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Abstract
Research into the construction of Hadamard matrices and orthogonal

designs has led to deeper algebraic and combinatorial concepts. This
paper surveys the place of amicability, repeat designs and the Clifford
and Clifford-Gastineau-Hills algebras in laying the foundations for a
Theory of Orthogonal Designs.
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Research into the existence question for Hadamard matrices has been
crucial in forcing the study of related theoretical results. The pioneering
work by Kathy Horadam in her work on the five-fold path [10], her work with
Warwick de Launey on cocyclic Hadamard matrices [4] are examples and
work by Warwick de Launey and Dane Flannery [3] in their foundational work
on algebraic design theory [3] yet another. Paul Leopardi has explored their
relationship to amicability/anti-amicability graphs [?]. Other authors have
concentrated further on their applications and structure in multidimensional
space.

To construct Hadamard matrices Geramita and Seberry [6] used orthogo-
nal designs. This survey discusses the path from Hadamard matrices to or-
thogonal designs, amicable Hadamard matrices and anti-amicable Hadamard
matrices to amicable orthogonal designs and then to constructs called product
designs and repeat designs. In each case the number of variables possible has
been solved by converting the question into algebra. The study of the role
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of algebras in orthogonal design constructions leads us to see that product
designs are subsets of repeat designs. The algebras of orthogonal designs are
Clifford algebras and the algebras of repeat designs are Clifford-Gastineau-
Hills algebras. The study of the algebras allows us to obtain exactly the
maximum possible variables in each of the designs studied.

This leads to questions about how this knowledge when applied to
Hadamard matrices of orders which are powers of two may be able to
have embedded substructures to hide messages and/or improve some error
correction capabilities. Conceivably such deeper knowledge may have applica-
tions in other areas such as spectrometry, sound enhancement or compression
and other signal processing.

1 Introduction
Eddington in 1920, in his studies of relativity, raised the combinatorial
question “What is the largest number of matrices of a given order which can
anti-commute and square to −I, I the identity matrix” (see [5]). We will see
that a set of p n× n matrices Ei which satisfy the algebraic conditions

E2
i = −I (1 ≤ i ≤ p)

EjEi = −EiEj (1 ≤ i < j ≤ p) , (1)

is necessary for the existence of an orthogonal design of order n on p + 1
variables.

That it is sufficient is not immediately clear, since the Ei must satisfy
other, combinatorial conditions, namely

each Ei is a {0,±1} matrix and Ej ∗ Ei = 0 (i 6= j) , (2)

where “*” is the Hadamard product defined as

(aij) ∗ (bij) = (aijbij)

the component-wise multiplication.
An algebra, which is associative with a “1”, on p generators, α1, . . . , αp

say, with defining equations

α2
i = −1 (1 ≤ i ≤ p)
αjαi = −αiαj (1 ≤ i < j ≤ p) . (3)

is an example of the well known Clifford Algebras.
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2 Orthogonal Designs
Definition 1. An orthogonal design A, of order n, and type (s1, s2, . . . , su),
denoted

OD(n; s1, s2, . . . , su)

on the commuting variables (±x1,±x2, . . . ,±xu, 0) is a square matrix of
order n with real entries ±xk where each xk occurs sk times in each row and
column such that the distinct rows are pairwise orthogonal. In other words
it has the additive property,

AA> =
(
s1x

2
1 + . . .+ sux

2
u

)
In (4)

where In is the identity matrix.

Example 1. We take the OD(4; 1, 1, 1, 1), D and observe it can be written
as either

D =


a b c d
−b a −d c
−c d a −b
−d −c b a

 (5)

or as the sum
D = aE1 + bE2 + cE3 + dE4 ,

where a, b, c and d are commuting variables (they do not need to be real)
and

E1 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 E2 =


0 1 0 0
−1 0 0 0

0 0 0 −1
0 0 1 0



E3 =


0 0 1 0
0 0 0 1
−1 0 0 0

0 −1 0 0

 E4 =


0 0 0 1
0 0 −1 0
0 1 0 0
−1 0 0 0


D is an orthogonal design if

DD> =
(
a2 + b2 + c2 + d2

)
I4 .

