n-fold unbiased bases: an extension of the MUB condition

Máté Farkas

University of Gdańsk

11 July 2017 arXiv: 1706.04446

▲□▶ ▲□▶ ▲ 臣▶ ★ 臣▶ 三臣 - のへぐ

Jakub Borkała

Edgar Aguilar

Richard Küng

<ロト </l>

• Two bases: $\{|y_i\rangle\}_{i=1}^d$ and $\{|z_i\rangle\}_{i=1}^d$ in \mathbb{C}^d are MUB iff

$$|\langle y_i|z_j
angle|^2 = rac{1}{d} \quad orall i,j\in [d]$$

▶ Two bases:
$$\{|y_i\rangle\}_{i=1}^d$$
 and $\{|z_i\rangle\}_{i=1}^d$ in \mathbb{C}^d are MUB iff

$$|\langle y_i|z_j
angle|^2=rac{1}{d}\quad orall i,j\in [d]$$

► Applications:

• Two bases: $\{|y_i\rangle\}_{i=1}^d$ and $\{|z_i\rangle\}_{i=1}^d$ in \mathbb{C}^d are MUB iff

$$|\langle y_i|z_j\rangle|^2 = rac{1}{d} \quad \forall i,j \in [d]$$

- Applications:
 - Quantum state determination [Wooters, Fields, 1989]

▶ Two bases: $\{|y_i\rangle\}_{i=1}^d$ and $\{|z_i\rangle\}_{i=1}^d$ in \mathbb{C}^d are MUB iff

$$|\langle y_i|z_j
angle|^2 = rac{1}{d} \quad orall i,j\in [d]$$

- Applications:
 - Quantum state determination [Wooters, Fields, 1989]
 - Information locking [Ballester, Wehner, 2007]

• Two bases: $\{|y_i\rangle\}_{i=1}^d$ and $\{|z_i\rangle\}_{i=1}^d$ in \mathbb{C}^d are MUB iff

$$|\langle y_i|z_j
angle|^2 = rac{1}{d} \quad orall i,j\in [d]$$

- Applications:
 - Quantum state determination [Wooters, Fields, 1989]
 - Information locking [Ballester, Wehner, 2007]
 - Entropic uncertainty relations [Maassen, Uffink, 1988]

• Two bases: $\{|y_i\rangle\}_{i=1}^d$ and $\{|z_i\rangle\}_{i=1}^d$ in \mathbb{C}^d are MUB iff

$$|\langle y_i|z_j
angle|^2 = rac{1}{d} \quad orall i,j\in [d]$$

- Applications:
 - Quantum state determination [Wooters, Fields, 1989]
 - Information locking [Ballester, Wehner, 2007]
 - Entropic uncertainty relations [Maassen, Uffink, 1988]
 - Quantum random access codes

• Two bases: $\{|y_i\rangle\}_{i=1}^d$ and $\{|z_i\rangle\}_{i=1}^d$ in \mathbb{C}^d are MUB iff

$$|\langle y_i|z_j
angle|^2 = rac{1}{d} \quad orall i,j\in [d]$$

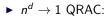
- Applications:
 - Quantum state determination [Wooters, Fields, 1989]
 - Information locking [Ballester, Wehner, 2007]
 - Entropic uncertainty relations [Maassen, Uffink, 1988]
 - Quantum random access codes
 - $\blacktriangleright\,$ in $2^d \rightarrow 1$ QRAC, the optimal measurements are MUBs

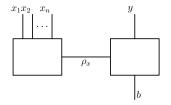
 $\{ |y_i\rangle \langle y_i| \}_{i=1}^d$ and $\{ |z_i\rangle \langle z_i| \}_{i=1}^d$

Quantum Random Access Codes (QRACs)

(ロ)、<</p>

Quantum Random Access Codes (QRACs)



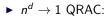


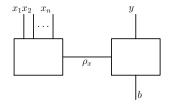
▶ $x_i \in [d]$, $y \in [n]$, $b \in [d]$ and ρ_x is a *d*-dimensional quantum state

