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Definition of a Butson-type Hadamard matrix

Definition (Butson, 1962)
A Butson-type Hadamard matrix H of order n is an n × n complex
matrix, such that,

1. HHT
= nIn,

2. (Hij)
q = 1 for all i, j ,

where q is a positive integer.

I another name: a Butson Hadamard matrix
I columns (rows) are mutually orthogonal
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Example

Below is an example of a Butson-type Hadamard matrix of order 6
over complex fourth roots of unity, {±1,±i}, denoted by BH(4,6):

1 1 1 1 1 1
1 1 i -1 -1 -i
1 i -i i -i -1
1 -1 1 -i -1 i
1 -1 -1 1 i -i
1 -i -1 -1 1 i
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Log-Hadamard representation

Definition
A log-Hadamard matrix of a Butson-type Hadamard matrix H is
any real matrix ΦH satisfying:

Hjk = exp(i[Φ]jk ).

The phases [Φ]jk may be chosen to belong to [0, 2π].

Example:

H =


1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i

 =⇒ ΦH =
2π
4


0 0 0 0
0 1 2 3
0 2 0 2
0 3 2 1


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Equivalence of Butson-type Hadamard matrices

These operations produce a Butson-type Hadamard matrix when
applied to any Butson-type Hadamard matrix:

1. Permuting the order of rows,

2. Permuting the order of columns,

3. Multiplying a row by a root of unity,

4. Multiplying a column by a root of unity.

Butson-type Hadamard matrices are equivalent if they are
essentially the same in the following sense:

Definition
Butson-type Hadamard matrices A and B are equivalent, denoted
by, A ∼= B, if B can be generated from A by applying Operations 1,
2, 3, and 4.
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Problems

1. Classification of Butson-type Hadamard matrices
I Find all inequivalent matrices for the given parameters
I Determine some basic properties of the matrices, such as, the

symmetries of the matrices

2. Existence of isolated matrices
I We know that all Fourier matrices are isolated, are there any

other kinds of isolated matrices?
I Isolated matrices are interesting

3. Existence of p × p Butson-type Hadamard over qth roots of
unity where p is prime and p does not divide q

I A 7× 7 matrix over 6th roots of unity exists, any other such
matrices?
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Rectangular BH matrices
Definition
A rectangular BH matrix H of order n is an m × n complex matrix,
such that,

1. 1 ≤ m ≤ n

2. HHT
= nIm,

3. (Hij)
q = 1 for all i, j ,

where q is a positive integer.

I Rectangular BH matrices are a generalization of Butson-type
Hadamard matrices.

I Equivalence is defined exactly the same way as for
Butson-type Hadamard matrices.

I All Butson-type Hadamard matrices can be constructed by
appending rows to rectangular BH matrices.
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Computational methods: basic idea
Append rows to a rectangular BH matrix until it is a square matrix.
Example: BH(q=6, n=12):

0 0 0 0 0 0 0 0 0 0 0 0
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
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. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
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Computational methods: basic idea
Append rows to a rectangular BH matrix until it is a square matrix.
Example: BH(q=6, n=12):

0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 3 4 1 4 3 2 3 5 0
0 0 2 0 2 4 4 0 2 4 2 4
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
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Computational methods: basic idea
Append rows to a rectangular BH matrix until it is a square matrix.
Example: BH(q=6, n=12):

0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 3 4 1 4 3 2 3 5 0
0 0 2 0 2 4 4 0 2 4 2 4
0 0 4 0 4 2 2 0 4 2 4 2
0 1 0 3 3 4 1 4 0 5 3 2
0 1 4 3 1 0 3 4 4 1 1 4
0 3 1 0 1 1 1 3 4 4 4 4
0 3 3 0 3 5 5 3 0 2 0 2
0 3 4 3 1 4 1 0 2 3 5 0
0 3 5 0 5 3 3 3 2 0 2 0
0 4 1 3 4 3 0 1 4 1 1 4
0 4 3 3 0 1 4 1 0 5 3 2