The algebraic conditions which make this an orthogonal design are

E2
1 = I , E2

i = −I (2 ≤ i ≤ 4)
EjEi = −EiEj (1 ≤ i < j ≤ 4) , (6)
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and the combinatorial conditions which make this an orthogonal design are

each Ei is a {0,±1}matrix and Ej ∗ Ei = 0 (i 6= j) . (7)

Thus we have linked the orthogonal design, the quadratic form and
the Clifford-type algebras together. The orthogonal design has the extra
properties that E2

1 = I and disjointness of matrices in the combinatorial
conditions.

The fact that the structure and representation theory of the Clifford
algebra (3) are known means that Eddington’s problem can be solved (see
Kawada and Iwahore, [11]). Moreover this representation theory is known to
give a complete solution to the problem of what are the possible orders of
orthogonal designs on any number of variables. As noted above, the maximum
number of variables in an orthogonal design is ρ(n), the Radon number,
where for n = 2ab, b odd, set a = 4c+ d, 0 ≤ d < 4, then ρ(n) = 8c+ 2d [6].

We now consider Clifford algebras in a more complex context (over fields
of characteristic 2: we observe that in fact characteristic 6= 2 is easier to
deal with, and characteristic 2 is a special case). We do not treat these
but refer the reader to Lam [12], O’Meara [13] and Artin [1]. The more
modern view has been that Clifford algebras arise naturally from quadratic
forms. In fact the class of all Clifford algebras corresponding to non-singular
quadratic forms over a field F of characteristic not 2 coincides with the class
of all F−algebras, C, on a finite number of generators {αi} with defining
equations of the form

α2
i = ki (some ki ∈ F = F/{0}
αjαi = −αiαj (i 6= j), (8)

we identify ki in F with ki ∈ F with ki1C in C.
We note the similarity of equations (1) with those of (6).

3 Amicable Orthogonal Designs
In the paper, Geramita-Geramita-Wallis [8], the following remarkable pairs
of matrices are given:

X =
[
x1 x2
x2 −x1

]
; Y =

[
y1 y2
−y2 y1

]
. (9)
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and

X =


x1 x2 x3 x3
−x2 x1 x3 −x3
x3 x3 −x1 −x2
x3 −x3 x2 −x1

 ; Y =


y1 y2 y3 y3
y2 −y1 y3 −y3
−y3 −y3 y2 y1
−y3 y3 y1 −y2

 . (10)

The first pair satisfy the following equations

XX> =
(
x2

1 + x2
2

)
I2

Y Y > =
(
y2

1 + y2
2

)
I2 (11)

XY > =
[
x1y1 + x2y2 −x1y2 + x2y1
x2y1 − x1y2 −x1y1 − x2y2

]
= Y X>

so the quadratic forms have unique properties since[
XY >

] [
XY >

]>
= XY >Y X> =

(
x2

1 + x2
2

) (
y2

1 + y2
2

)
I2 . (12)

The second pair satisfy the equations

XX> =
(
x2

1 + x2
2 + 2x2

3

)
I4 ,

Y Y > =
(
y2

1 + y2
2 + 2y2

3

)
I4 ,

XY > = Y X> , (13)

and[
XY >

] [
XY >

]>
= XY >Y X> =

(
x2

1 + x2
2 + 2x2

3

) (
y2

1 + y2
2 + 2y2

3

)
I4 .

We then asked do any more exist? If so then how many variables can occur
in each of any such pair of orthogonal designs, called amicable orthogonal
designs, for a given order. This has been solved completely by Daniel Shapiro
in his PhD thesis [18]. Orders 2, 4 and 8 are constructed in the PhD theses
of Deborah J Street [19] and Ying Zhao [22]. Seberry [17, Sections 5.5, 5.9]
discusses orders 2, 4, and 8 but other orders remain, as yet, un-constructed.
The next problem is to determine whether orthogonal designs actually exist
for these necessary conditions.

