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Binary Hadamard matrices

H a binary Hadamard matrix of order 4t if:
it is 4t × 4t with entries {0,1}
every pair of distinct rows (and columns) differs in exactly
2t places
usually normalised to all 0 in first row and column

Smallest example [Sylvester 1867]...∼ 150 years ago:
0 0 0 0
0 1 0 1
0 0 1 1
0 1 1 0
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The Hadamard Conjecture

Conjecture (still open after 150 years): there exists a HM
order 4t for every t . Lowest open order is 668.
Cocyclic Hadamard Conjecture: there exists a cocyclic HM
order 4t for every t [De Launey, KJH 1993]. Lowest open
order is188. Many construction techniques for HM are
cocyclic.
Won’t discuss cocycles here, just the simplest kind:
coboundaries.
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Coboundaries and Hadamard matrices

For any group function f : G→ H with f (1) = 1 its coboundary
is

∂f (x , y) = f (x)−1f (y)−1f (xy)

∂f measures how much f differs from a homomorphism
Example: for vector spaces, f a quadratic form and ∂f its
polar bilinear form
the corresponding coboundary matrix is

[∂f (x , y)]x ,y∈G

It is a normalised group-developed/group-invariant matrix.
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Coboundaries and Hadamard matrices...cont

eg f : Z4 → Z2 given by f (0) = f (1) = f (2) = 0, f (3) = 1:

[f (xy ]x ,y∈Z4 =


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

 ∼


0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0

 = [∂f (x , y)]x ,y∈Z4

after normalising. These are also Hadamard matrices.

If a coboundary matrix is Hadamard then 4t = (2u)2.
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Binary codes

Binary code C of length n = subset of Zn
2.

Parameters of C : (n,M,d) length n, number of codewords
M, minimum Hamming distance d
C is linear if = subgroup of Zn

2 (ie closed under addition, so
M = 2k )
If C nonlinear it generates a linear code 〈C〉 with rank r .
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Hadamard codes

Hadamard code: rows of binary Hadamard matrix & their
complements
Parameters n = 4t , M = 8t , d = 2t , rank ????
Can assume all-zeroes 0 and all-ones 1 are in C
Includes Reed-Muller codes used for US deep space and Mars
missions

eg (our coboundary HM) n = 4, M = 8,d = 2, linear, rank r = 3

0 0 0 0 ,
0 0 1 1 ,
0 1 0 1 ,
0 1 1 0 ,

1 1 1 1 ,
1 1 0 0 ,
1 0 1 0 ,
1 0 0 1 .
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This talk now develops in two directions

map f : Z4 → Z2 Hadamard code
matrix [∂f (x , y)]x ,y∈Z4

code

0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0

0 0 0 0 ,
0 0 1 1 ,
0 1 0 1 ,
0 1 1 0 ,

1 1 1 1 ,
1 1 0 0 ,
1 0 1 0 ,
1 0 0 1 .

⇓ ⇓

map f : Zn
2 → Zn

2 A propelinear code is a group
code {∂f (x , y), x , y ∈ Zn

2} Hadamard propelinear code
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Why do we care? The cryptographic imperative

In cryptography, we are VERY interested in f : Zn
2 → Zn

2
which are as “featureless" as possible
Use different ideas of featurelessness, ie high nonlinearity
Measure using eg Discrete Fourier Transform, group
characters or difference distributions
Classify functions f into equivalence classes invariant
under these measures
Two main classifications: CCZ equivalence and EA
equivalence; EA⇒ CCZ.
Look for classes with optimal featurelessness
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The coboundary code

f : Zn
2 → Zn

2 and f (0) = 0. The coboundary code of f in Zn
2 is

Df = {∂f (x , y) : x , y ∈ Zn
2} = {f (g)+f (h)+f (g+h) : x , y ∈ Zn

2}.

It generates a linear code 〈Df 〉.

n(f ) = rank2 Df = dim2 〈Df 〉, 0 ≤ n(f ) ≤ n.

Theorem (KJH-Villanueva 2014)

If f and f ′ are EA equivalent, then n(f ) = n(f ′).

Does the coboundary code Df play a similar role for EA classes
as the graph code does for CCZ classes?
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The kernel of a code

What other invariants are there?
Kernel introduced in 1983 (Bauer, Ganter and Hergert).
Kernel K (C) of a binary code C of length n is

K (C) = {x ∈ Zn
2 : x + C = C} .

If 0 ∈ C, then K (C) is a linear subspace of C and is a union of
cosets of C.

K (Df ) is a linear subcode of Df . Set k(f ) = dim2 K (Df ).
We have K (Df ) ⊆ Df ⊆ 〈Df 〉, so 0 ≤ k(f ) ≤ n(f ) ≤ n.
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The kernel of the code Df

Usually, the dimension k(f ) of the kernel is not, by itself, an
invariant of EA class

But the SET of dimensions of the kernels of the shifts of f IS an
invariant. For r ∈ Zn

2 the shift of f by r is

f · r(x) = f (x + r) + f (r) [= ∂f (x , r) + f (x)].

