Gröbner bases and cocyclic Hadamard matrices

Álvarez, Armario, Falcón, Frau and Gudiel

University of Seville

5th Workshop on Real and Complex Hadamard Matrices and Applications

2 Cocyclic advantages

< ∃ >

- 一司

Hadamard cocyclic ideals

Hadamard ideals - Kotsireas, Koukouvinos, Seberry (2006)

Hadamard cocyclic ideals

Hadamard ideals - Kotsireas, Koukouvinos, Seberry (2006) Polynomial equations \longleftrightarrow Hadamard matrices with 1 and 2-circulant core

Hadamard cocyclic ideals

Hadamard ideals - Kotsireas, Koukouvinos, Seberry (2006) Polynomial equations \leftrightarrow Hadamard matrices with 1 and 2-circulant core

G is a group of order 4*t*, a *cocycle* ψ over *G* is a mapping $\psi : G \times G \rightarrow \langle -1 \rangle$ satisfying $\psi(1,1) = \psi(g,1) = \psi(1,g) = 1$, $g \in G$ and the cocycle equation:

 $\psi(g_i,g_j) \ \psi(g_ig_j,g_k)\psi(g_i,g_jg_k) \ \psi(g_j,g_k) = 1, \quad g_i,g_j,g_k \in G.$ (1)

Pros & Cons

 Pros

• Faster Hadamard test

æ

-∢≣⇒

Image: A matrix

Pros & Cons

Pros

- Faster Hadamard test
- Search performed in terms of a basis of cocyles

 $\{\mathsf{coboundaries}\} \cup \{\mathsf{inflation}\} \cup \{\mathsf{transgression}\}$

Pros & Cons

Pros

- Faster Hadamard test
- Search performed in terms of a basis of cocyles

 $\{\mathsf{coboundaries}\} \cup \{\mathsf{inflation}\} \cup \{\mathsf{transgression}\}$

Cons

• { Cocyclic Hadamard Matrices } \subset { Hadamard Matrices }

The idea

Use the Algebraic Geometry artillery (namely Gröbner basis techniques) to determine both the cardinality and the elements of the set \mathcal{H}_G of cocyclic Hadamard matrices over a multiplicative finite group G of 4t elements.

First (naive) approach

 $\mathbb{Q}[X_G]$ be the polynomial ring over $\{X_G\} = \{x_{i,j}: g_i, g_j \in G\}$

3

∃ → (∃ →

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

First (naive) approach

 $\mathbb{Q}[X_G]$ be the polynomial ring over $\{X_G\} = \{x_{i,j}: g_i, g_j \in G\}$

Theorem

The set \mathcal{H}_G can be identified with the set of zeros of the zero-dimensional ideal $I_G = I_G^1 + I_G^2 + I_G^3 + I_G^4 \subset \mathbb{Q}[X_G]$, where

$$\left\{ \begin{array}{l} I_{G}^{1} = \langle x_{i,j}^{2} - 1 \colon i, j \in G \rangle \\ I_{G}^{2} = \langle x_{i,j} x_{ij,k} - x_{j,k} x_{i,jk} \colon i, j, k \in G \rangle \\ I_{G}^{3} = \langle x_{1,j} - 1, x_{i,1} - 1 \colon i, j \in G \setminus \{1\} \rangle \\ I_{G}^{4} = \langle \sum_{j \in G} x_{i,j} \colon i \in G \setminus \{1\} \rangle \end{array} \right.$$

Set of polynomials defining I_G :

 $O(t^3)$ polynomials of degree up to 2 over $O(t^2)$ variables

- ∢ 🗇 እ

Set of polynomials defining I_G :

 $O(t^3)$ polynomials of degree up to 2 over $O(t^2)$ variables Lakshman and Lazard (1991) $\longrightarrow 2^{O(t^2)}$!!

- < ∃ →

Image: Image:

Set of polynomials defining I_G :

 $O(t^3)$ polynomials of degree up to 2 over $O(t^2)$ variables Lakshman and Lazard (1991) $\longrightarrow 2^{O(t^2)}$!!

Open computer algebra system for polynomial computations SINGULAR CocGM(t, G, opt)

Set of polynomials defining I_G :

 $O(t^3)$ polynomials of degree up to 2 over $O(t^2)$ variables Lakshman and Lazard (1991) $\longrightarrow 2^{O(t^2)}$!!