In constructing Hadamard matrices amicability and anti-amicability
proved a useful tool. Its extension to orthogonal designs proved decisive
in the equating and killing theorem of Geramita and Seberry [6]. Indeed
it is crucial to Craigen’s [2] extension to the previously known asymptotic
existence results [20].

So let us be more precise and investigate further.
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Definition 2. Two orthogonal designs X and Y are said to be amicable
if XY > = Y X> and to be anti-amicable if XY > = −Y X>. An amicable
k-set will be used to describe a set of k matrices X1, · · · , Xk which pairwise
satisfy XiX

>
j = XjX

>
i for all 1 ≤ i, j ≤ k and an anti-amicable k-set if

X1, · · · , Xk pairwise satisfy XiX
>
j = −XjX

>
i for all 1 ≤ i, j ≤ k.

Remark 1. We note here that the definitions of amicable k-set and anti-
amicable k-set are mentioned here for purely historical reasons. It was
Wolfe’s [21] inspiration in considering amicable pairs and amicable triples
that led to the insight of the importance of Clifford algebras (3) in solving
the question of the number of variables possible in an orthogonal design.
However, as we will see, amicable k-sets or k-tuples are a special case of
repeat designs.

Example 2. We give two examples of amicable triples to show their existence.
Amnon Neeman found the following (1, 7, 1):

0 1
− 0

0 1
− 0

0 1
− 0

0 1
− 0


,



0 1 1 − − 1 1 1
− 0 1 1 − − − 1
− − 0 1 1 1 1 1
1 − − 0 − 1 − 1
1 1 − 1 0 − 1 1
− 1 − − 1 0 − 1
− 1 − 1 − 1 0 −
− − − − − − 1 0


,



0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 0


.
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The following three matrices give a (2, 7, 1):

0 1 1 0
− 0 0 −
− 0 0 1
0 1 − 0

0 0 1 1
0 0 1 −
− − 0 0
− 1 0 0


,



0 1 1 − 1 − − 1
− 0 1 − − 1 1 1
− − 0 1 1 1 − 1
1 1 − 0 1 1 1 1
− 1 − − 0 1 − −
1 − − − − 0 − 1
1 − 1 − 1 1 0 −
− − − − 1 − 1 0


,



0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

0 − 0 0
− 0 0 0
0 0 1 0
0 0 0 −


.

We note that the pair of matrices given by equation (13) may be written
as

X =
2∑

i=0
xiAi , Yi =

3∑
i=1

yiBi , (14)

(Ai, Bj {0,±1,±2} matrices where Ai ∗Aj = 0, Bi ∗Bj = 0, for i 6= j) .
(15)

Substituting and comparing like terms gives:
AiA

>
i = uiI, BjB

>
j = vjI,

AiA
>
j +AjA

>
i = 0 (i 6= j), BiB

>
j +BjB

>
i = 0 (i 6= j),

AiB
>
j = BjA

>
i (for all i, j),

and similar equations with products reversed.
Set

Ei = 1
√
uiu0

AiA
>
0 , Fj = 1

√
vju0

BjA
>
0 ,

It is easily verified that E0 = I and E1, E2, F1, F2, F3,
E2

i = −I , F 2
j = −I ,

EjEi = −EiEj (i 6= j) FiFj = −FjFi (i 6= j) ,
EiFj = FjEi (for all i, j) .
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The equations can be considered as a “Clifford-like algebra" with generators
α1, α2, β1, β2 and β3,

α2
i = −1 β2

i = −1 (−1 ∈ F = F/{0})
αjαi = −αiαj βjβi = −βiβj (i 6= j) ,
αiβj = βjαi

4 Foundational Motivating Constructions for Or-
thogonal Designs

Geramita and Seberry [6] gave a number of constructions, these were first
named product designs and repeat designs in Robinson’s PhD Thesis [14].
The next construction for orthogonal designs appears in a slightly different
form in [6].

