Phased unitary Golay pairs, Butson Hadamard matrices and a conjecture of Ito's

UNIVERSITY OF RIJEKA DEPARTMENT OF MATHEMATICS

This work has been fully supported by Croatian Science Foundation under the project 1637. Let k be a positive integer and let $\zeta_k = e^{\frac{2\pi\sqrt{-1}}{k}}$.

A Butson Hadamard matrix BH(n, k) of order n is an $n \times n$ matrix $H = [h_{ij}]$ whose entries h_{ij} lie in $\langle \zeta_k \rangle$ and such that $HH^* = nI_n$, where $H^* = [\overline{h_{ij}}]$.

Let k be a positive integer and let $\zeta_k = e^{\frac{2\pi\sqrt{-1}}{k}}$.

A Butson Hadamard matrix BH(n, k) of order n is an $n \times n$ matrix $H = [h_{ij}]$ whose entries h_{ij} lie in $\langle \zeta_k \rangle$ and such that $HH^* = nI_n$, where $H^* = [\overline{h_{ji}}]$.

Example

The matrix H is a BH(3,3) where

$$H = \begin{bmatrix} 1 & 1 & 1 \\ 1 & \zeta_3 & \zeta_3^2 \\ 1 & \zeta_3^2 & \zeta_3 \end{bmatrix}.$$

- A sequence $a = [a_i]_{0 \le i \le v-1}$ of length v with entries in $\langle \zeta_k \rangle$ is called a k-ary sequence.
- $\overline{a} = [\overline{a_i}]_{0 \le i \le v-1}$.
- $\hat{a} = [a_{v-1-i}]_{0 \le i \le v-1}$
- $a^* = \hat{\overline{a}} = \overline{\hat{a}}$.
- To ease notation we write k-ary arrays in log form. That is, we replace $[\zeta_k^{\eta_{i,j}}]$ with $[\eta_{i,j}]$ (or $[\eta_{i,j}]_k$ if necessary).

Let a and b be 2-ary (binary) sequences of length v. The aperiodic autocorrelation function of a with shift s is defined to be

$$\operatorname{AF}_{s}(a) = \sum_{i=0}^{\nu-s-1} a_{i}a_{i+s}.$$

The pair (a, b) is a *Golay pair* of length v if $AF_s(a) + AF_s(b) = 0$ for all $1 \le s \le v - 1$. The set of all Golay pairs of length v is denoted by GP(v).

Let a and b be 2-ary (binary) sequences of length v. The aperiodic autocorrelation function of a with shift s is defined to be

$$\operatorname{AF}_{s}(a) = \sum_{i=0}^{\nu-s-1} a_{i}a_{i+s}.$$

The pair (a, b) is a *Golay pair* of length v if $AF_s(a) + AF_s(b) = 0$ for all $1 \le s \le v - 1$. The set of all Golay pairs of length v is denoted by GP(v).

Theorem (Turyn)

GP(v) is non-empty for $v = 2^{x}10^{y}26^{z}$ for all $x, y, z \ge 0$.

Golay pairs and Hadamard matrices

Let $(a, b) \in GP(v)$ and let A and B be the circulant matrices with first rows a and b respectively. Then

$$H = \left[\begin{array}{cc} A & B \\ -B^\top & A^\top \end{array} \right]$$

is a Hadamard matrix of order 2v.

Golay pairs and Hadamard matrices

Let $(a, b) \in GP(v)$ and let A and B be the circulant matrices with first rows a and b respectively. Then

$$H = \left[\begin{array}{cc} A & B \\ -B^\top & A^\top \end{array} \right]$$

is a Hadamard matrix of order 2v.

Example

Let
$$(a, b) = ([1, 1, -, 1], [1, 1, 1, -])$$
. Then

$$H = \begin{bmatrix} 1 & 1 & - & 1 & 1 & 1 & 1 & 1 & - \\ 1 & 1 & 1 & - & - & 1 & 1 & 1 \\ - & 1 & 1 & 1 & 1 & - & 1 & 1 \\ \hline 1 & - & 1 & 1 & 1 & 1 & - & 1 \\ - & 1 & - & 1 & 1 & 1 & - & 1 \\ - & - & - & 1 & - & 1 & 1 & 1 \\ 1 & - & - & - & 1 & - & 1 & 1 \end{bmatrix}$$

is a Hadamard matrix of order 8.

The periodic autocorrelation function of a with shift s is defined to be

$$\operatorname{PAF}_{s}(a) = \sum_{i=0}^{\nu-1} a_{i}a_{i+s},$$

where the sequences indices are read modulo v.