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

• The players win if $b = x_y$

Quantum Random Access Codes (QRACs)



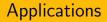


- ▶ $x_i \in [d]$, $y \in [n]$, $b \in [d]$ and ρ_x is a *d*-dimensional quantum state
- The players win if $b = x_y$

Figure of merit: average success probability:

$$\bar{p} = \frac{1}{nd^n} \sum_{x,y} \mathbb{P}(B = x_y \mid X = x \cap Y = y)$$

Applications



Foundational issues

Foundational issues

• Quantum supremacy [Ambainis et al., 2009]

- Foundational issues
 - Quantum supremacy [Ambainis et al., 2009]

Quantumness witness

- Foundational issues
 - Quantum supremacy [Ambainis et al., 2009]

▲□▶ ▲□▶ ▲ 臣▶ ★ 臣▶ 三臣 - のへぐ

- Quantumness witness
- Practical use

- Foundational issues
 - Quantum supremacy [Ambainis et al., 2009]
 - Quantumness witness
- Practical use
 - Quantum finite automata [Ambainis et al., 1999]

▲□▶ ▲□▶ ▲ 臣▶ ★ 臣▶ 三臣 - のへぐ

- Foundational issues
 - Quantum supremacy [Ambainis et al., 2009]
 - Quantumness witness
- Practical use
 - Quantum finite automata [Ambainis et al., 1999]

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Network coding [Hayashi et al., 2006]

- Foundational issues
 - Quantum supremacy [Ambainis et al., 2009]
 - Quantumness witness
- Practical use
 - Quantum finite automata [Ambainis et al., 1999]

- Network coding [Hayashi et al., 2006]
- ► Locally decodable codes [Kerenidis, 2004]

General QRAC strategies $(n^d \rightarrow 1)$

・ロト ・ 日 ・ モ ト ・ モ ・ うへで

General QRAC strategies $(n^d \rightarrow 1)$

▶ Pure states and projective measurements are enough for optimality

General QRAC strategies $(n^d \rightarrow 1)$

▶ Pure states and projective measurements are enough for optimality

$$\bar{p} = \frac{1}{nd^n} \sum_{x} \operatorname{tr} \left(|\psi_x\rangle \langle \psi_x| \sum_{y} |y_{x_y}\rangle \langle y_{x_y}| \right)$$

General QRAC strategies
$$(n^d \rightarrow 1)$$

$$\bar{p} = \frac{1}{nd^n} \sum_{x} \operatorname{tr}\left(|\psi_x\rangle \langle \psi_x| \sum_{y} |y_{x_y}\rangle \langle y_{x_y}| \right)$$

• For any choice of measurements the optimal encoding:

$$\left(\sum_{y} |y_{x_{y}}\rangle\langle y_{x_{y}}|\right) |\psi_{x}\rangle = \lambda_{x}^{\max} |\psi_{x}\rangle \implies \bar{p} = \frac{1}{nd^{n}} \sum_{x} \lambda_{x}^{\max}$$

▲□▶ ▲□▶ ▲ 臣▶ ★ 臣▶ 三臣 - のへぐ

General QRAC strategies
$$(n^d \rightarrow 1)$$

$$ar{p} = rac{1}{nd^n} \sum_x \operatorname{tr}\left(|\psi_x\rangle\langle\psi_x|\sum_y|y_{x_y}\rangle\langle y_{x_y}|
ight)$$

▶ For any choice of measurements the optimal encoding:

$$\left(\sum_{y} |y_{x_{y}}\rangle\langle y_{x_{y}}|\right) |\psi_{x}\rangle = \lambda_{x}^{\max} |\psi_{x}\rangle \implies \bar{p} = \frac{1}{nd^{n}} \sum_{x} \lambda_{x}^{\max}$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

• Matrix of $\sum_{y} |y_{x_y}\rangle \langle y_{x_y}|$: Gramian matrix of $\{|y_{x_y}\rangle\}_{y=1}^n$