Construction 1. Let x1, x2 commuting variables and W , Y1 and Y2 be the
matrices of order n described by

1. W ∗ Yi = 0, for i = 1, 2, (* the Hadamard product);

2. Y1Y
>

2 = Y2Y
>

1 more precisely AOD(n : (u1, u2, . . . ; v1, v2; . . . ;w));

3. W is an OD(n : w); and

4. YiW
> = −WY >i for i = 1, 2.

Then the following matrix is an OD(2n; (w,w, u1, u2, . . . , v1, v2, . . . ))[
Y1 + x1W Y2 + x2W
Y2 − x2W −Y1 + x1W

]
.

Construction 2 (Geramita-(Seberry)Wallis [9]). Let Y1, Y2, Y3 be skew-
symmetric orthogonal designs of types (pi1, pi2, ..), i = 1, 2, 3 in order n,
and Z a symmetric OD(n : h1, h2, ..). Further, suppose YiY

>
j = YjY

>
i and

YkZ
> = ZY >k . Then

x1In + Y1 x2In + Y2 x3In + Y3 Z
−x2In + Y2 x1In − Y1 Z −x3In − Y3
−x3In + Y3 −Z x1In − Y1 x2In + Y2
−Z x3In − Y3 −x2In + Y2 x1In + Y1


is an OD(4n; (1, p11, p12, . . . , 1, p21, p22, . . . , 1, p31, p32, . . . , h1, h2, . . . )).
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Proof. By straightforward verification.

Closer study of these two constructions shows that if we replace W by
the identity matrix and Z by the zero matrix O the matrices satisfy the
same equations. The first was previously used as an illustration of a product
design and the second given as an illustration of a repeat design. We now
proceed to study the more general concept of repeat designs.

5 Repeat Orthogonal Designs
Robinson and Seberry [16] defined a repeat design, but we prefer to give the
formal definition in an alternative form:

Definition 3. Suppose X,Y1, . . . , Yk, Z are orthogonal designs of order
n, types (u1, . . . , up), (v11, . . . , v1q1), . . . , (vk1, . . . , vkqk

), and (w1, . . . , wr) on
the variables (x1, . . . , xp), (y11, . . . , y1q1), . . . , (yk1, . . . , vkpk

), and (z1, . . . , zr)
respectively, and that

(i) X ∗ Yi = 0 (for all i)
(ii) YiX

> = −XY >i ,
(iii) YjY

>
i = YiY

>
j , ZX> = XZ>, ZY >i = YiZ

> (all i, j)

Then we call the (k + 2)-set (X,Y1, . . . , Yk, Z) a repeat design of order n,
type (u1, . . . , up; v11, . . . , v1q1 ; . . . ; vk1, . . . , vkqk

;w1, . . . , wr) on the variables
(x1, . . . , xp; y11, . . . , y1q1 ; . . . ; yk1, . . . , vkpk

; z1, . . . , zr).

Of course X,Y1, . . . , Yk, Z in Definition 3 corresponds to R,P1, . . . ,H
respectively in [6]. Otherwise, apart from the fact that we have allowed X in
Definition 3 to be on more than one variable, the conditions are equivalent.

Product designs [7] may be regarded as particular cases of repeat designs,
given by k = 2, r = 0 and Z = 0 (zero matrix, which may be regarded as an
orthogonal design on no variables).

Similarly a theory of repeat designs should yield a theory of amicable
k-sets, if we can allow X = Z = 0. In the immediate following we assume
that X has at least one variable (while allowing Y1, . . . , Yk, Z to have as
few as no variables each), but it will be found that this restriction may be
removed painlessly.