The periodic autocorrelation function of a with shift s is defined to be

$$\operatorname{PAF}_{s}(a) = \sum_{i=0}^{\nu-1} a_{i}a_{i+s},$$

where the sequences indices are read modulo v. Equivalently, if C is the $v \times v$ circulant matrix with first row [0, 1, 0, 0, ..., 0], then

$$\operatorname{PAF}_{s}(a) = a \cdot aC^{s}.$$

The periodic autocorrelation function of a with shift s is defined to be

$$\operatorname{PAF}_{s}(a) = \sum_{i=0}^{\nu-1} a_{i}a_{i+s},$$

where the sequences indices are read modulo v. Equivalently, if C is the $v \times v$ circulant matrix with first row [0, 1, 0, 0, ..., 0], then

$$\operatorname{PAF}_{s}(a) = a \cdot aC^{s}.$$

The pair (a, b) is a *periodic Golay pair* of length v if $PAF_s(a) + PAF_s(b) = 0$ for all $1 \le s \le v - 1$. The set of all periodic Golay pairs of length v is denoted by PGP(v).

Every GP(v) is a PGP(v). Hadamard matrices of order 2v are constructed in exactly the same way.

Let
$$N = \begin{bmatrix} 0 & 1 & 0 & \cdots & 0 & 0 \\ 0 & 0 & 1 & & 0 & 0 \\ 0 & 0 & 0 & & 0 & 0 \\ \vdots & & & & & \\ 0 & 0 & 0 & & 0 & 1 \\ -1 & 0 & 0 & & 0 & 0 \end{bmatrix}$$
.

The negaperiodic autocorrelation function of a with shift s is defined to be

$$\operatorname{NAF}_{s}(a) = a \cdot aN^{s}.$$

The pair (a, b) is a negaperiodic Golay pair of length v if $NAF_s(a) + NAF_s(b) = 0$ for all $1 \le s \le v - 1$. The set of all negaperiodic Golay pairs of length v is denoted by NGP(v).

Let $(a, b) \in NGP(v)$ and let A and B be the negacirculant matrices with first row a and b respectively. That is, $A_1 = a$ and $A_i = aN^{i-1}$ for all $2 \le i \le v$, and B is similar. Then as before

$$\mathcal{H} = \left[egin{array}{cc} A & B \ -B^{ op} & A^{ op} \end{array}
ight]$$

I

is a Hadamard matrix of order 2v.

Let $(a, b) \in NGP(v)$ and let A and B be the negacirculant matrices with first row a and b respectively. That is, $A_1 = a$ and $A_i = aN^{i-1}$ for all $2 \le i \le v$, and B is similar. Then as before

$$\mathcal{H} = \left[egin{array}{cc} A & B \ -B^{ op} & A^{ op} \end{array}
ight]$$

is a Hadamard matrix of order 2v.

Every GP(v) is a NGP(v).

Theorem (Balonin & Đoković) $GP(v) = PGP(v) \cap NGP(v).$ Let a and b be 4-ary (quaternary) sequences of length v. The *complex* aperiodic autocorrelation function of a with shift s is defined to be

$$\operatorname{CAF}_{s}(a) = \sum_{i=0}^{\nu-s-1} a_{i} \overline{a_{i+s}}.$$

Let a and b be 4-ary (quaternary) sequences of length v. The *complex* aperiodic autocorrelation function of a with shift s is defined to be

$$\operatorname{CAF}_{s}(a) = \sum_{i=0}^{\nu-s-1} a_{i} \overline{a_{i+s}}.$$

The pair (a, b) is a complex Golay pair of length v if $CAF_s(a)+CAF_s(b)=0$ for all $1 \leq s \leq v-1$. The set of all complex Golay pairs of length v is denoted by CGP(v).

Let a and b be 4-ary (quaternary) sequences of length v. The *complex* aperiodic autocorrelation function of a with shift s is defined to be

$$\operatorname{CAF}_{s}(a) = \sum_{i=0}^{\nu-s-1} a_{i} \overline{a_{i+s}}.$$

The pair (a, b) is a complex Golay pair of length v if $CAF_s(a)+CAF_s(b)=0$ for all $1 \leq s \leq v-1$. The set of all complex Golay pairs of length v is denoted by CGP(v).

