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Covering Array. Definition

I Let N, k , t , and v be positive integers.
I Let C be an N × k array with entries from an alphabet

Σ of size v ; we typically take Σ = {0, . . . , v − 1}.
I When (ν1, . . . , νt ) is a t-tuple with νi ∈ Σ for 1 ≤ i ≤ t ,

(c1, . . . , ct ) is a tuple of t column indices
(ci ∈ {1, . . . , k}), and ci 6= cj whenever νi 6= νj , the
t-tuple {(ci , νi) : 1 ≤ i ≤ t} is a t-way interaction.

I The array covers the t-way interaction
{(ci , νi) : 1 ≤ i ≤ t} if, in at least one row ρ of C, the
entry in row ρ and column ci is νi for 1 ≤ i ≤ t .

I Array C is a covering array CA(N; t , k , v) of strength t
when every t-way interaction is covered.

I CAN(t , k , v) is the minimum N for which a
CA(N; t , k , v) exists.
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Covering Array
CA(13;3,10,2)

0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1
1 1 1 0 1 0 0 0 0 1
1 0 1 1 0 1 0 1 0 0
1 0 0 0 1 1 1 0 0 0
0 1 1 0 0 1 0 0 1 0
0 0 1 0 1 0 1 1 1 0
1 1 0 1 0 0 1 0 1 0
0 0 0 1 1 1 0 0 1 1
0 0 1 1 0 0 1 0 0 1
0 1 0 1 1 0 0 1 0 0
1 0 0 0 0 0 0 1 1 1
0 1 0 0 0 1 1 1 0 1
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The Motivating Questions

1. How precisely can we determine CAN(t , k , v)?
2. When we can show CAN(t , k , v) ≤ N, can we

construct a CA(N; t , k , v) efficiently and explicitly?



Asymptotic and
Constructive
Bounds for

Covering Arrays

Charles J.
Colbourn

with Erin Lanus
and Kaushik

Sarkar

Covering Arrays

Covering Perfect
Hash Families

A Random Method

I Fix t and v independent of k .
I In an array chosen uniformly at random from
{0, . . . , v − 1}N×k , the probability that any specific
t-way interaction is not covered is

(
1− 1

v t

)N
.

I So the expected number of uncovered t-way
interactions is

(k
t

)
v t (1− 1

v t

)N
.

I When this expected number is less than 1, some
array has all t-way interactions covered!
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A Random Method

I Take logarithms of
(k

t

)
v t (1− 1

v t

)N
< 1 to get

CAN(t , k , v) ≤ t
log v t

v t−1

log k(1 + o(1))

I (CAN(t , k , v) = Ω(log k) is easy: No two columns
can be identical.)
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Derandomizing
The Stein-Lovász-Johnson Method

I Generate one row at a time at random from
{0, . . . , v − 1}k .

I The expected number of t-way interactions covered
by this row for the first time is 1

v t times the number of
as-yet-uncovered t-way interactions.

I Stein (1974), Lovász (1975), and Johnson (1974):
Select a row that covers the maximum number of
as-yet-uncovered t-way interactions.

I But finding such a row is NP-hard!
I So select a row that covers at least the average.
I In fact, we do better: After each row is selected, the

number of uncovered interactions is an integer.
(Discrete SLJ)
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Computational Results



Asymptotic and
Constructive
Bounds for

Covering Arrays

Charles J.
Colbourn

with Erin Lanus
and Kaushik

Sarkar

Covering Arrays

Covering Perfect
Hash Families

Better asymptotics
LLL

I SLJ and Discrete SLJ do not account for the limited
statistical dependence among the events of coverage
of interactions.

I The (symmetric version of the) Lovász Local Lemma
(LLL) yields a better bound (obtained by Godbole,
Skipper, and Sunley in 1996)

CAN(t , k , v) ≤ t − 1
log v t

v t−1

log k(1 + o(1))
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Better asymptotics
Francetic-Stevens

I Francetic and Stevens (2016) made the first
improvement in 20 years, using an entropy
compression technique

CAN(t , k , v) ≤ v(t − 1)

log
(

v t−1

v t−1−1

) log k(1 + o(1))

I Is it better? Use the Taylor series expansion to verify.
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Constructive algorithms

I Applications require explicit constructions of arrays,
not asymptotic bounds.

I Can we meet the bounds efficiently when t and v are
fixed?

I Discrete SLJ: Yes, an efficient conditional expectation
method (“density”) deterministically chooses a row
as good as average (Bryce-C, 2007, 2009)

I LLL: Yes if you allow expected polynomial time:
Moser-Tardos (2010) give a resampling method that
succeeds within a linear expected number of
resamplings.

I Francetic-Stevens: Not clear (yet), but stay tuned.
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Constructive algorithms
Why are the tables so bad?

I When v = 7, t = 6, and k = 50 there are

1869524964300

interactions to cover!
I Density stores coverage information for each, and

the storage requirement is enormous.
I Moser-Tardos recomputes coverage for each for

every resampling, and the number of resamplings
needed is a random variable.
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Constructive algorithms
Sample space reduction

I Consider covering arrays that are invariant under the
action of a group on the symbols of the array, in order
to make the space to search for an array much
smaller.