5th Hadamard Workshop
July 10-14, 2017

15/53

Some numbers related to BH(q=6,n=12) matrices

I 8703 inequivalent BH(q=6,n=12) matrices,

I 461, 683, 233, 537, 839, 796, 286, 862, 284, 208, 209, 920, 000
≈ 5× 1038 BH(q=6,n=12) matrices in all,

I ≈ 6× 1034 BH(q=6,n=12) matrices in an equivalence class on
the average
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Computational methods

Exhaustive tree search

I Find all inequivalent n × n Butson-type Hadamard matrices
over q:th roots of unity.

I Build matrices one row at a time starting with 2-row matrices.
Prune equivalent matrices as they are encountered.

I Orderly generation is used for the detection of equivalent
matrices.



5th Hadamard Workshop
July 10-14, 2017

20/53

Computational methods

Exhaustive tree search

I Find all inequivalent n × n Butson-type Hadamard matrices
over q:th roots of unity.

I Build matrices one row at a time starting with 2-row matrices.
Prune equivalent matrices as they are encountered.

I Orderly generation is used for the detection of equivalent
matrices.



5th Hadamard Workshop
July 10-14, 2017

21/53

Computational methods

Exhaustive tree search

I Find all inequivalent n × n Butson-type Hadamard matrices
over q:th roots of unity.

I Build matrices one row at a time starting with 2-row matrices.
Prune equivalent matrices as they are encountered.

I Orderly generation is used for the detection of equivalent
matrices.



5th Hadamard Workshop
July 10-14, 2017

22/53

Computational methods

Exhaustive tree search

I Find all inequivalent n × n Butson-type Hadamard matrices
over q:th roots of unity.

I Build matrices one row at a time starting with 2-row matrices.
Prune equivalent matrices as they are encountered.

I Orderly generation is used for the detection of equivalent
matrices.



5th Hadamard Workshop
July 10-14, 2017

23/53

Ordering matrices

Definition
The binary relation <M defines a total order on the set of m × n
rectangular BH matrices over qth roots of unity as follows: A <M B
if arg(Aij) ≤ arg(Bij) and Ars = Brs for all r , s with rn + s < in + j .

Example: 
0 0 0 0
0 0 2 2
0 2 0 2
1 3 3 0

 <M


0 0 0 0
0 0 2 2
0 2 1 3
0 2 3 1


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Orderly generation

Definition
A rectangular BH matrix A is canonical if it is the smallest matrix in
it its equivalence class, that is, if

A ∼= B implies A ≤M B.

I There is a unique canonical matrix in every equivalence class.

I We search for the canonical matrices and ignore all the other
matrices.

I If A <M B, then
[

A
X

]
<M

[
B
Y

]
.



5th Hadamard Workshop
July 10-14, 2017

26/53

Orderly generation

Definition
A rectangular BH matrix A is canonical if it is the smallest matrix in
it its equivalence class, that is, if

A ∼= B implies A ≤M B.

I There is a unique canonical matrix in every equivalence class.

I We search for the canonical matrices and ignore all the other
matrices.

I If A <M B, then
[

A
X

]
<M

[
B
Y

]
.



5th Hadamard Workshop
July 10-14, 2017

27/53

Orderly generation

Definition
A rectangular BH matrix A is canonical if it is the smallest matrix in
it its equivalence class, that is, if

A ∼= B implies A ≤M B.

I There is a unique canonical matrix in every equivalence class.

I We search for the canonical matrices and ignore all the other
matrices.

I If A <M B, then
[

A
X

]
<M

[
B
Y

]
.



5th Hadamard Workshop
July 10-14, 2017

28/53

Orderly generation

Definition
A rectangular BH matrix A is canonical if it is the smallest matrix in
it its equivalence class, that is, if

A ∼= B implies A ≤M B.

I There is a unique canonical matrix in every equivalence class.

I We search for the canonical matrices and ignore all the other
matrices.