Remark 2. We note that this indicates that the existence problem for triples
(R,S,H) which are repeat designs (I; (R;S);H) is very difficult and far from
resolved.
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When

XX> =
(∑p

0 ujx
2
j

)
I , YiY

>
i =

(∑qi
1 vijy

2
ij

)
I , ZZ> =

(∑r
1wjz

2
j

)
I

YiX
> = −XY >i ,

YjY
>

i = YiY
>

j (i 6= j) YiZ
> = ZY >i XZ> = ZX> ,

(16)
and similar equations with X>X, etc., in place of XX>, etc.

Write

X =
p∑
0
xjAj , Yi =

qi∑
1
yijBij , Z =

r∑
1
zjCj (17)

(Aj , Bij , Cj {0± 1} matrices) (18)

Substituting into (16) and comparing like terms gives:

AjA
>
j = ujI, BijB

>
ij = vijI, CjC

>
j = wjI,

AiA
>
j +AjA

>
i = 0 (i 6= j), BijB

>
ik +BikB

>
ij = 0 (j 6= k),

CiC
>
j + CjC

>
i = 0 (i 6= j),

BjkA
>
i = −AiB

>
jk ,

Bk`B
>
ij = BijB

>
k` (i 6= k) , CkB

>
ij = BijC

>
k , CjA

>
i = AiC

>
j ,

and similar equations with products reversed.
Set

Ei = 1
√
uiu0

AiA
>
0 , Fij = 1

√
viju0

BijA
>
0 , Gi = 1

√
wiu0

CiA
>
0 .

It is easy to verify E0 = I and E1, . . . , Ep, F11, . . . , F1p1 , Fk1, . . . , Fkpk
,

G1, . . . , Gr satisfy

E2
i = −I , F 2

ij = −I , G2
i = I

EjEi = −EiEj (i 6= j) FikFij = −FikFij (j 6= k) ,

GjGi = −GjGi (i 6= j)

FjkEi = −EiFjk , GjEi = −EiGj , GkFij = −FijGk

Fk`Fij = FijFk` (i 6= k) ,

Thus we have arrived at an order n representation of a real algebra which
is “Clifford-like”, with the one “non-Clifford” property that some pairs of
distinct generators commute.
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This algebra will be called a Clifford-Gastineau-Hills algebra (CGH-
algebra).

Definition 4. A Clifford-Gastineau-Hills algebra is the real algebra on p+
q1+· · · qk+r generators α1, . . . , αp, β11, . . . , β1q1 , . . . , βk1, . . . , βkqk

, γ1, . . . , γr,
with defining equations:

α2
i = −1 , β2

ij = −1 , γ2
i = 1 ,

αjαi = −αiαj (i 6= j) , βikβij = −βijβik (j 6= k) ,
γjγi = −γiγj (i 6= j) ,
βjkαi = −αiβjk , γjαi = −αiγj , γkβij = −βijγk ,

βk`βij = βijβk` (i 6= k) .

(19)

For a repeat design of order n on p+ 1, q1, . . . , qk, r variables to exist it
is necessary for a real order n representation of this algebra to exist.

Gastineau-Hills [5] answers completely the questions of just what are the
possible orders of representations of (19), and whether the existence of an
order n representation of (19) is sufficient for the existence of repeat design
(16).

Observe that the case of product designs is included in what we have
just done — we simply take k = 2 and r = 0.

If we also rewrite q1, q2, β1j , β2j as q, r, βj , γj respectively we find that
the existence of an order n product design on (p+ 1, q, r) variables implies
the existence of an order n representation of the real algebra on p+ q + r
generators α1, . . . , αp, β1, . . . , βq, γ1, . . . , γr with defining equations.

α2
i = β2

j = γ2
k = −1

αjαi = −αiαj , βjβi = −βiβj , γjγi = −γiγj (i 6= j)
βjαi = −αiβj , γjαi = −αiγj , γjβi = βiγj ,

(20)

again a “not-quite-Clifford” algebra.
Note that (20) is not quite the same as equation (3.10) in [5, p.20], so

that a theory of amicable triples need not necessarily by itself yield a theory
of product designs.