Theorem (Craigen, Holzmann & Kharaghani)

$$\begin{split} &\operatorname{CGP}(v) \text{ is non-empty for all } v = 2^{x+u}3^y 5^c 11^d 13^e \text{ where} \\ &x,y,c,d,e,u \geq 0, \ y+c+d+e \leq x+2u+1 \text{ and } u \leq c+e. \end{split}$$

イロト 不得下 イヨト イヨト

Complex Golay pairs and complex Hadamard matrices

Let $(a, b) \in CGP(v)$ and let A and B be the circulant matrices with first rows a and b respectively. Then

$$H = \left[\begin{array}{cc} A & B \\ -B^* & A^* \end{array} \right]$$

is a BH(2v, 4).

Complex Golay pairs and complex Hadamard matrices

Let $(a, b) \in CGP(v)$ and let A and B be the circulant matrices with first rows a and b respectively. Then

$$H = \left[\begin{array}{cc} A & B \\ -B^* & A^* \end{array} \right]$$

is a BH(2v, 4).

Example

Let (a, b) = ([1, 1, -], [1, i, 1]). Then

$$\mathcal{H} = \begin{bmatrix} 1 & 1 & - & 1 & i & 1 \\ - & 1 & 1 & 1 & 1 & i \\ 1 & - & 1 & i & 1 & 1 \\ \hline - & - & i & 1 & - & 1 \\ i & - & - & 1 & 1 & - \\ - & i & - & - & 1 & 1 \end{bmatrix}$$

is a BH(6, 4).

Ronan Egan

Let a and b be k-ary sequences of length v. The pair (a, b) is a unitary Golay pair of length v if $CAF_s(a) + CAF_s(b) = 0$ for all $1 \le s \le v - 1$.

The set of all k-ary unitary Golay pairs of length v is denoted by UGP(v, k).

Let a and b be k-ary sequences of length v. The pair (a, b) is a unitary Golay pair of length v if $CAF_s(a) + CAF_s(b) = 0$ for all $1 \le s \le v - 1$.

The set of all k-ary unitary Golay pairs of length v is denoted by UGP(v, k).

Let $m \in \{0, \ldots, k-1\}$ and let

$$C_{k,m} = \begin{bmatrix} 0 & 1 & 0 & \cdots & 0 & 0 \\ 0 & 0 & 1 & & 0 & 0 \\ 0 & 0 & 0 & & 0 & 0 \\ \vdots & & & & \\ 0 & 0 & 0 & & 0 & 1 \\ \zeta_k^m & 0 & 0 & & 0 & 0 \end{bmatrix}.$$

We define the *unitary autocorrelation function* of a k-ary sequence a of length v and shift s to be

$$\mathrm{UAF}_{m,s}(a) = a \cdot \overline{aC_{k,m}^s}.$$

We say (a, b) is a phased unitary Golay pair if $UAF_{m,s}(a) + UAF_{m,s}(b) = 0$ for all $1 \le s \le v - 1$.

We define the *unitary autocorrelation function* of a k-ary sequence a of length v and shift s to be

$$\mathrm{UAF}_{m,s}(a) = a \cdot \overline{aC_{k,m}^s}.$$

We say (a, b) is a phased unitary Golay pair if $UAF_{m,s}(a) + UAF_{m,s}(b) = 0$ for all $1 \le s \le v - 1$.

The set of all k-ary phased unitary Golay pairs of length v of phase m is denoted by PUGP(v, k, m).

Theorem

$$\operatorname{UGP}(v,k) = \cap_{m=0}^{k-1} \operatorname{PUGP}(v,k,m).$$

Let $(a, b) \in PUGP(v, k, m)$, and let A and B be the ζ_k^m -circulant matrices with first row a and b respectively. That is, $A_1 = a$ and $A_i = aC_{k,m}^{i-1}$ for all $2 \le i \le v$, and B is similar.

$$\mathcal{H} = \left[egin{array}{cc} A & B \ -B^* & A^* \end{array}
ight]$$

is a BH(2v, k) is k is even, or a BH(2v, 2k) if k is odd.

Let $(a, b) \in PUGP(v, k, m)$, and let A and B be the ζ_k^m -circulant matrices with first row a and b respectively. That is, $A_1 = a$ and $A_i = aC_{k,m}^{i-1}$ for all $2 \le i \le v$, and B is similar.

$$H = \begin{bmatrix} A & B \\ -B^* & A^* \end{bmatrix}$$

is a BH(2v, k) is k is even, or a BH(2v, 2k) if k is odd.

If $(a, b) \in UGP(v, k)$, we can use the same construction, with any choice of $m \in \{0, \ldots, k-1\}$. Thus we construct k Butson Hadamard matrices, which are not necessarily equivalent.

