
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

n-fold unbiased bases: an extension of the MUB

condition
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Mutually unbiased bases (MUBs)

▶ Two bases: {|yi ⟩}di=1 and {|zi ⟩}di=1 in Cd are MUB iff

| ⟨yi |zj⟩ |2 =
1

d
∀i , j ∈ [d ]

▶ Applications:

▶ Quantum state determination [Wooters, Fields, 1989]

▶ Information locking [Ballester, Wehner, 2007]

▶ Entropic uncertainty relations [Maassen, Uffink, 1988]

▶ Quantum random access codes

▶ in 2d → 1 QRAC, the optimal measurements are MUBs

{|yi ⟩ ⟨yi |}di=1 and {|zi ⟩ ⟨zi |}di=1
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Quantum Random Access Codes (QRACs)

▶ nd → 1 QRAC:

· · ·

x1x2 xn y

b

ρx

▶ xi ∈ [d ], y ∈ [n], b ∈ [d ] and ρx is a d-dimensional quantum state

▶ The players win if b = xy

▶ Figure of merit: average success probability:

p̄ =
1

ndn

∑
x,y

P(B = xy | X = x ∩ Y = y)



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Quantum Random Access Codes (QRACs)

▶ nd → 1 QRAC:

· · ·

x1x2 xn y

b

ρx

▶ xi ∈ [d ], y ∈ [n], b ∈ [d ] and ρx is a d-dimensional quantum state

▶ The players win if b = xy

▶ Figure of merit: average success probability:

p̄ =
1

ndn

∑
x,y

P(B = xy | X = x ∩ Y = y)



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Quantum Random Access Codes (QRACs)

▶ nd → 1 QRAC:

· · ·

x1x2 xn y

b

ρx

▶ xi ∈ [d ], y ∈ [n], b ∈ [d ] and ρx is a d-dimensional quantum state

▶ The players win if b = xy

▶ Figure of merit: average success probability:

p̄ =
1

ndn

∑
x,y

P(B = xy | X = x ∩ Y = y)



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Applications

▶ Foundational issues

▶ Quantum supremacy [Ambainis et al., 2009]

▶ Quantumness witness

▶ Practical use

▶ Quantum finite automata [Ambainis et al., 1999]

▶ Network coding [Hayashi et al., 2006]

▶ Locally decodable codes [Kerenidis, 2004]
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General QRAC strategies (nd → 1)

▶ Pure states and projective measurements are enough for optimality

p̄ =
1

ndn

∑
x

tr
(
|ψx⟩⟨ψx |

∑
y

|yxy ⟩⟨yxy |
)

▶ For any choice of measurements the optimal encoding:(∑
y

|yxy ⟩⟨yxy |
)
|ψx⟩ = λmax

x |ψx⟩ =⇒ p̄ =
1

ndn

∑
x

λmax
x

▶ Matrix of
∑

y |yxy ⟩⟨yxy |: Gramian matrix of {|yxy ⟩}ny=1

▶ For any x: λn − nλn−1 + c2λ
n−2 + · · · + cn = 0

▶ λmax
x is a concave function of every (ck)x

▶ =⇒ p̄ is a Schur-concave function of every ck
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General QRAC strategies (nd → 1)

▶ Pure states and projective measurements are enough for optimality

p̄ =
1

ndn

∑
x

tr
(
|ψx⟩⟨ψx |

∑
y

|yxy ⟩⟨yxy |
)

▶ For any choice of measurements the optimal encoding:(∑
y

|yxy ⟩⟨yxy |
)
|ψx⟩ = λmax

x |ψx⟩ =⇒ p̄ =
1

ndn

∑
x

λmax
x

▶ Matrix of
∑
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Optimal nd → 1 QRAC strategy

▶ Maximal average success probability: uniform (ck)x

∑
σ∈Sn

σ: n-cycle

n∏
y=1

⟨
yxy

∣∣σ(y)xσ(y)

⟩
=

(n − 1)!

dn−1
∀x1, . . . , xn ∈ [d ]

nUB condition

▶ Example: n = 3, 3UB-condition:

⟨yxy |zxz ⟩⟨zxz |axa⟩⟨axa |yxy ⟩+⟨yxy |axa⟩⟨axa |zxz ⟩⟨zxz |yxy ⟩ =
2

d2
∀xy , xz , xa ∈ [d ]
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Existence of nUBs

▶ nUB =⇒ (n − 1)UB

▶ This means that any nUBs must consist of MUBs

▶ d + 1 dUBs in dimension d =⇒ (d + 1)UB

▶ d = 2: any 3 MUBs form a 3UB

▶ d = 3, 4, 5: no 3UBs exist =⇒ no nUBs for n ≥ 3

▶ d ≥ 6: unclear if nUBs exist for n ≥ 3

▶ Probabilistic arguments:

▶ For n random states, E
[∑

σ∈Sn
σ: n-cycle

∏n
y=1 ⟨y |σ(y)⟩

]
= (n−1)!

dn−1

▶ Lévy’s lemma: concentration of measure on S2d−1 =⇒ functions

admit their expectation value with high probability, when the

dimension is high
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Applications of nUBs

▶ If they exist

▶ Tight upper bound on QRAC strategies

▶ Potential tight bounds on other tasks

▶ Entropic uncertainty relations

▶ Information locking

▶ If they don’t exist

▶ Close-to-tight upper bound on QRAC strategies (close to the success

probability of MUB strategies)

classical MUB nUB

d = 3 n = 3 0.6296 0.6971 0.6989

d = 4
n = 3 0.5625 0.6443 0.6466

n = 4 0.5313 0.5779 0.5872

d = 5
n = 3 0.5200 0.6109 0.6114

n = 4 0.4880 0.5430 0.5477

▶ Potential close-to-tight upper bounds on other tasks
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Foundational questions

▶ Quantum theory: only second order genuine interference

▶ Two-slit pattern is not a sum of one-slit patterns

▶ More-than-two-slit pattern is a sum of two- and one-slit patterns

▶ ρij expresses correlations between two levels only

▶ Nature: higher order interference?

▶ Experimental bounds: ∼ 10−2 times weaker than second order

▶ Density Cubes [Dakić et al., 2014]: quantum states as tensors, e.g.

ρijk for third order genuine interference

▶ Maybe in this theory, there always exist some analogue bases to 3UBs

▶ Quartic Quantum Theory [Życzkowski, 2008]
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Summary

▶ New, extended MUB criterion

▶ Practical implications

▶ QRAC strategies

▶ Entropic uncertainty relations, state discrimination, information

locking

▶ Foundational implications

▶ Existence, geometry of quantum states

▶ The question of genuine third order interference

Thank you for your attention!

arXiv: 1706.04446
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