In fact not even equation (3.8) in [5, p.18] (the algebra corresponding to
more general amicable k-sets), seems to contain (20) as a particular case.

Then we have

Theorem 1. Let (L;M1 +M2 + · · ·+Ms;N) be product designs
POD(n : a1, . . . , ap; b11, . . . , b1q1

, b21, . . . , b2q2
, . . . , bs1, . . . , bsqs; c1, . . . , ct),

where Mi is of type (bi1, . . . , biqi
).
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Further, let (X; (Y1;Y2; . . . ;Yu);Z) be repeat orthogonal designs,

ROD(m : (r1, . . . , rw); (p11, . . . , p1v1
; p21, . . . , p2v2

; pu1, . . . , puvu);
h1, . . . , hx) .

Then
L×X +M1 × Yj1 + · · ·+Mk × Pjk +N × Z

is an orthogonal design of order mn and type 1 of

(i) (a1r, . . . , apr, b1p11, . . . , b1p1v1
, . . . , bsps1, . . . , bspsqs, ch1, . . . , chx),

(ii) (a1r, . . . , apr, b1p11, . . . , b1p1v1
, . . . , bsps1, . . . , bspsqs, c1h, . . . , cth),

(iii) (ar1, . . . , arw, b1p11, . . . , b1p1v1
, . . . , bsps1, . . . , bspsqs, ch1, . . . , chx),

(iv) (ar1, . . . , arw, b1p11, . . . , b1p1v1
, . . . , bsps1, . . . , bspsqs, c1h, . . . , cth).

where a, c, r, h are the sum of some or all of the ai, ci, ri, hi, respectively,
and bi = bi1 + · · ·+ biqi.

This construction is at first sight quite formidable, but as we shall see, it
does lead to new orthogonal designs.

Geramita and Seberry [6] using many results by Peter J Robinson [14]
give many results on the productivity of the previously mentioned product
designs. However we need to give some repeat designs as our argument is
that product designs are a subset of repeat designs. First we see that repeat
designs do lead to new designs:

Example 3. These repeat designs are an example of creating new designs

ROD Design

ROD(4 : (1; (1; 3); 1, 3)) (I; (T1;T4);T0)
ROD(4 : (1; (2; 3); 1, 3)) (I; (T3;T4);T0)
ROD(4 : (1; (1; 2); 1, 1, 2)) (I; (T1;T3);T3)
ROD(4 : (1; (2; 1, 2); 1, 2)) (I; (T2;T6);T7)

12



where

T0 =


x y y y
y −x y y
y −y y −x
y y −x −y

 , T1 =


0 + 0 0
− 0 0 0
0 0 0 −
0 0 + 0

 ,

T2 =


0 0 + +
0 0 + −
− − 0 0
− + 0 0

 , T3 =


0 0 + +
0 0 − +
− + 0 0
− − 0 0

 ,

T4 =


0 + + +
− 0 + −
− − 0 +
− + − 0

 , T5 =


u v w w
v −u −w w
w −w v −u
w w −u −v

 ,

T6 =


0 a b b
−a 0 −b b
−b b 0 −a
−b −b a 0

 , T7 =


u 0 w w
0 −u −w w
w −w 0 −u
w w −u 0

 .
These repeat designs can be constructed using Theorem 2.

ROD(4 : (1;(1, 1; 1, 1); 1)) ROD(4 : (1;(1, 1; 1, 2); 2))
ROD(4 : (1; (1, 1; 2); 1, 2)) ROD(4 : (1; (1; 1, 2); 2, 2))
ROD(4 : (1; (1, 2; 1, 2); 4))

Example 4. There are product designs POD(8 : 1, 1, 2, 3; 1, 3, 3; 1),
POD(8 : 2, 2; 1, 1, 1, 1; 4) and POD(8 : 1, 1, 1; 1, 1, 1; 5). Then using the
repeat design ROD(4 : 1; (2; 3); 1, 3) with the matrix of weight 2 used once
only, we have OD(32; (1, 1, 2, 3, 2, 9, 9, 1, 3)), OD(32; (2, 2, 2, 3, 3, 3, 4, 12))
and OD(32; (1, 1, 1, 2, 3, 3, 5, 15)).