Open computer algebra system for polynomial computations SINGULAR CocGM(t, G, opt)http://personales.us.es/raufalgan/LS/hadamard.lib

$$\begin{cases} G = 1 \Rightarrow \mathbb{Z}_t \times \mathbb{Z}_2^2, G = 2 \Rightarrow D_{4t} \\ opt = 1 \Rightarrow \sharp \mathcal{H}_G, opt = 2 \Rightarrow \mathcal{H}_G \end{cases}$$

Set of polynomials defining I_G :

 $O(t^3)$ polynomials of degree up to 2 over $O(t^2)$ variables Lakshman and Lazard (1991) $\longrightarrow 2^{O(t^2)}$!!

Open computer algebra system for polynomial computations SINGULAR CocGM(t, G, opt)http://personales.us.es/raufalgan/LS/hadamard.lib

$$\begin{cases} G = 1 \Rightarrow \mathbb{Z}_t \times \mathbb{Z}_2^2, G = 2 \Rightarrow D_{4t} \\ opt = 1 \Rightarrow \sharp \mathcal{H}_G, opt = 2 \Rightarrow \mathcal{H}_G \end{cases}$$

 $t \leq 3$

(日) (同) (三) (三)

Basis of normalized cocycles

Fixed a representative cocycle ρ , and a basis for normalized cocycles **B**. $\mathbb{Q}[X]$ be the polynomial ring over $\{X\} = \{x_i: i \in \{1, \dots, k\}\}$

- ∢ 🗇 እ

Basis of normalized cocycles

Fixed a representative cocycle ρ , and a basis for normalized cocycles **B**. $\mathbb{Q}[X]$ be the polynomial ring over $\{X\} = \{x_i: i \in \{1, \dots, k\}\}$

Theorem

(Álvarez et al.)[2008] The matrix M_{ψ} is Hadamard if and only if the vector of coordinates $(x_1, \ldots, x_k)_{\mathbf{B}}$ of ψ with regards to **B** satisfies the following system of 4t - 1 equations and k unknowns

$$\begin{cases}
(m_{2,1}^{1})^{x_{1}} \dots (m_{2,1}^{k})^{x_{k}} + \dots + (m_{2,4t}^{1})^{x_{1}} \dots (m_{2,4t}^{k})^{x_{k}} &= 0 \\
\vdots & \vdots \\
(m_{4t,1}^{1})^{x_{1}} \dots (m_{4t,1}^{k})^{x_{k}} + \dots + (m_{4t,4t}^{1})^{x_{1}} \dots (m_{4t,4t}^{k})^{x_{k}} &= 0
\end{cases}$$
(2)

The set \mathcal{H}_{G}^{ρ} can be identified with the set of zeros of the following zero-dimensional ideal of $\mathbb{Q}[X]$.

$$J_G := \langle x_i^2 - x_i \colon i \in \{1, \ldots, k - m\} \rangle + \langle \sum_{h=1}^{4t} s_{I,h}(X) \colon I \in \{1, \ldots, 4t - 1\} \rangle.$$

s(l, h) is defined in terms of paths and intersections, and $deg(s_{l,h}) \leq 2$.

The set \mathcal{H}_{G}^{ρ} can be identified with the set of zeros of the following zero-dimensional ideal of $\mathbb{Q}[X]$.

$$J_G := \langle x_i^2 - x_i \colon i \in \{1, \ldots, k - m\} \rangle + \langle \sum_{h=1}^{4t} s_{l,h}(X) \colon l \in \{1, \ldots, 4t - 1\} \rangle.$$

s(l,h) is defined in terms of paths and intersections, and $deg(s_{l,h}) \leq 2$.

Now, Lakshman and Lazard $\implies 2^{O(t)}$

The set \mathcal{H}_{G}^{ρ} can be identified with the set of zeros of the following zero-dimensional ideal of $\mathbb{Q}[X]$.

$$J_G := \langle x_i^2 - x_i \colon i \in \{1, \ldots, k - m\} \rangle + \langle \sum_{h=1}^{4t} s_{l,h}(X) \colon l \in \{1, \ldots, 4t - 1\} \rangle.$$

s(l,h) is defined in terms of paths and intersections, and $deg(s_{l,h}) \leq 2$.

Now, Lakshman and Lazard $\Longrightarrow 2^{O(t)}$

CocGB(t, G, opt)

The set \mathcal{H}_{G}^{ρ} can be identified with the set of zeros of the following zero-dimensional ideal of $\mathbb{Q}[X]$.

$$J_G := \langle x_i^2 - x_i \colon i \in \{1, \ldots, k - m\} \rangle + \langle \sum_{h=1}^{4t} s_{l,h}(X) \colon l \in \{1, \ldots, 4t - 1\} \rangle.$$

s(l,h) is defined in terms of paths and intersections, and $deg(s_{l,h}) \leq 2$.