Example

Let $a = [0, 4, 5, 0]_6$ and $b = [0, 1, 5, 3]_6$. Then $(a, b) \in UGP(4, 6)$. Then reading the entries modulo 6,

	0	4	5	0	0	1	5	3]
H =	т	0	4	5	3 + <i>m</i>	0	1	5
	5+m	т	0	4	5+m	3+m	0	1
	4 + <i>m</i>	5+m	т	0	1 + m	5+m	3+m	0
	3	-m	4 – <i>m</i>	2 – <i>m</i>	0	-m	1-m	2 - m
	2	3	-m	4 – <i>m</i>	2	0	-m	1 - m
	4	2	3	-m	1	2	0	-m
	0	4	2	3	0	1	2	0]

is a BH(8,6) for any $0 \le m \le 5$. The matrices constructed belong to two equivalence classes in BH(8,6). One class contains the matrices constructed with $m \in \{0, 1, 3, 4\}$, and the other contains the matrices constructed with $m \in \{2, 5\}$. One class is obtained from the other by replacing each entry in one matrix with its complex conjugate.

- Sequences with zeros:
 - Complex generalized weighing matrices.
- Sequences with entries in a signed group:
 - Signed group Hadamard matrices.
 - Signed group weighing matrices.
- Sets of n > 2 complementary sequences:
 - e.g., Williamson type constructions.

	$v \setminus m$	0	1	UGP(v, 2)
	4	64	128	32
PUGP(v, 2, m)	6	0	576	0
	8	1536	4096	192
	10	6400	11200	128

	$v \setminus m$	0	1	2	UGP(v, 4)
	2	96	128	96	64
PUGP(v, 4, m)	3	576	576	576	128
	4	2176	4096	4096	512
	5	11200	11200	11200	512

	$v \setminus m$	0	1	2	3	UGP(v, 6)
, m)	2	360	432	360	432	216
	3	1296	0	0	1296	0
	4	19008	26496	19008	26496	2592

$$(|\mathrm{PUGP}(v,k,m)| = |\mathrm{PUGP}(v,k,k-m)|)$$

Ronan Egan

 $\exists \cdot \mid \cdot \mid$ July 10, 2017

E

Image: A matrix and a matrix

16 / 18

Let $i = \sqrt{-1}$ and let j = -i. Let X be the set of 4-ary sequences of length v and Y be the set of 2-ary sequences of length 2v. Now let $f : X \to Y$ be the bijective map such that f(x) = y where y is obtained from $x \circ \overline{x}$ by replacing each i with -1, and each j with 1.

Let $i = \sqrt{-1}$ and let j = -i. Let X be the set of 4-ary sequences of length v and Y be the set of 2-ary sequences of length 2v. Now let $f : X \to Y$ be the bijective map such that f(x) = y where y is obtained from $x \circ \overline{x}$ by replacing each i with -1, and each j with 1.

Proposition

Let $a, b \in X$ and let $f : X \to Y$ be the bijection above. Then $UAF_{1,s}(a) + UAF_{1,s}(b) = 0$ iff $UAF_{1,s}(f(a)) + UAF_{1,s}(f(b)) = 0$ for any $s \in \{1, ..., v - 1\}.$

Theorem

Define the bijection $\phi : X \times X \to Y \times Y$ where $\phi(a, b) = (f(a), f(b))$ for all $a, b \in X$. The restriction of ϕ to PUGP(v, 4, 1) is a bijection from PUGP(v, 4, 1) into PUGP(2v, 2, 1).

Theorem

Define the bijection $\phi : X \times X \to Y \times Y$ where $\phi(a, b) = (f(a), f(b))$ for all $a, b \in X$. The restriction of ϕ to PUGP(v, 4, 1) is a bijection from PUGP(v, 4, 1) into PUGP(2v, 2, 1).

Ito's conjecture \rightarrow Complex Hadamard conjecture \rightarrow Hadamard conjecture.

Theorem

Define the bijection $\phi : X \times X \to Y \times Y$ where $\phi(a, b) = (f(a), f(b))$ for all $a, b \in X$. The restriction of ϕ to PUGP(v, 4, 1) is a bijection from PUGP(v, 4, 1) into PUGP(2v, 2, 1).

Ito's conjecture \rightarrow Complex Hadamard conjecture \rightarrow Hadamard conjecture.

Theorem

Let m be a positive integer such that 2m - 1 and 4m - 1 is a prime power or m is odd and there is a Williamson matrix over \mathbb{Z}_m . Then there exists a BH(2v,4) for all $v = 2^a 10^b 26^c m$ with a, b, $c \ge 0$. In particular there exists a BH(2v,4) for all $v \le 46$.