Since all of these have weight 31, we use the Geramita-Verner theorem
to obtain the following orthogonal designs: OD(32; 1, 1, 1, 1, 2, 2, 3, 3, 9, 9),
OD(32; 1, 2, 2, 2, 3, 3, 3, 4, 12) and OD(32; 1, 1, 1, 1, 2, 3, 3, 5, 15). These last
two designs are exciting.

The product designs POD(4 : 1, 1, 1; 1, 1, 1; 1) can be used with the repeat
designs of types (1; (p; 3); 1, 3), p = 1, 2, to obtain OD(16; 1, 1, 1, 1, p, p, 3, 3),
p = 1, 2. These were first given in Geramita and Seberry [6].
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Remark 3. In the preceding example we have concentrated on constructing
orthogonal designs with no zero. There is considerable scope to exploit these
constructions to look, for other orthogonal designs in order 32 and higher
powers of 2.

We can collect the results from Example 3 in the following statement:
Proposition 1. In order 4 there exist repeat designs of types (1; (r; s);h)
for 0 ≤ r, s ≤ 3, 0 ≤ h ≤ 4.

Noting that the repeat designs (R; (P );H) are just amicable orthogonal
designs R+ P and H, we see that:
Corollary 1. There exist AOD(4; (1, r), (h)) for 0 ≤ r ≤ 3, 0 ≤ h ≤ 4.
Remark 4. The non-existence ofAOD(8; (1, 7), (5)) andAOD(16; (1, 15), (1))
means there are no repeat designs of types (1; (r; 7); 5) in order 8 and
(1; (r; 15); 1) in order 16 (see Robinson [15]).

The construction and replication lemmas given later allow us to say:
Comment 1. In order 8 there, in fact, exist repeat designs (1; (r);h) for all
0 ≤ r ≤ 7 and 0 ≤ h ≤ 8, except r = 7, h = 5 (which cannot exist).

In order 16 there exist repeat designs (1; (r);h) for all r = 1, 2, 3, . . . , 15,
h = 1, 2, . . . , 16, except possibly the following pairs (r, h) : (13, 1), (13, 5),
(13, 9), (15, 7), (15, 9), (15, 15) which are undecided and (15, 1) which does
not exist.

5.1 Construction and Replication of Repeat Designs

We now show that many repeat designs can be constructed.
Lemma 1. Suppose AOD(n1 : (a); (b1, b2) and AOD(n2 : (c); (d1, d2) are
amicable orthogonal designs. Then there is a repeat design in order n1n2 of
type ROD(n1n2 : (b1d1; (ad2, b2d1; b2c, b1d2); ac).
Proof. Let A, x1B1 + x2B2 and C, y1D1 + y2D2 be the amicable orthogonal
designs. Then (B1×D1;(xA×D2 + yB2×D1;uB2×C +wB1×D2);A×C)
are the required repeat designs.

Example 5. Let A = C =
[ 1 1

1 −
]
, B1 = D1 =

[ 1 0
0 1
]
, and B2 = D2 =

[ 0 1
− 0
]
.

Then the repeat design in order 4 and type (1; (1, 2; 1, 2); 4) isI4 ;




0 y x x
ȳ 0 x x̄

x̄ x̄ 0 y
x̄ x ȳ 0

 ;


0 u w u
ū 0 ū w

w̄ u 0 ū
ū w̄ u 0


 ; z


1 1 1 1
1 − 1 −
1 1 − −
1 − − 1


 .
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Before we proceed to our uses of repeat designs, we first note some
replication results.

