) : H_{\iota\kappa}(\nu) \cdot H_{\mu\nu}(\bar{\nu}) = 0, \ \iota, \kappa \in \mathbb{Z}_2^3\}.$$

- Then $(\iota, \kappa) \in B_{\mu\nu}$ iff $\iota \neq \mu, \kappa \neq \nu$ and $h_{\mu+\iota,\nu+\kappa} = -1$ for $\iota, \kappa \in \mathbb{Z}_2^3$.
- The subset {B_{µν}}_{µ,ν∈Z³₂} ⊂ Σ constitutes a symmetric (Menon) (64, 28, 12)-design.

- The upper bound for informational power of SIC-POVMs is satisfied in dimensions 2,3 and 8 (for the Hoggar lines).
- The minimizers for d = 2,8 are related to a SIC-POVM by complex conjugation in some basis.
- Is upper bound satisfied for any other SIC-POVM?
- Is there a relation between satisfying the upper bound and the "supersymmetry" of a SIC-POVM?
- Can *d* = 8 be an example of dimension in which we get different values of informational power for different (nonequivalent) SIC-POVMs?

A (10) > A (10) > A (10)