Theorem (KJH-Villanueva 2014)

Let M(f ) = {{k(f · r), r ∈ Zn
2}}.

If f and f ′ are EA equivalent, then M(f ) = M(f ′).
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Example: Power functions

i M(f (x) = x i)

i ∈ C1 {0∧2m}
i 6∈ C1 {|Ci |∧2m}

Table: Invariant multiset M(f ) for the monomial power functions
f (x) = x i for all 3 ≤ m ≤ 8, where Ci is the cyclotomic coset of i mod
2m − 1.

In these cases we have very simple and uniform results in
terms of the cyclotomic coset Ci of i mod 2m − 1. For instance,
for m = 4, M(x5) = {2∧16} and for m = 6, M(x9) = {3∧64}.
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Example: Differentially 4-uniform permutations of
order 15

Here there are 10 CCZ classes. The dimension k(f · r) of
K (Df ·r ) CAN vary with the shift r within an EA class.
M(σ1) = {0∧8,1∧4,4∧4},
M(σ2) = {1∧6,4∧10},
M(σ3) = {4∧16},
M(σ4) = {0∧4,4∧12},
M(σ5) = {0∧6,4∧10},
M(σ6) = {0∧4,4∧12},
M(σ7) = {0∧15,4},
M(σ8) = {0∧10,4∧6},
M(σ9) = {0∧8,4∧8},
M(σ10) = {4∧16}.
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Further work

Really we know very little about these invariants of equivalence
classes:

So far, calculated for some power functions f (x) = x i ,
some highly nonlinear functions and some small n.
How well do they characterise nonlinearity classes for
functions over Zn

2 ?
The area is wide open for investigation....
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Propelinear codes

Introduced by Rifà, Basart, Huguet (1989)
Binary code C of length n, containing 0, is propelinear, if
for each codeword x ∈ C there exists a coordinate
permutation πx ∈ Sn satisfying conditions:
(i) π0 = Id ,
(ii) For all y ∈ C, x + πx(y) ∈ C,
(iii) For all x , y ∈ C, πxπy = πz , where z = x + πx(y).
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Propelinear codes are groups!

Theorem (Rifà et al)
A propelinear code C is a group under the binary operation ?,
where

x ? y = x + πx(y), x , y ∈ C

Proof.
Identity is 0: 0 ? x = 0 + π0(x) = 0 + Id(x) = x ;
x ? 0 = x + πx(0) = x + 0 = x .
Associativity follows from Condition (iii).
Inverse of x is x−1 = (πx)

−1(x). eg if (πx)
−1(x) = z then

πx(z) = x , so
x ? (πx)

−1(x) = x + πx((πx)
−1(x)) = x + πx(z) = x + x = 0.

Proof that (πx)
−1(x) ? x = 0 takes a little more work!
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What group is that?

QUESTION 1 In a propelinear code C, for every x ∈ C,
x + πx(C) = C. What is the relation (if any) with the Kernel
K (C) = {x ∈ Zn

2 : x + C = C} ?
QUESTION 2 What group is the propelinear code (C, ?)?
First, (C, ?) is abelian if and only if
x ? y = x + πx(y) = y + πy (x), x , y ∈ C; usually NOT the case.
If C is also a Hadamard code some really lovely results are
known.
In a Hadamard propelinear code C, as well as containing 0
(with π0 = Id), C contains 1.
In a Hadamard propelinear code C,
1 ? 1 = 1 + π1(1) = 1 + 1 = 0 and 1 is an involution in C.
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The Hadamard full propelinear code group is known

A Hadamard propelinear code is called full if
(i) π0 = π1 = Id
(ii) for x ∈ C, x 6= 0, x 6= 1, πx does not fix any coordinate of C.

Theorem
(Rifà, Suarez 2014) A Hadamard full propelinear code (C, ?) of
length 4t is a Hadamard groupa of order 8t with central
involution 1. Conversely, a Hadamard group of order 8t defines
a Hadamard full propelinear code (C, ?) of length 4t .

aNot defined here, introduced by Ito (1994)
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Tying it all together

A cocyclic Hadamard matrix of order 4t is equivalent to a
(4t ,2,4t ,2t)-difference set of a particular kind (de Launey,
Flannery, KJH 2000).
A cocyclic Hadamard matrix of order 4t is equivalent to a
Hadamard group of order 8t (Flannery 1997)
A Hadamard group of order 8t is equivalent to a Hadamard
full propelinear code of length 4t (Rifà, Suarez 2014)
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THANKYOU.....QUESTIONS?
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