I If A <M B, then
[

A
X

]
<M

[
B
Y

]
.



5th Hadamard Workshop
July 10-14, 2017

29/53

Orderly generation (cont.)

Theorem
If a matrix A is canonical, then its rows and columns are in
ascending order.

I Unfortunately the converse of the theorem does not hold.
I We must check that none of the equivalence operations yield

a smaller matrix.
I The equivalence classes are very large, but luckily there is an

efficient algorithm for checking if a matrix is canonical.
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Orderly generation (cont.)

Perform the following steps for each row:

1. Check that the new row is orthogonal.

2. Check that the resulting matrix is canonical.

3. Check the second column pruning condition.

These are performed in order 3, 1, 2.
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Orderly generation (cont.)

Perform the following steps for each row:

1. Check that the new row is orthogonal.

2. Check that the resulting matrix is canonical.
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Second column pruning

Theorem
Let H be a canonical BH(q, n) matrix and let S be the n × 2 matrix
formed by the first two columns of H. Then the transpose of S is a
normalized matrix where the columns are in ascending order.

I This theorem allows the detection of those rectangular BH
matrices that can not be extended to BH matrix.

I Form the set of all normalized 2× n matrices with columns in
ascending order at the beginning of the search.
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Second column pruning (cont.)

Example: BH(q=4, n=10):

0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 2 2 2 2 3
0 0 1 2 3 0 1 2 3 2
0 1 3 3 2 0 2 0 2 1
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .

0 0
0 0
0 0
0 0
0 0
0 2
0 2
0 2
0 2
0 2

0 0
0 0
0 0
0 0
0 1
0 2
0 2
0 2
0 2
0 3

0 0
0 0
0 0
0 1
0 1
0 2
0 2
0 2
0 3
0 3
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Second column pruning (cont.)

Example: BH(q=4, n=10):

0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 2 2 2 2 3
0 0 1 2 3 0 1 2 3 2
0 1 3 3 2 0 2 0 2 1
0 2 0 2 2 1 0 3 1 3
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .

0 0
0 0
0 0
0 0
0 0
0 2
0 2
0 2
0 2
0 2

0 0
0 0
0 0
0 0
0 1
0 2
0 2
0 2
0 2
0 3

0 0
0 0
0 0
0 1
0 1
0 2
0 2
0 2
0 3
0 3
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Second column pruning (cont.)

Example: BH(q=4, n=10):

0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 2 2 2 2 3
0 0 1 2 3 0 1 2 3 2
0 1 3 3 2 0 2 0 2 1
0 2 0 2 2 1 0 3 1 3
0 2 1 3 0 3 3 2 1 1
0 2 2 0 2 3 1 1 0 3
0 2 3 1 0 2 1 3 3 1
0 3 2 2 1 1 3 1 3 0
. . . . . . . . . .

0 0
0 0
0 0
0 0
0 0
0 2
0 2
0 2
0 2
0 2

0 0
0 0
0 0
0 0
0 1
0 2
0 2
0 2
0 2
0 3

0 0
0 0
0 0
0 1
0 1
0 2
0 2
0 2
0 3
0 3
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Second column pruning (cont.)

Example: BH(q=4, n=10):

0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 2 2 2 2 3
0 0 1 2 3 0 1 2 3 2
0 1 3 3 2 0 2 0 2 1
0 2 0 2 2 1 0 3 1 3
0 2 1 3 0 3 3 2 1 1
0 2 2 0 2 3 1 1 0 3
0 2 3 1 0 2 1 3 3 1
0 3 2 2 1 1 3 1 3 0
. . . . . . . . . .

0 0
0 0
0 0
0 0
0 0
0 2
0 2
0 2
0 2
0 2

0 0
0 0
0 0
0 0
0 1
0 2
0 2
0 2
0 2
0 3

0 0
0 0
0 0
0 1
0 1
0 2
0 2
0 2
0 3
0 3
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Second column pruning (cont.)