Now, Lakshman and Lazard $\implies 2^{O(t)}$

CocGB(t, G, opt)

$$\begin{cases} G = 1 \Rightarrow \mathbb{Z}_t \times \mathbb{Z}_2^2, G = 2 \Rightarrow D_{4t} \\ opt = 1 \Rightarrow \sharp \mathcal{H}_G, opt = 2 \Rightarrow \mathcal{H}_G \end{cases}$$

The set \mathcal{H}_{G}^{ρ} can be identified with the set of zeros of the following zero-dimensional ideal of $\mathbb{Q}[X]$.

$$J_G := \langle x_i^2 - x_i \colon i \in \{1, \ldots, k - m\} \rangle + \langle \sum_{h=1}^{4t} s_{l,h}(X) \colon l \in \{1, \ldots, 4t - 1\} \rangle.$$

s(l,h) is defined in terms of paths and intersections, and $deg(s_{l,h}) \leq 2$.

Now, Lakshman and Lazard $\implies 2^{O(t)}$

CocGB(t, G, opt)

$$\left\{ \begin{array}{l} G = 1 \Rightarrow \mathbb{Z}_t \times \mathbb{Z}_2^2, G = 2 \Rightarrow D_{4t} \\ opt = 1 \Rightarrow \sharp \mathcal{H}_G, opt = 2 \Rightarrow \mathcal{H}_G \end{array} \right.$$

$$t \leq 7, D_{4t}$$

< □ > < ---->

_		
· • •	LU I	i ei

Grobner bases ..

Budapest, July 2017 10 / 15

3

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

Fine tuning: $\mathbb{Z}_t \times \mathbb{Z}_2^2$

Diagrammatic properties:

CocAH(t, col, dist, H)

Gudiel

Gröbner bases ...

Fine tuning: $\mathbb{Z}_t \times \mathbb{Z}_2^2$

Diagrammatic properties:

CocAH(t, col, dist, H)

{ col: parity of columns
 dist: sum of each row
 H: fixed values of some coordinates

Gudiel

t = 31

3

ヨト・イヨト

• • • • • • • •

t = 31

col: 0, 4, 2, 4, 2, 2, 2, 2, 0, 2, 2, 0, 4, 2, 2

- 一司

t = 31

col: 0, 4, 2, 4, 2, 2, 2, 2, 0, 2, 2, 0, 4, 2, 2

dist: 12, 18, 18, 12

- 一司

t = 31

col: 0, 4, 2, 4, 2, 2, 2, 2, 0, 2, 2, 0, 4, 2, 2

dist: 12, 18, 18, 12

H = 14, 15, 21, 24, 29

t = 31

col: 0, 4, 2, 4, 2, 2, 2, 2, 0, 2, 2, 0, 4, 2, 2

dist: 12, 18, 18, 12

H = 14, 15, 21, 24, 29

10F6F96990660F6666F06609969F6F0

Fine tuning: D_{4t}

Gudiel

Gröbner bases ..

Budapest, July 2017 12 / 15

3

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

Fine tuning: D_{4t}

CocDH(t, col, dist, H)

< A

2

CocDH(t, col, dist, H)

dist: number of new intersections in each row [2,t]
 H: fixed values of some coordinates

t = 31

3

ヨト 米 ヨト

Image: A matrix

t = 31

 $\mathsf{dist}\ 1, 1, 2, 2, 3, 3, 2, 3, 0, 1, 0, 4, 2, 2, 3, 2, 3, 2, 2, 0, 0, 3, 1, 1, 2, 1, 3, 2, 2, 3$

- 一司

t = 31

dist 1, 1, 2, 2, 3, 3, 2, 3, 0, 1, 0, 4, 2, 2, 3, 2, 3, 2, 2, 0, 0, 3, 1, 1, 2, 1, 3, 2, 2, 3

 $H = \underline{5}, \underline{6}, \underline{17}, \underline{36}, \underline{48}, 63, 64, \underline{84}, \underline{95}, 115, \underline{117}$

t = 31

 $\mathsf{dist}\ 1, 1, 2, 2, 3, 3, 2, 3, 0, 1, 0, 4, 2, 2, 3, 2, 3, 2, 2, 0, 0, 3, 1, 1, 2, 1, 3, 2, 2, 3$

H = 5, 6, 17, 36, 48, 63, 64, 84, 95, 115, 117

21172424E984E2E3FC6B06D5527CA70

Future work

-			
(-		0	ام
<u> </u>	ш	u.	C

æ

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

Future work

Improve the quality of the helping information

to get better results !

э

Thank you and farewell !!!

æ

• • • • • • • •