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Definitions

Autocorrelation of a sequence

An ordered n-tuple S = (s0, . . . , sn−1) of elements from a set
A ⊂ C is called a finite sequence. The set A is called an
alphabet and the number n is called the length of the sequence.

We define, for all t ∈ {0, . . . , n− 1}, the t-autocorrelation value
of S as

ACS(t) =

n−1∑
l=0

sls
∗
l+t

where s∗l+t is the complex conjugation of sl+t, and the indices l
and l + t are taken modulo n.
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Definitions

Perfect sequences

The autocorrelation sequence of S is defined as
ACS = (ACS(0), . . . ,ACS(n− 1)), with ACS(0) being the
peak-value and all other values being off-peak values.

The sequence S has constant off-peak autocorrelation if all its
off-peak autocorrelation values are equal. In particular, S is
perfect if all its off-peak autocorrelation values are zero.

The sequences S1 = (1, 1, 1,−1) and S2 = (1, 1, i, 1, 1,−1, i,−1)
over the binary and quaternary alphabet, respectively, are perfect
since we have ACS1 = (4, 0, 0, 0) and ACS2 = (8, 0, 0, 0, 0, 0, 0, 0).
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Definitions

It is very difficult to construct perfect sequences over 2nd-, 4th-,
and in general over n-th roots of unity.

It is conjectured that perfect sequences over n-th roots of unity do
not exist for lengths greater that n2, Ma and Ng [7].

Due to the importance of perfect sequences and the difficulty to
construct them over n-th roots of unity, there has been some focus
on other classes of sequences with good autocorrelation.

One of these classes has been introduced by Kuznetsov [5], who
defined perfect sequences over the quaternion algebra.
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Definitions

Quaternions H

The quaternion algebra H is a 4-dimensional real vector space with
R-basis {1, i, j, k} and non-commutative multiplication defined by

i2 = j2 = k2 = −1 and ij = k.

It follows from these relations that

jk = i, ki = j, ji = −k, kj = −i, and ik = −j.

The R-linear complex conjugation on H is denoted h 7→ h∗, and
uniquely defined by

1∗ = 1, i∗ = −i, j∗ = −j, and k∗ = −k.

The norm of a quaternion q, denoted by ||q||, is defined by
||q|| = qq∗.
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Definitions

Note that the basic quaternions Q8 = {±1,±i,±j,±k} form a
group under multiplication, the quaternion group of order 8.

The multiplicative group consisting of all elements

{±1,±i,±j,±k, (±1± i± j ± k)/2}

(where signs may be taken in any combination) is the so-called
binary tetrahedral group and has size 24. By abuse of notation we
call it the quaternion group Q24.

In the following, we often decompose Q24 into the cosets

Q24 = Q8 ∪ qQ8 ∪ q∗Q8

where qqq = 1+i+j+k1+i+j+k1+i+j+k
222 .
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Definitions

Let S = (s0, . . . , sn−1) be a sequence of length n over an arbitrary
quaternion alphabet. We define, for all t ∈ {0, . . . , n− 1}, the left
and right t-autocorrelation values of S as

ACL
S(t) =

n−1∑
l=0

s∗l sl+t and ACR
S (t) =

n−1∑
l=0

sls
∗
l+t

Left and right AC values of S = (j, j,−1,−k, i,−j)
t ACL

S ||ACL
S || ACR

S ||ACR
S ||

0 6 36 6 36

1 0 0 2j + 2k 8

2 −1 + 3i− j − k 12 −1 + i+ j − k 4

3 0 0 0 0

4 −1− 3i+ j + k 12 −1− i− j + k 4

5 0 0 −2j − 2k 8
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Definitions

Perfect Sequences over Quaternions

A sequence S = (s0, . . . , sn−1) of length n over an arbitrary
quaternion alphabet is called left (right) perfect when all left
(right) off-peak t-autocorrelation values are equal to zero, for
t ∈ {1, . . . , n− 1}.

S = (i, j,−k, j, i, 1, k,−1, k, 1)
ACL

S = (10, 0, 0, 0, 0, 0, 0, 0, 0, 0)

ACR
S = (10, 0, 0, 0, 0, 0, 0, 0, 0, 0)

Theorem (Kuznetsov [5])

Let S be a sequence over an arbitrary quaternion alphabet. Then
the sequence S is right perfect if and only if it is left perfect.
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Definitions

Motivation

Kuznetsov and Hall [6] showed a construction of a perfect
sequence of length 5, 354, 228, 880 over Q24.

At this point two main questions were stated: Are there perfect
sequences of unbounded lengths over Q24? If so, is it possible to
restrict the alphabet size to a small one, say the basic quaternions
Q8 = {1,−1, i,−i, j,−j, k,−k}?

Theorem (Barrera Acevedo and Hall [4])

There exists a family of perfect sequences over Q8 of length
n = pa + 1 ≡ 2 mod 4, where p is prime and a ∈ N.
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Symmetry of perfect sequences over the quaternions

Symmetry type 1

A sequence S = (s0, . . . , sn−1) has symmetry type 1 if sr = sn−r
for r = 1, . . . , n− 1.