Theorem 2. Suppose there are repeat designs ROD(n : (r; (p1, . . . , pi;
q1, . . . , qj);h1, . . . , hk)) called X,Y, Z where h1 + h2 + · · · + hk = h and
p1 + · · ·+pi = p. Further suppose A+B and C+D are AOD(m; (a, b), (c, d)).
Then there are repeat designs of order mn and types

1. (ar; (cp1, cp2, . . . , br; aq1, aq2, . . . , bh); ch),

2. (ar; (ap1, ap2, . . . ; cq1, cq2, . . . ); ah1, ah2, . . . , chi, . . . ),

3. (ar; (ap1, ap2, . . . , bh1; cq1, cq2, . . . ); ch1, ah2, ah3, . . . ),

4. (ar; (bh1, bh2, . . . ; rb+ pd, cq1, cq2, . . . ); rd+ bp), where d = b,

5. (ar; (cq1, cq2, . . . ; cp); ah1, ah2, . . . , bp),

6. (ar; (br, dp1, dp2, . . . ; aq1, aq2, . . . , bh); dh),

7. (ar; (cp1, . . . ; cq1, . . . ); ch1, ch2, . . . , dr),

8. (ar; (cp1, . . . , dq1, . . . ); ah1, ah2, . . . , bp1, bp2, . . . ),

9. (ar; (ap1, . . . ; aq1, . . . ); ch, dh),

10. (cr; (br; bh1, bh2, . . . ); ar),

11. (cr; (br; bh); ar, abrh).

Proof. Use the following constructions:

1. (A×X; (C × Y + xB ×X; yA×Q+ zB × Z);C × Z),

2. (A×X; (A× Y ;C ×Q);xA× V + C ×W ),

3. (A×X; (A× Y + xB × V ;C ×Q);C × V + yA×W ),

4. (A×X; (B × Z;xB ×X + yC ×Q− xD × Y );D × Z +B × Y ),

5. (A×X; (C ×Q;C × Y );xA× Z + yB × Y ),

6. (A×X; (B ×X + wD × Y ;xA×Q+ yB × Z);D × Z),

7. (A×X; (C × Y ;C ×Q);C × Z + yD ×X),

8. (A×X; (C × Y + xD ×Q);A× Z + yB × Y ),
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9. (A×X; (A× Y ;A×Q);C × Z + yD × Z),

10. (C ×X; (B ×X;B × Z);A×X),

11. use Lemma on the result (x).

Corollary 2. There are repeat designs of type ROD(2t : 1; (1, 2, . . . , 2t−1;
1, 2, . . . , 2t−1); 2t).

Proof. Use part (i) of Lemma 2 repeatedly with repeat designs ROD(4 :
1; (1, 2; 1, 2); 4) and type AOD(2; (1, 1), (2)).

5.2 Construction of Orthogonal Designs

The use of repeat designs is so powerful a source of orthogonal designs that
for us, it is quite impossible to indicate all the designs constructed here. We
use Robinson’s Ph.D. thesis [14] and Seberry [17] as a source for product
designs.

The constructions using these methods [6] allow us to say

Theorem 3. All orthogonal designs of type (2t; a, b, c, 2t − a− b− c) and of
type (a, b, c), 0 ≤ a+ b+ c ≤ 2t, exist for t = 2, 3, 4, 5, 6, 7, 8, 9.

Remark 5. We believe these results do, in fact, allow the construction of
all full orthogonal designs (that is, with no zero) with four variables in every
power of 2, but we have not been able to prove this result.

Example 6. There is a product design of type (1, 1, 1, 1, 2, 4, . . . , 2t−4; 2, 2t−3;
2, 4, . . . , 2t−4, 2t−3, 2t−3) in order 2t. So using an amicable pair of weights (a, b)
in order n gives an OD(2tn : (1, 1, 1, 1, 2, 4, . . . , 2t−4, 2a, 2t−3a, 2b, 4b, . . . ,
2t−4b, 2t−3b, 2t−3b)).
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