General QRAC strategies
$$(n^d \rightarrow 1)$$

$$ar{p} = rac{1}{nd^n} \sum_x \operatorname{tr}\left(|\psi_x\rangle\langle\psi_x|\sum_y|y_{x_y}\rangle\langle y_{x_y}|
ight)$$

▶ For any choice of measurements the optimal encoding:

$$\left(\sum_{y} |y_{x_{y}}\rangle\langle y_{x_{y}}|\right) |\psi_{x}\rangle = \lambda_{x}^{\max} |\psi_{x}\rangle \implies \bar{p} = \frac{1}{nd^{n}} \sum_{x} \lambda_{x}^{\max}$$

• Matrix of $\sum_{y} |y_{x_y}\rangle \langle y_{x_y}|$: Gramian matrix of $\{|y_{x_y}\rangle\}_{y=1}^n$

• For any x: $\lambda^n - n\lambda^{n-1} + c_2\lambda^{n-2} + \cdots + c_n = 0$

General QRAC strategies
$$(n^d \rightarrow 1)$$

$$ar{p} = rac{1}{nd^n} \sum_x \operatorname{tr}\left(|\psi_x\rangle\langle\psi_x|\sum_y|y_{x_y}\rangle\langle y_{x_y}|
ight)$$

▶ For any choice of measurements the optimal encoding:

$$\left(\sum_{y} |y_{x_{y}}\rangle\langle y_{x_{y}}|\right) |\psi_{x}\rangle = \lambda_{x}^{\max} |\psi_{x}\rangle \implies \bar{p} = \frac{1}{nd^{n}} \sum_{x} \lambda_{x}^{\max}$$

• Matrix of $\sum_{y} |y_{x_y}\rangle \langle y_{x_y}|$: Gramian matrix of $\{|y_{x_y}\rangle\}_{y=1}^n$

• For any x: $\lambda^n - n\lambda^{n-1} + c_2\lambda^{n-2} + \cdots + c_n = 0$

• λ_x^{\max} is a concave function of every $(c_k)_x$

General QRAC strategies
$$(n^d \rightarrow 1)$$

$$ar{p} = rac{1}{nd^n} \sum_x \operatorname{tr}\left(|\psi_x\rangle\langle\psi_x|\sum_y|y_{x_y}\rangle\langle y_{x_y}|
ight)$$

► For any choice of measurements the optimal encoding:

$$\left(\sum_{y} |y_{x_{y}}\rangle\langle y_{x_{y}}|\right) |\psi_{x}\rangle = \lambda_{x}^{\max} |\psi_{x}\rangle \implies \bar{p} = \frac{1}{nd^{n}} \sum_{x} \lambda_{x}^{\max}$$

- ロ ト - 4 回 ト - 4 □

• Matrix of $\sum_{y} |y_{x_y}\rangle \langle y_{x_y}|$: Gramian matrix of $\{|y_{x_y}\rangle\}_{y=1}^n$

• For any x: $\lambda^n - n\lambda^{n-1} + c_2\lambda^{n-2} + \cdots + c_n = 0$

• λ_x^{\max} is a concave function of every $(c_k)_x$

 $\blacktriangleright \implies \bar{p}$ is a Schur-concave function of every \mathbf{c}_k

Optimal $n^d ightarrow 1$ QRAC strategy

• Maximal average success probability: uniform $(c_k)_x$

• Maximal average success probability: uniform $(c_k)_x$

$$\sum_{\substack{\sigma \in S_n \\ \sigma: n-\text{cycle}}} \prod_{y=1}^n \left\langle y_{x_y} \middle| \sigma(y)_{x_{\sigma(y)}} \right\rangle = \frac{(n-1)!}{d^{n-1}} \quad \forall x_1, \dots, x_n \in [d]$$