Length 8: (111, 1, i,−1,111,−1, i, 1)

Length 10: (111, i,−1,−i, jjj,−i,−1, i)

Length 11: (1, k,−j,−i,−1, qqq,−1,−i,−j, k, 1)

Length 16: (111, i,−1, i, j, k,−j,−i−i−i,−j, k, j, i,−1, i)
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Symmetry of perfect sequences over the quaternions

Symmetry type 2

A sequence S = (s0, . . . , sn−1) has symmetry type 2† if n is even
and sr+n

2
= (−1)rsr for all r = 0, . . . , n2 − 1.

Length 8: (1, 1, i,−1, 1,−1,−i,−1)
Length 8: (1, 1, i,−1,1,−1,−1,−1)

Length 16: (1,−1, 1,−i,−1, i, 1, 1, 1, 1, 1, i,−1,−i, 1,−1)

Length 16: (1, i, j,−k, 1,−k,−j, i, 1,−i, j, k, 1, k,−j,−i)

Length 32: (1,−1, 1,−i, i,−j, 1,−k, 1, k,−1, j, i, i,−1, 1,
Length32 :::1, 1, 1, i, i, j, 1, k, 1,−k,−1,−j, i,−i,−1,−1)

†A sequence can have symmetry type 1 and 2.
Santiago Barrera-Acevedo Joint work with Heiko Dietrich Pefect Sequences over Quaternions and RDS



Symmetry of perfect sequences over the quaternions

Symmetry type 3

A sequence S = (s0, . . . , sn−1) has symmetry type 3 if n is
divisible by 4 and s2r+e+n

2
= (−1)rs2r+e for r = 0, . . . , n2 − 1 and

e = 0, 1.

Length 16: (1, i,−j, j, 1,−i,−k,−k, 1, i,−j,−j, 1,−i,−k,−k)
Length 16: (1, i,−j, j, 1,−i,−k,−k,1, 1,−1,−1, 1,−1,−1,−1)

Length 48:
(1,−qk,−j, j,−q,−i,−k, qj, 1, i,−qi,−j, 1, qk, k, k,−q, i,−j,−qi, 1,−i, qj,−k,

1,−qk, j,−j,−q,−i, k,−qj, 1, i, qi, j, 1, qk,−k,−k,−q, i, j, qi, 1,−i,−qj, k)
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Perfect sequences and relative difference sets

Theorem (Arasu, de Launey, and Ma [1, 2] )

A perfect array of size m× n over 4th-roots of unity is equivalent
to a (2mn, 2, 2mn,mn)-RDS in Zm × Zn × Z4 relative to Z2.

A perfect sequences of size n over 4th-roots of unity is equivalent
to a (2n, 2, 2n, n)-RDS in Zn × Z4 relative to Z2.

Theorem (Barrera Acevedo and Dietrich [3])

Let q = (1 + i+ j + k)/2. There is a 1–1 correspondence between
the perfect sequences of length n over Q8 ∪ qQ8 and the
(4n, 2, 4n, 2n)-RDS in Zn ×Q8 relative to Z2.

RDS Definition
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Hadamard matrices

A Hadamard matrix of order n is an n× n matrix H with entries
in {−1, 1} such that

HHᵀ = nIn,

where Hᵀ is the transpose of H and In is the identity matrix of
order n. A Williamson (Hadamard) matrix is a Hadamard
matrix of order 4n of the form

A B C D
−B A −D C
−C D A −B
−D −C B A

 (1)

where the components A,B,C and D are n× n matrices such
that

AAᵀ +BBᵀ + CCᵀ +DDᵀ = 4nIn

and
XY ᵀ = Y Xᵀ for all X,Y ∈ {A,B,C,D}.
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Williamson matrices

Let G be a group of order n. A square matrix M of order n is
called G-invariant if the rows and columns of M = (mg,h) can be
indexed with elements g, h of G such that

mgk,hk = mg,h for all g, h, k ∈ G.

In particular, when G = Zn the matrix M is called circulant.

We identify the element S =
∑

g∈G sgg ∈ Z[G] with the
G-invariant matrix (mg,h) where mg,h = sgh−1 .
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Williamson matrices

A Hadamard matrix H of order 4n is said to be a Williamson
matrix over an abelian group G of order n if H is of the form
Equation (1) and satisfies (in terms of the group ring)

AA(−1) +BB(−1) + CC(−1) +DD(−1) = 4n

and
UV (−1) +XY (−1) − V U (−1) − Y X(−1) = 0,

for all X,Y ∈ {A,B,C,D}
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Perfect sequences and Williamson matrices

Theorem (Schmidt [9] Theorem 2.1)

A Williamson matrix over an abelian group G of order n exists if
and only if there is a (4n, 2, 4n, 2n)-relative difference set in
G×Q8 relative to Z2.