Example: BH(q=4, n=10):

0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 2 2 2 2 3
0 0 1 2 3 0 1 2 3 2
0 1 3 3 2 0 2 0 2 1
0 2 . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .

0 0
0 0
0 0
0 0
0 0
0 2
0 2
0 2
0 2
0 2

0 0
0 0
0 0
0 0
0 1
0 2
0 2
0 2
0 2
0 3

0 0
0 0
0 0
0 1
0 1
0 2
0 2
0 2
0 3
0 3
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Size of the search tree for BH(q=4, n=14) matrices

r Total With pruning
1 1 1
2 4 4
3 42 42
4 10,141 9,142
5 1,601,560 637,669
6 21,311,746 2,118,948
7 17,175,324 189,721
8 4,234,669 155,777
9 1,675,882 108,598

10 716,604 56,103
11 249,716 17,992
12 62,739 5,558
13 9,776 3,039
14 752 752



5th Hadamard Workshop
July 10-14, 2017

46/53

Size of the search tree for BH(q=4, n=14) matrices

r Total With pruning
1 1 1
2 4 4
3 42 42
4 10,141 9,142
5 1,601,560 637,669
6 21,311,746 2,118,948
7 17,175,324 189,721
8 4,234,669 155,777
9 1,675,882 108,598

10 716,604 56,103
11 249,716 17,992
12 62,739 5,558
13 9,776 3,039
14 752 752



5th Hadamard Workshop
July 10-14, 2017

47/53

Some preliminary results (part 1)

Classification of n × n Butson-type Hadamard matrices over qth
roots of unity. (“-” means that no 2-row matrices exist)

n \ q 2 3 4 5 6 7 8 9

2 1 - 1 - 1 - 1 -
3 - 1 - - 1 - - 1
4 1 - 2 - 2 - 3 -
5 - - - 1 0 - - -
6 0 1 1 - 4 - 3 1
7 - - - - 2 1 - -
8 1 - 15 - 36 - 143 -
9 - 3 - - 17 - - 23
10 0 - 10 1 34 - 60 -
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Some preliminary results (part 2)

Classification of n × n Butson-type Hadamard matrices over qth
roots of unity. (“-” means that no 2-row matrices exist)

n \ q 10 11 12 13 14 15 16 17

2 1 - 1 - 1 - 1 -
3 - - 1 - - 1 - -
4 3 - 4 - 4 - 5 -
5 1 - 0 - - 1 - -
6 0 - 11 - 0 1 5 -
7 0 - 4 - 1 - - -
8 299 - 756 - 1412 0 2807 -
9 1 - 65 - 0 93 - -
10 51 - 577 - 0 1 310 -
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Some preliminary results (part 3)
Classification of n × n Butson-type Hadamard matrices over qth
roots of unity. (“-” means that no 2-row matrices exist)

n \ q 2 3 4 5 6 7 8 9

11 - - - - - - - -
12 1 2 319 - 8703 - 53024 8
13 - - - - 436 - - -
14 0 - 752 - 167776 3 E -
15 - 0 - 0 0 - - 0
16 5 - 1786763 - E - E -
17 - - - - 0 - - -
18 0 85 E - E - E E
19 - - - - E - - -
20 3 - E E E - E -
21 - 72 - - E 0 - E
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Some preliminary results (part 4)
Classification of n × n Butson-type Hadamard matrices over qth
roots of unity. (“-” means that no 2-row matrices exist)

n \ q 10 11 12 13 14 15 16 17

11 0 1 0 - 0 0 - -
12 293123 - E - E E E -
13 0 - E 1 ? ? - -
14 E - E - E ? E -
15 ? - ? - ? E - -
16 E - E - E ? E -
17 ? - ? - ? ? - 1
18 ? - E - ? ? E -
19 ? - E - ? ? - -
20 E - E - E E E -
21 ? - E - 0 E - -
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Status of the work

I A preprint available at arXiv:1707.02287

I The work continues.

I Further performance improvements are possible.
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Thank you!
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