nUB condition

• Maximal average success probability: uniform $(c_k)_x$

$$\sum_{\substack{\sigma \in S_n \\ \sigma: n-\text{cycle}}} \prod_{y=1}^n \left\langle y_{x_y} \middle| \sigma(y)_{x_{\sigma(y)}} \right\rangle = \frac{(n-1)!}{d^{n-1}} \quad \forall x_1, \dots, x_n \in [d]$$

nUB condition

• Example: n = 3, 3UB-condition:

$$\langle y_{x_y} | z_{x_z} \rangle \langle z_{x_z} | a_{x_a} \rangle \langle a_{x_a} | y_{x_y} \rangle + \langle y_{x_y} | a_{x_a} \rangle \langle a_{x_a} | z_{x_z} \rangle \langle z_{x_z} | y_{x_y} \rangle = \frac{2}{d^2} \quad \forall x_y, x_z, x_a \in [d]$$

Existence of nUBs

Existence of nUBs

▶
$$nUB \implies (n-1)UB$$

Existence of nUBs

- ▶ $nUB \implies (n-1)UB$
 - This means that any nUBs must consist of MUBs

・ロト ・ 日 ・ モ ト ・ モ ・ うへで

- ▶ $nUB \implies (n-1)UB$
 - This means that any nUBs must consist of MUBs

• $d + 1 \ d$ UBs in dimension $d \implies (d + 1)$ UB

- ▶ $nUB \implies (n-1)UB$
 - This means that any nUBs must consist of MUBs

- $d + 1 \ d$ UBs in dimension $d \implies (d + 1)$ UB
- d = 2: any 3 MUBs form a 3UB

- ▶ $n UB \implies (n-1)UB$
 - This means that any nUBs must consist of MUBs
- $d + 1 \ d$ UBs in dimension $d \implies (d + 1)$ UB
- d = 2: any 3 MUBs form a 3UB
- d = 3, 4, 5: no 3UBs exist \implies no *n*UBs for $n \ge 3$

▲□▶ ▲□▶ ▲ 臣▶ ★ 臣▶ 三臣 - のへぐ

- ▶ $n UB \implies (n-1)UB$
 - This means that any nUBs must consist of MUBs
- $d + 1 \ d$ UBs in dimension $d \implies (d + 1)$ UB
- d = 2: any 3 MUBs form a 3UB
- d = 3, 4, 5: no 3UBs exist \implies no *n*UBs for $n \ge 3$

• $d \ge 6$: unclear if *n*UBs exist for $n \ge 3$

- ▶ $nUB \implies (n-1)UB$
 - This means that any nUBs must consist of MUBs
- $d + 1 \ d$ UBs in dimension $d \implies (d + 1)$ UB
- d = 2: any 3 MUBs form a 3UB
- d = 3, 4, 5: no 3UBs exist \implies no *n*UBs for $n \ge 3$

- $d \ge 6$: unclear if *n*UBs exist for $n \ge 3$
- Probabilistic arguments:

▶ $n UB \implies (n-1)UB$

- This means that any nUBs must consist of MUBs
- $d + 1 \ d \text{UBs}$ in dimension $d \implies (d + 1) \text{UB}$
- d = 2: any 3 MUBs form a 3UB
- d = 3, 4, 5: no 3UBs exist \implies no *n*UBs for $n \ge 3$
- $d \ge 6$: unclear if *n*UBs exist for $n \ge 3$
- Probabilistic arguments:

► For *n* random states,
$$\mathbb{E}\left[\sum_{\substack{\sigma \in S_n \\ \sigma: n-\text{cycle}}} \prod_{y=1}^n \langle y | \sigma(y) \rangle\right] = \frac{(n-1)!}{d^{n-1}}$$

・ロト・日本・モート モー うへぐ

▶ $nUB \implies (n-1)UB$

- This means that any nUBs must consist of MUBs
- $d + 1 \ d \text{UBs}$ in dimension $d \implies (d + 1) \text{UB}$
- d = 2: any 3 MUBs form a 3UB
- d = 3, 4, 5: no 3UBs exist \implies no *n*UBs for $n \ge 3$
- $d \ge 6$: unclear if *n*UBs exist for $n \ge 3$
- Probabilistic arguments:
 - ► For *n* random states, $\mathbb{E}\left[\sum_{\sigma: \sigma \in S_n \atop \sigma \in x \in Q} \prod_{y=1}^n \langle y | \sigma(y) \rangle\right] = \frac{(n-1)!}{d^{n-1}}$
 - ► Lévy's lemma: concentration of measure on S^{2d-1} ⇒ functions admit their expectation value with high probability, when the dimension is high