Corollary

A Williamson matrix of order 4n with circulant components exists
if and only if there is a (4n, 2, 4n, 2n)-relative difference set in
Gn ' Zn ×Q8 relative to Z2.

Theorem

A Williamson matrix of order 4n with circulant components is
equivalent to a perfect sequence of length n over Q8 ∪ qQ8.
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Perfect sequences and Williamson matrices

sr 1 −1 i −i j −j k −k q −q qi −qi qj −qj qk −qk

ar −1 1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1
br −1 1 −1 1 1 −1 −1 1 −1 1 1 −1 1 −1 −1 1
cr −1 1 −1 1 −1 1 1 −1 −1 1 −1 1 1 −1 1 −1
dr −1 1 1 −1 −1 1 −1 1 −1 1 1 −1 −1 1 1 −1

Table 1: Correspondence between perfect sequences and circulant Williamson
matrices

Consider a perfect sequence S = (s0, . . . , sn−1) over Q8 ∪ qQ8.
From Table 1, the entries of S define the entries of the matrix

R(S) =

(
a0 a1 ... an−1

b0 b1 ... bn−1
c0 c1 ... cn−1

d0 d1 ... dn−1

)
.

Theorem

The Williamson matrix W(S) corresponding to S has circulant
components whose first rows are the rows of R(S).
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Perfect sequences and Williamson matrices

Conversely, if W is a Williamson matrix of order 4n with circulant
components, then define R(M) as the 4× n matrix consisting of
the first rows of the circulant components of W.

Theorem

From Table 1, the r-th column of R(M) uniquely determines a
symbol sr, and this defines the perfect sequence
PS(M) = (s0, . . . , sn−1) over Q8 ∪ qQ8 corresponding to W.

For example, the perfect sequence

S = (1, i,−1,−i,−1, j,−1,−i,−1, i)

yields a circulant Williamson matrix WM(S) of order 40 with

R(S) =

−1 1 1 −1 1 1 1 −1 1 1
−1 −1 1 1 1 1 1 1 1 −1
−1 −1 1 1 1 −1 1 1 1 −1
−1 1 1 −1 1 −1 1 −1 1 1
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Perfect sequences and Williamson matrices

The circulant Williamson matrix with circulant components defined
by

R(M) =

−1 1 −1 −1 1 1 −1 1 −1 1 1 −1 −1 1
−1 −1 −1 1 1 −1 −1 −1 −1 −1 1 1 −1 −1
−1 1 1 1 −1 −1 −1 −1 −1 −1 −1 1 1 1
−1 −1 1 −1 −1 1 −1 1 −1 1 −1 −1 1 −1


yields the perfect sequence

S = (1, k,−j,−i, j, i, 1, i, 1, i, j,−i,−j, k).

Closer look to Williamson matrices

We consider the representation of the quaternions 1, i, j and k by
4× 4 matrices over C, that is (abusing notation),

1 =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , i =

 0 1 0 0
−1 0 0 0
0 0 0−1
0 0 1 0

 , j =

 0 0 1 0
0 0 0 1
−1 0 0 0
0−1 0 0

 , k =

 0 0 0−1
0 0−1 0
0 1 0 0
−1 0 0 0
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Perfect sequences and Williamson matrices

The original template consider by Williamson is the matrix

W = 1⊗A+ i⊗B + j ⊗ C + k ⊗D,

where M ⊗N denotes the Kronecker product of M and N .

The condition WW ᵀ = 4nI4n implies

AAᵀ +BBᵀ + CCᵀ +DDᵀ = 4nIn

and
XY ᵀ + UV ᵀ − Y Xᵀ − V Uᵀ = 0,

for X,Y, U, V ∈ {A,B,C,D}.
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Perfect sequences and Williamson matrices

XYᵀ +UVᵀ −YXᵀ −VUᵀ = 0, for X,Y, U, V ∈ {A,B,C,D}

1 If the components A,B,C and D are circulant and
symmetric, their respective Williamson matrix yields a perfect
sequence with symmetry type 1.

2 If the components A,B,C and D are circulant and the matrix
XY ᵀ is symmetric for every X,Y ∈ {A,B,C,D}, their
respective Williamson matrix yields a perfect sequence with
symmetry type 2 or 3.

3 Example of the general case (yet to be found).
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Relative difference sets

An (m,n, l, λ)-relative difference set (RDS) R in a group G of
order mn, relative to a (forbidden) subgroup N of order n, is a
l-subset of G with the property that the list of quotients r1r

−1
2

with distinct r1, r2 ∈ R contains each element in G \N exactly λ
times and does not contain the elements of N .

We also call R an (m,n, l, λ)-RDS or simply RDS.

For example R = {1, i, j, k} is a (4, 2, 4, 2)-RDS in Q8 with
forbidden subgroup N = {1,−1}.

1i−1 = −i i1−1 = i j1−1 = j k1−1 = k

1j−1 = −j ij−1 = −k ji−1 = k ki−1 = −j

1k−1 = −k ik−1 = j jk−1 = −i kj−1 = i

Back
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