I We consider three permutation groups acting on the
symbols.

I the cyclic group of order v , which partitions the
interactions on t columns into v t−1 orbits of length v ;

I the Frobenius or affine group when v is a prime
power, which partitions the interactions into v t−1−1

v−1
orbits of length v(v − 1) and one orbit of length v ;

I PGL when v + 1 is a prime power, which partitions
the interactions into orbits of length v(v − 1)(v − 2),
v(v − 1), and v .
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Constructive algorithms
Covering Orbits

I Now we cover orbits of interactions and apply the
group to recover the covering array at the end.

I We can apply the SLJ paradigm and the density
methods in the same way in the cyclic and Frobenius
cases (For density, see Colbourn 2013).

I We can apply LLL and the Moser-Tardos methods in
the same way in the cyclic and Frobenius cases.

I This reduces time and storage for density, and time
for Moser-Tardos — But what does it do to the
asymptotic bounds?
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Better asymptotics
Cyclic LLL

I Applying LLL with the cyclic group, we reproduce the
Francetic and Stevens (2016) bound

CAN(t , k , v) ≤ v(t − 1)

log
(

v t−1

v t−1−1

) log k(1 + o(1))

I and we get a Moser-Tardos type method that runs in
expected polynomial time to meet the bound.
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Better asymptotics
Frobenius LLL

I Applying LLL with the Frobenius group, we improve
on the Francetic and Stevens (2016) bound

CAN(t , k , v) ≤ v(v − 1)(t − 1)

log
(

v t−1

v t−1−v+1

) log k(1 + o(1))

I and we get a Moser-Tardos type method that runs in
expected polynomial time to meet the bound.
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What about PGL?

I Covering orbits of length v can be done with v
constant rows.

I Covering orbits of length v(v − 1)(v − 2) can be
done with LLL (or Moser-Tardos).

I But orbits of length v(v − 1) are a problem, in that
their probability of being covered in a random
selection is much smaller.

I So the road to higher levels of sharply `-transitive
groups acting on the symbols seems blocked.
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Covering Perfect Hash Families Setup I

I George Sherwood suggested a framework for
constructing covering arrays using finite fields.

I q a prime power,
I Fq the finite field of order q,
I Rt,q = {r0, . . . , rqt−1} the set of all (row) vectors of

length t with entries from Fq
I Tt,q the set of all nonzero column vectors of length t

with entries from Fq .
I A vector x ∈ Tt ,q is sometimes called a permutation

vector.
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Covering Perfect Hash Families Setup II

Lemma
Let X = {x1, . . . ,xt} be a set of vectors from Tt ,q. The
array A = (aij) formed by setting aij to be the product of ri
and xj is a CA(qt ; t , t ,q) if and only if the t × t matrix
X = [x1 · · · xt ] is nonsingular.

I This is essentially the Bose-Bush construction of
orthogonal arrays.
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CPHFs and Covering Arrays

I A covering perfect hash family CPHF(n; k ,q, t) is an
n × k array C = (cij) with entries from Tt ,q so that, for
every set {γ1, . . . , γt} of distinct column indices,
there is at least one row index ρ of C for which
[cργ1 · · · cργ1 ] is nonsingular; call this a covering t-set
and say that the t-set of columns is covered in row ρ.

Lemma
Suppose that C is a CPHF(n; k ,q, t). Then there exists a
CA(n(qt − 1) + 1; t , k ,q).
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CPHF Better Asymptotics for Covering Arrays

I Choose entries of an n × k array A uniformly at
random from Tt ,q.

I Let T be a set of t columns of A.
I Within one row of A, the probability that the columns

of T are not covering is

φt ,q := 1−
∏t−1

i=0(qt − qi)

(qt − 1)t = 1−
t−1∏
i=1

qt − qi

qt − 1
.

I The probability that A does not contain a covering
t-set for T is φn

t ,q.
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Random Selection with Postprocessing

I Constructing an array with κ > k columns, we can
compute the expected number of t-tuples of columns
not covered.

I Choose κ so that the number of uncovered tuples of
columns is κ− k .

I Then delete one column from each uncovered tuple.
I At least k remain, and the result is a covering array!
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CPHF Better Asymptotics for Covering Arrays

Lemma
For all q ≥ 3 and t ≥ 3,

1
q
≤ φt ,q ≤

q + 1
q2 .

I This leads to three better asymptotic bounds for
covering arrays!

SLJ CPHF LLL CPHF SLJ (pp) CPHF
v t t

2 log v−log(v+1)
v t (t−1)

2 log v−log(v+1)
v t (t−1)

2 log v−log(v+1)
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Next Steps: The Binary Case

I The CPHF approach improves known bounds when
v > 2, but what about the binary case?

I Here Hadamard matrices lead to many of the best
known bounds.

I One can view permutation vectors as (specific)
functions of t variables over Fq. The key is that we
can determine the probability with which t such
functions form a covering set.

I Can one find a set of t binary functions of s variables
yielding improvements on the known bounds?

I It appears to me that Hadamard-type approaches
are the appropriate methods here.
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