If they exist

If they exist

Tight upper bound on QRAC strategies

If they exist

Tight upper bound on QRAC strategies

Potential tight bounds on other tasks

If they exist

- Tight upper bound on QRAC strategies
- Potential tight bounds on other tasks
 - Entropic uncertainty relations

▲□▶ ▲□▶ ▲ 臣▶ ★ 臣▶ 三臣 - のへぐ

If they exist

- Tight upper bound on QRAC strategies
- Potential tight bounds on other tasks
 - Entropic uncertainty relations

▲□▶ ▲□▶ ▲ 臣▶ ★ 臣▶ 三臣 - のへぐ

Information locking

If they exist

- Tight upper bound on QRAC strategies
- Potential tight bounds on other tasks
 - Entropic uncertainty relations

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Information locking
- If they don't exist

If they exist

- Tight upper bound on QRAC strategies
- Potential tight bounds on other tasks
 - Entropic uncertainty relations
 - Information locking
- If they don't exist
 - Close-to-tight upper bound on QRAC strategies (close to the success probability of MUB strategies)

▲ロ ▶ ▲ 理 ▶ ▲ 王 ▶ ▲ 王 ▶ ● ● ● ● ● ●

If they exist

- Tight upper bound on QRAC strategies
- Potential tight bounds on other tasks
 - Entropic uncertainty relations
 - Information locking
- If they don't exist
 - Close-to-tight upper bound on QRAC strategies (close to the success probability of MUB strategies)

		classical	MUB	nUB
d = 3	<i>n</i> = 3	0.6296	0.6971	0.6989
d = 4	<i>n</i> = 3	0.5625	0.6443	0.6466
	<i>n</i> = 4	0.5313	0.5779	0.5872
d = 5	<i>n</i> = 3	0.5200	0.6109	0.6114
	<i>n</i> = 4	0.4880	0.5430	0.5477

▲ロ ▶ ▲ 理 ▶ ▲ 王 ▶ ▲ 王 ▶ ● ● ● ● ● ●

If they exist

- Tight upper bound on QRAC strategies
- Potential tight bounds on other tasks
 - Entropic uncertainty relations
 - Information locking
- If they don't exist
 - Close-to-tight upper bound on QRAC strategies (close to the success probability of MUB strategies)
 - Potential close-to-tight upper bounds on other tasks

		classical	MUB	nUB
d = 3	<i>n</i> = 3	0.6296	0.6971	0.6989
d = 4	<i>n</i> = 3	0.5625	0.6443	0.6466
	n = 4	0.5313	0.5779	0.5872
d = 5	<i>n</i> = 3	0.5200	0.6109	0.6114
	<i>n</i> = 4	0.4880	0.5430	0.5477

▲ロト ▲冊ト ▲ヨト ▲ヨト - ヨー の々ぐ

► Quantum theory: only second order genuine interference

▲□▶ ▲□▶ ▲ 臣▶ ★ 臣▶ 三臣 - のへぐ

▶ Quantum theory: only second order genuine interference

Two-slit pattern is not a sum of one-slit patterns

▶ Quantum theory: only second order genuine interference

- Two-slit pattern is not a sum of one-slit patterns
- ► More-than-two-slit pattern is a sum of two- and one-slit patterns

▲□▶ ▲□▶ ▲ 臣▶ ★ 臣▶ 三臣 - のへぐ

▶ Quantum theory: only second order genuine interference

- Two-slit pattern is not a sum of one-slit patterns
- ► More-than-two-slit pattern is a sum of two- and one-slit patterns

・ロト・日本・モート モー うへぐ

• ρ_{ij} expresses correlations between two levels only

▶ Quantum theory: only second order genuine interference

- Two-slit pattern is not a sum of one-slit patterns
- ► More-than-two-slit pattern is a sum of two- and one-slit patterns

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- ρ_{ij} expresses correlations between two levels only
- ► Nature: higher order interference?

▶ Quantum theory: only second order genuine interference

- Two-slit pattern is not a sum of one-slit patterns
- ► More-than-two-slit pattern is a sum of two- and one-slit patterns
- ρ_{ij} expresses correlations between two levels only
- ► Nature: higher order interference?
 - $\blacktriangleright\,$ Experimental bounds: $\sim 10^{-2}$ times weaker than second order

▶ Quantum theory: only second order genuine interference

- Two-slit pattern is not a sum of one-slit patterns
- More-than-two-slit pattern is a sum of two- and one-slit patterns
- ρ_{ij} expresses correlations between two levels only
- ► Nature: higher order interference?
 - Experimental bounds: $\sim 10^{-2}$ times weaker than second order
 - Density Cubes [Dakić et al., 2014]: quantum states as tensors, e.g.

 ρ_{ijk} for third order genuine interference

- ロ ト - 4 回 ト - 4 □

Quantum theory: only second order genuine interference

- Two-slit pattern is not a sum of one-slit patterns
- ► More-than-two-slit pattern is a sum of two- and one-slit patterns
- ρ_{ij} expresses correlations between two levels only
- Nature: higher order interference?
 - \blacktriangleright Experimental bounds: $\sim 10^{-2}$ times weaker than second order
 - Density Cubes [Dakić et al., 2014]: quantum states as tensors, e.g.
 ρ_{ijk} for third order genuine interference
 - Maybe in this theory, there always exist some analogue bases to 3UBs

Quantum theory: only second order genuine interference

- Two-slit pattern is not a sum of one-slit patterns
- More-than-two-slit pattern is a sum of two- and one-slit patterns
- ρ_{ij} expresses correlations between two levels only
- ► Nature: higher order interference?
 - \blacktriangleright Experimental bounds: $\sim 10^{-2}$ times weaker than second order
 - Density Cubes [Dakić et al., 2014]: quantum states as tensors, e.g. ρ_{ijk} for third order genuine interference
 - Maybe in this theory, there always exist some analogue bases to 3UBs

Quartic Quantum Theory [Życzkowski, 2008]

► New, extended MUB criterion

- ► New, extended MUB criterion
- Practical implications

New, extended MUB criterion

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

- Practical implications
 - QRAC strategies

- ► New, extended MUB criterion
- Practical implications
 - QRAC strategies
 - Entropic uncertainty relations, state discrimination, information locking

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□

- New, extended MUB criterion
- Practical implications
 - QRAC strategies
 - Entropic uncertainty relations, state discrimination, information locking

(ロ)、(型)、(E)、(E)、(E)、(Q)、(Q)

Foundational implications

- New, extended MUB criterion
- Practical implications
 - QRAC strategies
 - Entropic uncertainty relations, state discrimination, information locking

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Foundational implications
 - Existence, geometry of quantum states

- New, extended MUB criterion
- Practical implications
 - QRAC strategies
 - Entropic uncertainty relations, state discrimination, information locking

▲ロ ▶ ▲ 理 ▶ ▲ 王 ▶ ▲ 王 ▶ ● ● ● ● ● ●

- Foundational implications
 - Existence, geometry of quantum states
 - The question of genuine third order interference

- New, extended MUB criterion
- Practical implications
 - QRAC strategies
 - Entropic uncertainty relations, state discrimination, information locking
- Foundational implications
 - Existence, geometry of quantum states
 - The question of genuine third order interference

Thank you for your attention!

arXiv: 1706.04446

▲ロ ▶ ▲ 理 ▶ ▲ 王 ▶ ▲ 王 ▶ ● ● ● ● ● ●